Skip to main content

Safety Pharmacology and Tinnitus

  • Living reference work entry
  • First Online:
Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays
  • 123 Accesses

Abstract

This work used publically available data from clinical trials to assess the outcomes of safety pharmacology regarding tinnitus reported during clinical trials or postmarketing surveillance. The data concerning adverse effects induced by prototype drugs for tinnitus was derived from ClinicalTrial.gov. Even though none of the prototype drugs for tinnitus has been approved yet, and despite only a small proportion of trials publishing results, the available data from five studies of four drugs suggest that at least one of these medications can also induce tinnitus. Additionally, evidence regarding tinnitus frequency reported by the SIDER database was analyzed. The analysis indicated that 26.7% of all drugs registered had tinnitogenic potential; however, more detailed information was available only for 110 drugs (7.7%). The data concerning the 110 drugs were extracted to analyze the classes of medicines associated with tinnitus induction. Based on the Anatomical Therapeutic Chemical (ATC) classification system of WHO, the following classes of drugs are particularly associated with tinnitus induction: medicines used to treat the cardiovascular system (C), anti-infectives of systemic use (J), antineoplastics and immunomodulating agents (L), and nervous system (N). Obtained information shows that tinnitus is a common adverse effect reported in the protocols of clinical studies within the entire spectrum of frequencies (frequent to rare). Tinnitus patients should cautiously use these medicines, and it would be advisable to report possible new cases during the postmarketing surveillance. Additionally, continuing safety pharmacology for tinnitus is essential when treating tinnitus patients pharmacologically and in patients chronically using potentially tinnitogenic medicines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Further Reading

  • Altissimi G, Colizza A, Cianfrone G, De Vincentiis M, Greco A, Taurone S, Musacchio A, Ciofalo A, Turchetta R, Angeletti D, Ralli M (2020) Drugs inducing hearing loss, tinnitus, dizziness and vertigo: an updated guide. Eur Rev Med Pharmacol Sci 24:7946–7952

    CAS  Google Scholar 

  • Baguley D, Mcferran D, Hall D (2013) Tinnitus. Lancet 382:1600–1607

    Article  Google Scholar 

  • Bauer CA (2018) Tinnitus. N Engl J Med 378:1224–1231

    Article  Google Scholar 

  • Bizjak ED, Haug MT 3rd, Schilz RJ, Sarodia BD, Dresing JM (1999) Intravenous azithromycin-induced ototoxicity. Pharmacotherapy 19:245–248

    Article  CAS  Google Scholar 

  • Brozoski TJ, Bauer CA, Caspary DM (2002) Elevated fusiform cell activity in the dorsal cochlear nucleus of chinchillas with psychophysical evidence of tinnitus. J Neurosci 22:2383–2390

    Article  CAS  Google Scholar 

  • Bryson A, Mendis D, Morrisroe E, Reid CA, Halgamuge S, Petrou S (2022) Classification of antiseizure drugs in cultured neuronal networks using multielectrode arrays and unsupervised learning. Epilepsia 63(7):1693–1703. https://doi.org/10.1111/epi.17268. Epub 2022 May 10. PMID: 35460272.

  • Campbell KCM, Le Prell CG (2018) Drug-induced ototoxicity: diagnosis and monitoring. Drug Saf 41:451–464

    Article  CAS  Google Scholar 

  • Cianfrone G, Pentangelo D, Cianfrone F, Mazzei F, Turchetta R, Orlando MP, Altissimi G (2011) Pharmacological drugs inducing ototoxicity, vestibular symptoms and tinnitus: a reasoned and updated guide. Eur Rev Med Pharmacol Sci 15:601–636

    CAS  Google Scholar 

  • De Ridder D, Vanneste S, Weisz N, Londero A, Schlee W, Elgoyhen AB, Langguth B (2014) An integrative model of auditory phantom perception: Tinnitus as a unified percept of interacting separable subnetworks. Neurosci Biobehav Rev 44:16–32

    Article  Google Scholar 

  • Dehmel S, Pradhan S, Koehler S, Bledsoe S, Shore S (2012) Noise overexposure alters long-term somatosensory-auditory processing in the dorsal cochlear nucleus – possible basis for tinnitus-related hyperactivity? J Neurosci 32:1660–1671

    Article  CAS  Google Scholar 

  • Dong M, Rodriguez AV, Blankenship CA, McPhail G, Vinks AA, Hunter LL (2021) Pharmacokinetic modelling to predict risk of ototoxicity with intravenous tobramycin treatment in cystic fibrosis. J Antimicrob Chemother 76:2923–2931

    Article  CAS  Google Scholar 

  • Eggermont JJ (2007) Pathophysiology of tinnitus. In: Langguth B, Hajak G, Kleinjung T, Cacace A, Møller AR (eds) Progress in brain research. Elsevier

    Google Scholar 

  • Franz L, Frosolini A, Parrino D, Lovato A, De Filippis C, Marioni G (2022) Ototoxicity of immunosuppressant drugs: a systematic review. J Int Adv Otol 18:167–176

    Article  Google Scholar 

  • Hamed SA (2017) The auditory and vestibular toxicities induced by antiepileptic drugs. Expert Opin Drug Saf 16:1281–1294

    Article  CAS  Google Scholar 

  • Horner KC (2003) The emotional ear in stress. Neurosci Biobehav Rev 27:437–446

    Article  CAS  Google Scholar 

  • Jaroszynski C, Job A, Jedynak M, David O, Delon-Martin C (2022) Tinnitus perception in light of a parietal operculo-Insular involvement: a review. Brain Sci 12(3):334. https://doi.org/10.3390/brainsci12030334. PMID: 35326290; PMCID: PMC8946618.

  • Jastreboff PJ (1990) Phantom auditory perception (tinnitus): mechanisms of generation and perception. Neurosci Res 8:221–254

    Article  CAS  Google Scholar 

  • Kuhn M, Letunic I, Jensen LJ, Bork P (2016) The SIDER database of drugs and side effects. Nucleic Acids Res 44:D1075–D1079

    Article  CAS  Google Scholar 

  • Leaver AM, Seydell-Greenwald A, Rauschecker JP (2016) Auditory-limbic interactions in chronic tinnitus: challenges for neuroimaging research. Hear Res 334:49–57

    Article  Google Scholar 

  • Lee CA, Mistry D, Uppal S, Coatesworth AP (2005) Otologic side effects of drugs. J Laryngol Otol 119:267–271

    Article  CAS  Google Scholar 

  • Mazurek B, Olze H, Haupt H, Szczepek AJ (2010) The more the worse: the grade of noise-induced hearing loss associates with the severity of tinnitus. Int J Environ Res Public Health 7:3071–3079

    Article  Google Scholar 

  • McCormack A, Edmondson-Jones M, Somerset S, Hall D (2016) A systematic review of the reporting of tinnitus prevalence and severity. Hear Res 337:70–79

    Article  Google Scholar 

  • Paul BT, Bruce IC, Roberts LE (2017) Evidence that hidden hearing loss underlies amplitude modulation encoding deficits in individuals with and without tinnitus. Hear Res 344:170–182

    Article  Google Scholar 

  • Pawlowski KS, Si E, Wright CG, Koulich E, Hosseini K, Roland PS (2010) Ototoxicity of topical azithromycin solutions in the guinea pig. Arch Otolaryngol Head Neck Surg 136:481–487

    Article  Google Scholar 

  • Rademaker MM, Stegeman I, Brabers AEM, De Jong JD, Stokroos RJ, Smit AL (2021) Differences in characteristics between people with tinnitus that seek help and that do not. Sci Rep 11:22949

    Article  CAS  Google Scholar 

  • Seligmann H, Podoshin L, Ben-David J, Fradis M, Goldsher M (1996) Drug-induced tinnitus and other hearing disorders. Drug Saf 14:198–212

    Article  CAS  Google Scholar 

  • Sun W, Lu J, Laundrie E (2007) Neurotransmitter modulation relates with tinnitus signal generation and management. J Otol 2:63–69

    Article  Google Scholar 

  • Tang Z-Q, Trussell LO (2017) Serotonergic modulation of sensory representation in a central multisensory circuit is pathway specific. Cell Rep 20:1844–1854

    Article  CAS  Google Scholar 

  • Tang ZQ, Trussell LO (2015) Serotonergic regulation of excitability of principal cells of the dorsal cochlear nucleus. J Neurosci 35:4540–4551

    Article  CAS  Google Scholar 

  • Tseng AL, Dolovich L, Salit IE (1997) Azithromycin-related ototoxicity in patients infected with human immunodeficiency virus. Clin Infect Dis 24:76–77

    Article  CAS  Google Scholar 

  • Van De Heyning P, Muehlmeier G, Cox T, Lisowska G, Maier H, Morawski K, Meyer T (2014) Efficacy and safety of AM-101 in the treatment of acute inner ear tinnitus – a double-blind, randomized, placebo-controlled phase II study. Otol Neurotol 35:589–597

    Article  Google Scholar 

  • Vanneste S, De Ridder D (2013) Brain areas controlling heart rate variability in tinnitus and tinnitus-related distress. PLoS One 8:e59728

    Article  CAS  Google Scholar 

  • Wrohan I, Redwood L, Ho J, Velen K, Fox GJ (2021) Ototoxicity among multidrug-resistant TB patients: a systematic review and meta-analysis. Int J Tuberc Lung Dis 25:23–30

    Article  CAS  Google Scholar 

  • Zirke N, Seydel C, Arsoy D, Klapp BF, Haupt H, Szczepek AJ, Olze H, Goebel G, Mazurek B (2013) Analysis of mental disorders in tinnitus patients performed with Composite International Diagnostic Interview. Qual Life Res 22:2095–2104

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka J. Szczepek .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Szczepek, A.J. (2022). Safety Pharmacology and Tinnitus. In: Hock, F.J., Gralinski, M.R., Pugsley, M.K. (eds) Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays. Springer, Cham. https://doi.org/10.1007/978-3-030-73317-9_74-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73317-9_74-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73317-9

  • Online ISBN: 978-3-030-73317-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics