Skip to main content

Safety of Intravenous and Inhalation Anesthetics

  • Living reference work entry
  • First Online:
Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays

Abstract

Here is presented, in chronological order, the studies that established the standards and determined the parameters currently considered for the safe use of anesthetic agents administered by intravenous or inhalation routes. The methods used in the experimental settings, as well as the modifications in the protocols to adapt to different clinical conditions, are described and discussed; The pharmacological criteria and the impact of these anesthetics on the cardiovascular and pulmonary systems are highlighted. However, additional information regarding the mechanisms of action of such agents is still needed, which would improve their use in terms of safety and efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Further Reading

  • Antognini JF, Eisele PH (1993) Anesthetic potency and cardiopulmonary effects of enfluorane, halothane, and isofluorane in goats. Lab Anim Sci 43:607–610

    CAS  PubMed  Google Scholar 

  • Aranake A, Mashour GA, Avidan MS (2013) Minimum alveolar concentration: ongoing relevance and clinical utility. Anaesthesia 68(5):512–522

    Article  CAS  PubMed  Google Scholar 

  • Borkowski GL, Dannemann PJ, Russel GB, Lang CM (1990) An evaluation of three intravenous regimens in New Zealand rabbits. Lab Anim Sci 40:270–276

    CAS  PubMed  Google Scholar 

  • Büch H, Butello W, Neurohr O, Rummel W (1968) Vergleich von Verteilung, narkotischer Wirksamkeit und metabolischer Elimination der optischen Antipoden von Methylphenobarbital. Biochem Pharmacol 17:2391–2398

    Article  PubMed  Google Scholar 

  • Büch H, Grund W, Buzello W, Rummel W (1969) Narkotische Wirksamkeit und Gewebsverteilung der optischen Antipoden des Pentobarbitals bei der Ratte. Biochem Pharmacol 18:1995–1009

    Article  Google Scholar 

  • Butler TC, Bush MT (1942) Anesthetic potency of some new derivatives of barbituric acid. Proc Soc Exp Biol Med 50:232–243

    Article  CAS  Google Scholar 

  • Campagna JA, Miller KW, Forman SA (2003) Mechanisms of actions of inhaled anesthetics. N Engl J Med 348:2110–2124

    Article  CAS  PubMed  Google Scholar 

  • Cervin A, Lindberg S (1998) Changes in mucociliary activity may be used to investigate the airway-irritating potency of volatile anaesthetics. Br J Anaesth 80:475–480

    Article  CAS  PubMed  Google Scholar 

  • Chaves AA, Dech SJ, Nakayama et al (2003) Age and anesthetic effects on murine electrocardiography. Life Sci 72:2401–2412

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Ensor CR, Bohner B (1966) The neuropharmacology of 2-(o-chlorophenyl)-2-methylaminocyclohexanone hydrochloride. J Pharm Exp Ther 152:332–339

    CAS  Google Scholar 

  • Child KJ, Currie JP, Davis B et al (1971) The pharmacological properties in animals of CT1341 – a new steroid anaesthetic agent. Br J Anaesth 43:2–24

    Article  CAS  PubMed  Google Scholar 

  • Christensen HD, Lee IS (1973) Anesthetic potency and acute toxicity of optically active di-substituted barbituric acids. Toxicol Appl Pharmacol 26:495–503

    Article  CAS  PubMed  Google Scholar 

  • Davis NL, Nunnally RL, Malinin TI (1975) Determination of the minimal alveolar concentration (MAC) of halothane in the white New Zealand rabbit. Br J Anaesth 47:341–345

    Article  CAS  PubMed  Google Scholar 

  • De Hert SG, Preckel B, Schlack WS (2009) Update on inhalational anaesthetics. Curr Opin Anaesthesiol 22(4):491–495

    Article  PubMed  Google Scholar 

  • Domenjoz R (1959) Anaesthesist 8:16

    CAS  PubMed  Google Scholar 

  • Doquier MA, Lavand'homme P, Ledermann C et al (2003) Can determining the minimum alveolar anesthetic concentration of volatile anesthetic be used as an objective tool to assess antinociception in animals? Anesth Analg 97:1033–1039

    Article  Google Scholar 

  • Eger EI II, Saidman LJ, Brandstater B (1965) Minimum alveolar anesthetic concentration: a standard of anesthetic potency. Anesthesiology 26:756–763

    Article  PubMed  Google Scholar 

  • Eger EI II, Johnson BH, Weiskopf RB et al (1988) Minimum alveolar concentration of I-653 and isoflurane in pigs. Anesth Analg 67:1174–1176

    Article  PubMed  Google Scholar 

  • Eger EI II, Ionescu P, Laster MJ et al (1999) Minimum alveolar anesthetic concentration of fluorinated alkanols in rats: relevance to theories of narcosis. Anesth Analg 88:867–876

    Article  CAS  PubMed  Google Scholar 

  • Eger EI II, Xing Y, Laster M et al (2003) Halothane and isofluroane have additive minimum alveolar concentration (MAC) effects in rats. Anesth Analg 96:1350–1353

    Article  PubMed  Google Scholar 

  • Fang Z, Gong D, Ionescu P et al (1997) Maturation decreases ethanol minimum alveolar anesthetic concentration (MAC) more than desflurane MAC in rats. Anesth Analg 84:852–858

    Article  CAS  PubMed  Google Scholar 

  • Fukuda H, Hirabayashi Y, Shimizu R et al (1996) Sevoflurane is equivalent to isoflurane for attenuating bupivacaine-induced arrhythmias and seizures in rats. Anesth Analg 83:570–573

    Article  CAS  PubMed  Google Scholar 

  • Glenn JB (1980) Animal studies of the anesthetic activity of ICI 35868. Br J Anaesth 52:731–742

    Article  Google Scholar 

  • Goldenthal EI (1971) A compilation of LD50 values in newborn and adult animals. Toxicol Appl Pharmacol 18:185–207

    Article  CAS  PubMed  Google Scholar 

  • Gong D, Fang Z, Ionescu P et al (1998) Strain minimally influences anesthetic and convulsant requirements of inhaled compounds in rats. Anesth Analg 87:963–966

    Article  CAS  PubMed  Google Scholar 

  • Hall RI, Murphy MR, Hug CC (1987) The enfluorane sparing effect of sufentanyl in dogs. Anesthesiology 67:518–525

    Article  CAS  PubMed  Google Scholar 

  • Hanagata K, Matsukawa T, Sessler DI et al (1995) Isoflurane and sevoflurane produce a dose-dependent reduction in the shivering threshold in rabbits. Anesth Analg 81:581–584

    CAS  PubMed  Google Scholar 

  • Hashimoto H, Imamura S, Ikeda K, Nakashima M (1994) Electrophysiological effects of volatile anesthetics, sevoflurane and halothane, in a canine myocardial infarction model. J Anesth 8:93–100

    Article  PubMed  Google Scholar 

  • Hashimoto Y, Hirota K, Ohtomo N et al (1996) In vivo direct measurement of the bronchodilating effect of sevoflurane using a superfine fiberoptic bronchoscope: comparison with enflurane and halothane. J Cardiothorac Vasc Anesth 10:213–216

    Article  CAS  PubMed  Google Scholar 

  • Hirano M, Fujigaki T, Shibata O, Sumikawa K (1995) A comparison of coronary hemodynamics during isoflurane and sevoflurane anesthesia in dogs. Anesth Analg 80:651–656

    CAS  PubMed  Google Scholar 

  • Hisaka Y, Ohe N, Takase K, Ogasawara S (1997) Cardiopulmonary effects of sevoflurane in cats: comparison with isoflurane, halothane, and enflurane. Res Vet Sci 63:205–210

    Article  Google Scholar 

  • Ide T, Sakurai Y, Aono M, Nishino T (1998) Minimum alveolar anesthetic concentrations for airway occlusion in cats: a new concept of minimum alveolar anesthetic concentration-airway occlusion response. Anesth Analg 86:191–197

    CAS  PubMed  Google Scholar 

  • Janssen PAJ, Niemegeers CJE, Marsboom RPH (1975) Etomidate, a potent non-barbiturate hypnotic. Intravenous etomidate in mice, rats, guinea pigs, rabbits and dogs. Arch Int Pharmacodyn 214:92–132

    CAS  PubMed  Google Scholar 

  • Johnson RA, Striler E, Sawyer DC, Brunson DB (1998) Comparison of isoflurane with sevoflurane for anesthesia induction and recovery in adult dogs. Am J Vet Res 59:487–481

    Google Scholar 

  • Kanaya N, Kawana S, Tsuchida H et al (1998) Comparative myocardial depression of sevoflurane, isofluorane, and halothane in cultured neonatal rat ventricular myocytes. Anesth Analg 67:1041–1047

    Article  Google Scholar 

  • Kashimoto S, Furuya A, Nonaka A et al (1997) The minimum alveolar concentration of sevoflurane in rats. Eur J Anesthesiol 14:359–361

    Article  CAS  Google Scholar 

  • Kataoka Y, Manabe M, Takimoto E et al (1994) Negative inotropic effects of sevoflurane, isoflurane, enflurane and halothane in canine blood-perfused papillary muscles. Anesth Resusc 30:73–76

    CAS  Google Scholar 

  • Kissin I, Morgan PL, Smith LR (1983) Comparison of isoflurane and halothane safety margins in rats. Anesthesiology 58:556–561

    Article  CAS  PubMed  Google Scholar 

  • Kissin I, Kerr CR, Smith LR (1984) Morphine-halothane interaction in rats. Anesthesiology 60:553–561

    Article  CAS  PubMed  Google Scholar 

  • Korkmaz S, Wahlström G (1997) The EEG burst suppression threshold test to determine the CNS sensitivity to intravenous anesthetics in rats. Brain Res Prot 1:378–384

    Article  CAS  Google Scholar 

  • Krantz JC Jr, Carr CJ, Forman SE et al (1941) Anesthesia. IV. The anesthetic action of cyclopropylethyl ether. J Pharmacol Exp Ther 72:233–244

    CAS  Google Scholar 

  • Krantz JCJ, Carr CJ, Lu G, Bell FK (1953) Anesthesia. XL. The anesthetic action of trifluoroethyl vinyl ether. J Pharm Exp Ther 108:488–495

    CAS  Google Scholar 

  • Laubach GD, Pan SY, Rudel HW (1955) Steroid anesthetic agent. Science 122:78

    Article  CAS  PubMed  Google Scholar 

  • Mahmood I (2001) Interspecies scaling of inhalational anesthetic potency minimum alveolar concentration (MAC): application of a correction factor for the prediction of MAC in humans. Am J Ther 8(4):237–241

    Article  CAS  PubMed  Google Scholar 

  • Mather LE, Copeland SE, Ladd LA (2005) Acute toxicity of local anesthetics: underlying pharmacokinetic and pharmacodynamic concepts. Reg Anesth Pain Med 30(6):553–566

    CAS  PubMed  Google Scholar 

  • Mazzeo AJ, Cheng EY, Bosnjak ZJ et al (1996) Differential effects of desflurane and halothane on peripheral airway smooth muscle. Br J Anaesth 76:841–846

    Article  CAS  PubMed  Google Scholar 

  • McMurphy RM, Hodgson DS (1996) Cardiopulmonary effects of desflurane in cats. Am J Vet Res 57:367–370

    CAS  PubMed  Google Scholar 

  • Merkel G, Eger EI II (1963) A comparative study of halothane and halopropane anesthesia. Anesthesiology 24:346–357

    Article  CAS  PubMed  Google Scholar 

  • Michelsen LG, Salmenperä M, Hug CC Jr et al (1996) Anesthetic potency of remifentanil in dogs. Anesthesiology 84:865–872

    Article  CAS  PubMed  Google Scholar 

  • Miller E, Munch JC, Crossley FS, Hartung WH (1936) J Am Chem Soc 58:1090

    Article  CAS  Google Scholar 

  • Mitsuhata H, Saitoh J, Shimizu R et al (1994) Sevoflurane and isoflurane protect against bronchospasm in dogs. Anesthesiology 81:1230–1234

    Article  CAS  PubMed  Google Scholar 

  • Murdock HR (1969) Anesthesia in the rabbit. Fed Proc 28:1510–1516

    PubMed  Google Scholar 

  • Murphy MR, Hug CC (1982) The anesthetic potency of fentanyl in terms of its reduction of enflurane MAC. Anesthesiology 57:485–488

    Article  CAS  PubMed  Google Scholar 

  • Mutoh T, Nishimura R, Kim HY et al (1997) Cardiopulmonary effects of sevoflurane, compared with halothane, enflurane, and isoflurane, in dogs. Am J Vet Res 58:885–890

    CAS  PubMed  Google Scholar 

  • Novalija E, Hogan QH, Kulier AH et al (1998) Effects of desflurane, sevoflurane and halothane on postinfarction spontaneous dysrhythmias in dogs. Acta Anaesthesiol Scand 42:353–357

    Article  CAS  PubMed  Google Scholar 

  • Peeters ME, Gil D, Teske E et al (1988) Four methods for general anesthesia in rabbits: a comparative study. Lab Anim 22:355–360

    Article  CAS  PubMed  Google Scholar 

  • Pieri L (1983) Preclinical pharmacology of midazolam. Br J Clin Pharmacol 16:17S–27S

    Article  PubMed  PubMed Central  Google Scholar 

  • Quasha AL, Eger EI II, Tinker JH (1980) Determination and applications of MAC. Anesthesiology 53:315–334

    Article  CAS  PubMed  Google Scholar 

  • Ramage TM, Chang FL, Shih J et al (2013) Distinct long-term neurocognitive outcomes after equipotent sevoflurane or isoflurane anaesthesia in immature rats. Br J Anaesth 110(Suppl 1):i39–i46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regan MJ, Eger EI II (1967) Effect of hypothermia in dogs on anesthetizing and apneic doses of inhalation agents. Determination of the anesthetic index (Apnea/MAC). Anesthesiology 28:689–700

    Article  CAS  PubMed  Google Scholar 

  • Reich DL, Silvay G (1989) Ketamine: an update on the first twenty-five years of clinical experience. Can J Anaesth 36:186–197

    Article  CAS  PubMed  Google Scholar 

  • Reilly CS, Nimmo WS (1987) New intravenous anaesthetics and neuromuscular blocking drugs. Drugs 34:98–135

    Article  CAS  PubMed  Google Scholar 

  • Robbins BH (1946) Preliminary studies of the anesthetic activity of fluorinated hydrocarbons. J Pharmacol Exp Ther 86:197–204

    CAS  PubMed  Google Scholar 

  • Saeki Y, Hasegawa Y, Shibamoto T et al (1996) The effects of sevoflurane, enflurane, and isoflurane on baroreceptor-sympathetic reflex in rabbits. Anesth Analg 82:342–348

    CAS  PubMed  Google Scholar 

  • Saidman LJ, Eger EI II (1964) Effect of nitrous oxide and narcotic premedication on the alveolar concentration of halothane required for anesthesia. Anesthesiology 25:302–306

    Article  CAS  PubMed  Google Scholar 

  • Seifen E, Seifen AB, Kennedy RH et al (1987) Comparison of cardiac effects of enflurane, isoflurane, and halothane in the dog heart-lung preparation. J Cardiothor Anesth 1:543–553

    Article  CAS  Google Scholar 

  • Soma LR, Terney WJ, Hogan GK, Satoh N (1995) The effects of multiple administrations of sevoflurane to cynomolgus monkeys: clinical pathologic, hematologic and pathologic study. Anesth Analg 81:347–352

    CAS  PubMed  Google Scholar 

  • Sonner JM (2002) Issues in the design and interpretation of minimum alveolar anesthetic concentration (MAC) studies. Anesth Analg 95:609–614

    Article  CAS  PubMed  Google Scholar 

  • Sonner JM, Antognini JF, Dutton RC et al (2003) Inhaled anesthetics and immobility: mechanisms, mysteries, and minimum alveolar anesthetic concentration. Anesth Analg 97:718–740

    Article  CAS  PubMed  Google Scholar 

  • Stachnik J (2006) Inhaled anesthetic agents. Am J Health Syst Pharm 63(7):623–634

    Article  CAS  PubMed  Google Scholar 

  • Steffey EP, Howland D (1978) Potency of enflurane in dogs: comparison with halothane and isofluorane. Am J Vet Res 39:573–577

    CAS  PubMed  Google Scholar 

  • Travis CC, Bowers JC (1991) Interspecies scaling of anesthetic potency. Toxicol Ind Health 7(4):249–260

    Article  CAS  PubMed  Google Scholar 

  • Umesh G, Jasvinder K, Shetty N (2009) Low minimum alveolar concentration alarm: a standard for prevention of awareness during general anaesthesia maintained by inhalational anaesthetics. J Clin Monit Comput 23(3):185–186

    Article  PubMed  Google Scholar 

  • Van Poznak A, Artusio FJ (1960a) Anesthetic properties of a series of fluorinated compounds. I. Fluorinated hydrocarbons. Toxicol Appl Pharmacol 2:363–373

    Article  PubMed  Google Scholar 

  • Van Poznak A, Artusio FJ (1960b) Anesthetic properties of a series of fluorinated compounds. II. Fluorinated ethers. Toxicol Appl Pharmacol 2:363–373

    Article  PubMed  Google Scholar 

  • Volwiler EH, Tabern DL (1930) J Am Chem Soc 52:1676

    Article  CAS  Google Scholar 

  • von Ungern-Sternberg BS, Saudan S, Petak F et al (2008) Desflurane but not sevoflurane impairs airway and respiratory tissue mechanics in children with susceptible airways. Anesthesiology 108(2):216–224

    Article  Google Scholar 

  • Waizer PR, Baez S, Orkin LR (1973) A method for determining minimum alveolar concentration of anesthetic in the rat. Anesthesiology 39:394–397

    Article  CAS  PubMed  Google Scholar 

  • White PF, Johnston RR, Eger EI II (1974) Determination of anesthetic requirement in rats. Anesthesiology 40:52–57

    Article  CAS  PubMed  Google Scholar 

  • Wolfson B, Dorsch SE, Kuo TS, Siker ES (1972) Brain anesthetic concentration – a new concept. Anesthesiology 36:176–179

    Article  CAS  PubMed  Google Scholar 

  • Wolfson B, Kielar CM, Lake C et al (1973) Anesthetic index – a new approach. Anesthesiology 38:583–586

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Fernando Ferrari .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ferrari, L.F., Arendt-Nielsen, L. (2023). Safety of Intravenous and Inhalation Anesthetics. In: Hock, F.J., Gralinski, M.R., Pugsley, M.K. (eds) Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays. Springer, Cham. https://doi.org/10.1007/978-3-030-73317-9_68-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73317-9_68-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73317-9

  • Online ISBN: 978-3-030-73317-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics