Skip to main content

Global Climate Change and Greenhouse Gases Emissions in Terrestrial Ecosystems

  • Reference work entry
  • First Online:
Handbook of Climate Change Mitigation and Adaptation

Abstract

Global climate change has significantly influenced soil greenhouse gases (GHG, i.e., carbon dioxide – CO2, methane – CH4, and nitrous oxide – N2O) emissions that feedback to climate change. Terrestrial ecosystems are important sources and sinks of these GHG that are produced and consumed through biological processes including decomposition, methane oxidation, photosynthesis, methanogenesis, nitrification, and denitrification. In this chapter, we synthesize publications related to global climate change and soil GHG emissions and provide case studies of the impacts of global climate change on soil GHG emissions. The chapter starts with a brief introduction, followed by a description of GHG and soil emission processes. The common methods of GHG emission measurements and research approaches of the global change study are described. Case studies using laboratory incubation, field experiment, meta-analysis, and ecosystem modeling are provided. We focus on the impacts of global warming, precipitation change, atmospheric CO2 concentration, and nitrogen deposition on soil GHG emissions in terrestrial ecosystems. Some recommendations for future studies are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi MK, Müller C (2011) Trace gas fluxes of CO2, CH4 and N2O in a permanent grassland soil exposed to elevated CO2 in the Giessen FACE study. Atmos Chem Phys 11(17):9333

    Article  Google Scholar 

  • Ainsworth EA, Long SP (2005) What have we learned from fifteen years of Free Air Carbon Dioxide Enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372

    Article  Google Scholar 

  • Arft AM, Walker MD, Gurevitch JETA et al (1999) Responses of tundra plants to experimental warming: meta-analysis of the international tundra experiment. Ecol Monogr 69(4):491–511

    Google Scholar 

  • Arias-Navarro C, Díaz-Pinés E, Klatt S et al (2017) Spatial variability of soil N2O and CO2 fluxes in different topographic positions in a tropical montane forest in Kenya. J Geophys Res Biogeosci 122:514–527

    Article  Google Scholar 

  • Arnold PW (1954) Losses of nitrous oxide from soil. J Soil Sci 5(1):116–128

    Article  Google Scholar 

  • Arnold K, Nilsson M, Hanell B et al (2005) Fluxes of CO2, CH4 and N2O from drained organic soils in deciduous forests. Soil Biol Biochem 37:1059–1071

    Article  Google Scholar 

  • Aronson E, Allison SD (2012) Meta-analysis of environmental impacts on nitrous oxide release in response to N amendment. Front Microbiol 3:272

    Article  Google Scholar 

  • Baggs EM, Blum H (2004) CH4 oxidation and emissions of CH4 and N2O from Lolium perenne swards under elevated atmospheric CO2. Soil Biol Biochem 36(4):713–723

    Article  Google Scholar 

  • Bai E, Li SL, Xu WH et al (2013) A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytol 199(2):441–451

    Article  Google Scholar 

  • Bain WG, Hutyra L, Patterson DC et al (2005) Wind-induced error in the measurement of soil respiration using closed dynamic chambers. Agric For Meteorol 131:225–232

    Article  Google Scholar 

  • Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob Chang Biol 9(4):479–492

    Article  Google Scholar 

  • Balogh J, Nagy Z, Fóti S et al (2007) Comparison of CO2 and H2O fluxes over grassland vegetation measured by the eddy-covariance technique and by open system chamber. Photosynthetica 45:288–292

    Article  Google Scholar 

  • Beheydt D, Boeckx P, Sleutel S et al (2007) Validation of DNDC for 22 long-term N2O field emission measurements. Atmos Environ 41(29):6196–6211

    Article  Google Scholar 

  • Beier C, Emmett B, Gundersen P et al (2004) Novel approaches to study climate change effects on terrestrial ecosystems in the field: drought and passive nighttime warming. Ecosystems 7(6):583–597

    Article  Google Scholar 

  • Bejarano-Castillo M, Campo J, Roa-Fuentes LL (2015) Effects of increased nitrogen availability on C and N cycles in tropical forests: a meta-analysis. PLoS One 10(12):e0144253. https://doi.org/10.1371/journal.pone.0144253

    Article  Google Scholar 

  • Bergh J, Linder S (1999) Effects of soil warming during spring on photosynthetic recovery in boreal Norway spruce stands. Glob Chang Biol 5:245–253

    Article  Google Scholar 

  • Bhattacharyya P, Roy KS, Neogi S et al (2013) Impact of elevated CO2 and temperature on soil C and N dynamics in relation to CH4 and N2O emissions from tropical flooded rice (Oryza sativa L.). Sci Total Environ 461:601–611

    Article  Google Scholar 

  • Bond-Lamberty B, Thomson A (2010) A global database of soil respiration data. Biogeosciences 7(6):1915–1926

    Article  Google Scholar 

  • Bridgham SD, Cadillo-Quiroz H, Keller JK et al (2013) Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Glob Chang Biol 19(5):1325–1346

    Article  Google Scholar 

  • Cao M, Woodward FI (1998) Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 393:249–252

    Article  Google Scholar 

  • Carter MS, Ambus P, Albert KR et al (2011) Effects of elevated atmospheric CO2, prolonged summer drought and temperature increase on N2O and CH4 fluxes in a temperate heathland. Soil Biol Biochem 43(8):1660–1670

    Article  Google Scholar 

  • Castro MS, Peterjohn WT, Melillo JM et al (1994) Effects of nitrogen fertilization on the fluxes of N2O, CH4, and CO2 from soils in a Florida slash pine plantation. Can J For Res 24(1):9–13

    Article  Google Scholar 

  • Chen J, Luo YQ, Garcia-Palacios P et al (2018) Differential responses of carbon-degrading enzyme activities to warming: implications for soil respiration. Glob Chang Biol 24(10):4816–4826

    Article  Google Scholar 

  • Chen Y, Feng JG, Yuan X et al (2020) Effects of warming on carbon and nitrogen cycling in alpine grassland ecosystems on the Tibetan Plateau: a meta-analysis. Geoderma 370:114363

    Article  Google Scholar 

  • Cheng W, Yagi K, Sakai H et al (2006) Effects of elevated atmospheric CO2 concentrations on CH4 and N2O emission from rice soil: an experiment in controlled-environment chambers. Biogeochemistry 77(3):351–373

    Article  Google Scholar 

  • Ciais P, Sabine C, Bala G et al (2014) Carbon and other biogeochemical cycles. In: Climate change 2013: the physical science basis. Contribution of working group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, pp 465–570

    Google Scholar 

  • Clough TJ, Rochette P, Thomas SM et al (2020) Global Research Alliance N2O chamber methodology guidelines: design considerations. J Environ Qual 49(5):1081–1091

    Article  Google Scholar 

  • Cowan NJ, Norman P, Famulari D et al (2015) Spatial variability and hotspots of soil N2O fluxes from intensively grazed grassland. Biogeosciences 12:1585–1596

    Article  Google Scholar 

  • Curtis PS (1996) A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide. Plant Cell Environ 19(2):127–137

    Article  Google Scholar 

  • Curtis PS, Wang X (1998) A meta-analysis of elevated CO2 effects on woody plant mass, form and physiology. Oecologia 113:299–313

    Article  Google Scholar 

  • Dai Z, Yu M, Chen H, Zhao H et al (2020) Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems. Glob Chang Biol 26(9):5267–5276

    Article  Google Scholar 

  • Davidson EA, Swank WT (1986) Environmental parameters regulating gaseous nitrogen losses from two forested ecosystems via nitrification and denitrification. Appl Environ Microbiol 52:1287–1292

    Article  Google Scholar 

  • Del Grosso SJ, Parton WJ, Mosier AR et al (2006) DAYCENT national-scale simulations of nitrous oxide emissions from cropped soils in the United States. J Environ Qual 35(4):1451–1460

    Article  Google Scholar 

  • Deng Q, Hui D, Luo Y et al (2015a) Down-regulation of tissue N:P ratios in terrestrial plants by elevated CO2. Ecology 96(12):3354–3362

    Article  Google Scholar 

  • Deng Q, Hui D, Wang J et al (2015b) Corn yield and soil nitrous oxide emission under different fertilizer and soil management: a three-year field experiment in middle Tennessee. PLoS One 10(4):e0125406

    Article  Google Scholar 

  • Deng Q, Hui D, Wang J et al (2016) Assessing the impacts of tillage and fertilization management on nitrous oxide emissions in a cornfield using the DNDC model. J Geophys Res Biogeosci 121(2):337–349

    Article  Google Scholar 

  • Deng Q, Aras S, Yu C-L et al (2017) Effects of precipitation changes on aboveground net primary production and soil respiration in a switchgrass field. Agric Ecosyst Environ 248:29–37

    Article  Google Scholar 

  • Denmead OT (2008) Approaches to measuring fluxes of methane and nitrous oxide between landscapes and the atmosphere. Plant Soil 309:5–24

    Article  Google Scholar 

  • Dieleman WIJ, Luyssaert S, Rey A et al (2010) Soil [N] modulates soil C cycling in CO2-fumigated tree stands: a meta-analysis. Plant Cell Environ 33(12):2001–2011

    Article  Google Scholar 

  • Dijkstra FA, Prior SA, Runion GB et al (2012) Effects of elevated carbon dioxide and increased temperature on methane and nitrous oxide fluxes: evidence from field experiments. Front Ecol Environ 10:520–527

    Article  Google Scholar 

  • Dobbie KE, Smith KA (2003) Nitrous oxide emission factors for agricultural soils in Great Britain: the impact of soil water-filled pore space and other controlling variables. Glob Chang Biol 9(2):204–218

    Article  Google Scholar 

  • Dorodnikov M, Knorr KH, Kuzyakov Y et al (2011) Plant-mediated CH4 transport and contribution of photosynthates to methanogenesis at a boreal mire: a 14C pulse-labeling study. Biogeosciences 8(8):2365–2375

    Article  Google Scholar 

  • Edwards NT, Riggs JS (2003) Automated monitoring of soil respiration. A moving chamber design. Soil Sci Soc Am J 67:1266–1271

    Article  Google Scholar 

  • Etheridge DM, Steele LP, Francey RJ et al (1998) Atmospheric methane between 1000 A.D. and present: evidence of anthropogenic emissions and climatic variability. J Geophys Res 103(D13):15979–15993

    Article  Google Scholar 

  • Etminan M, Myhre G, Highwood EJ et al (2016) Radiative forcing of carbon dioxide, methane, and nitrous oxide: a significant revision of the methane radiative forcing. Geophys Res Lett 43:12614–12623

    Article  Google Scholar 

  • Fang C, Moncrieff JB (1999) A model for soil CO2 production and transport. 1: model development. Agric For Meteorol 95:225–236

    Article  Google Scholar 

  • Fay PA, Carlisle JD, Knapp AK et al (2003) Productivity responses to altered rainfall patterns in a C4-dominated grassland. Oecologia 137:245–251

    Article  Google Scholar 

  • Feng H, Guo J, Han M et al (2020) A review of the mechanisms and controlling factors of methane dynamics in forest ecosystems. For Ecol Manag 455:117702

    Article  Google Scholar 

  • Ganesan AL, Schwietzke S, Poulter B et al (2019) Advancing scientific understanding of the global methane budget in support of the Paris Agreement. Glob Biogeochem Cycles 33(12):1475–1512

    Article  Google Scholar 

  • Garcia-Palacios P, Vandegehuchte ML, Shaw EA et al (2015) Are there links between responses of soil microbes and ecosystem functioning to elevated CO2, N deposition and warming? A global perspective. Glob Chang Biol 21(4):1590–1600

    Article  Google Scholar 

  • Goll DS, Vuichard N, Maignan F et al (2017) A representation of the phosphorus cycle for ORCHIDEE. Geosci Model Dev 10:3745–3770

    Article  Google Scholar 

  • Goodrich JP, Campbell DI, Roulet NT et al (2015) Overriding control of methane flux temporal variability by water table dynamics in a Southern Hemisphere, raised bog. J Geophys Res Biogeosci 120(5):819–831

    Article  Google Scholar 

  • Goulden ML, Munger JW, Fan SM et al (1996) Measurements of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy. Glob Chang Biol 2(3):169–182

    Article  Google Scholar 

  • Gritsch C, Zimmermann M, Zechmeister-Boltenstern S (2015) Interdependencies between temperature and moisture sensitivities of CO2 emissions in European land ecosystems. Biogeosciences 12:5981–5993

    Article  Google Scholar 

  • Hanson PJ, Edwards NT, Garten CT et al (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48(1):115–146

    Article  Google Scholar 

  • Hanson PJ, Gill AL, Xu X et al (2016) Intermediate-scale community-level flux of CO2 and CH4 in a Minnesota peatland: putting the SPRUCE project in a global context. Biogeochemistry 129(3):255–272

    Article  Google Scholar 

  • Harte J, Torn MS, Chang FR et al (1995) Global warming and soil microclimate – results from a meadow-warming experiment. Ecol Appl 5:132–150

    Article  Google Scholar 

  • He W, Yang JY, Drury CF et al (2018) Estimating the impacts of climate change on crop yields and N2O emissions for conventional and no-tillage in Southwestern Ontario, Canada. Agric Syst 159:187–198

    Article  Google Scholar 

  • Hedges LV, Gurevitch J, Curtis PS (1999) The meta-analysis of response ratios in experimental ecology. Ecology 80:1150–1156

    Article  Google Scholar 

  • Heinemeyer A, McNamara NP (2011) Comparing the closed static versus the closed dynamic chamber flux methodology: implications for soil respiration studies. Plant Soil 346:145–151

    Article  Google Scholar 

  • Herbst M, Tappe W, Kummer S et al (2016) The impact of sieving on heterotrophic respiration response to water content in loamy and sandy top soils. Geoderma 272:73–82

    Article  Google Scholar 

  • Holzapfel-Pschorn A, Conrad R, Seiler W (1985) Production, oxidation and emission of methane in rice paddies. FEMS Microbiol Lett 31:343–351

    Article  Google Scholar 

  • Homyak PM, Allison SD, Huxman TE et al (2017) Effects of drought manipulation on soil nitrogen cycling: a meta-analysis. J Geophys Res Biogeosci 122(12):3260–3272

    Article  Google Scholar 

  • Hu Z, Islam AT, Chen S, Hu B et al (2019) Effects of warming and reduced precipitation on soil respiration and N2O fluxes from winter wheat-soybean cropping systems. Geoderma 337:956–964

    Article  Google Scholar 

  • Huang Y, Gerber S (2015) Global soil nitrous oxide emissions in a dynamic carbon–nitrogen model. Biogeosciences 12:6405–6427

    Article  Google Scholar 

  • Huang H, Wang J, Hui D et al (2014) Nitrous oxide emissions from a commercial cornfield (Zea mays) measured using the eddy-covariance technique. Atmos Chem Phys 14(14):20417–20460

    Google Scholar 

  • Hui D, Luo YQ (2004) Evaluation of soil CO2 production and transport in Duke Forest using a process-based modeling approach. Glob Biogeochem Cycles 18:GB4029. https://doi.org/10.1029/2004GB002297

    Article  Google Scholar 

  • Hui D, Tian H, Luo Y (2012) Impacts of climatic changes on biogeochemical cycling in terrestrial ecosystems. In: Chen W-Y, Seiner J, Suzuki T, Lackner M (eds) Handbook of climate change mitigation. Springer, New York

    Google Scholar 

  • Hui D, Porter W, Phillips JR et al (2020) Phosphorus rather than nitrogen enhances CO2 emissions in tropical forest soils: evidence from a laboratory incubation study. Eur J Soil Sci 71(3):495–510

    Article  Google Scholar 

  • Hungate BA, van Groenigen K-J, Six J et al (2009) Assessing the effect of elevated carbon dioxide on soil carbon: a comparison of four meta-analyses. Glob Chang Biol 8(15):2020–2034

    Article  Google Scholar 

  • Inatomi M, Ito A, Ishijima K et al (2010) Greenhouse gas budget of a cool-temperate deciduous broad-leaved forest in Japan estimated using a process-based model. Ecosystems 13:472–483

    Article  Google Scholar 

  • Inatomi M, Hajima T, Ito A (2019) Fraction of nitrous oxide production in nitrification and its effect on total soil emission: a meta-analysis and global-scale sensitivity analysis using a process-based model. PLoS One 14(7):e0219159. https://doi.org/10.1371/journal.pone.0219159

    Article  Google Scholar 

  • Ineson P, Coward PA, Hartwig UA (1998) Soil gas fluxes of N2O, CH4 and CO2 beneath Lolium perenne under elevated CO2: the Swiss free air carbon dioxide enrichment experiment. Plant Soil 198(1):89–95

    Article  Google Scholar 

  • IPCC (2013) In: Stocker TF, Qin D, Plattner G-K et al (eds) Climate change 2013: the physical science basis. Contribution of working group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Ito A, Nishina K, Ishijima K et al (2018) Emissions of nitrous oxide (N2O) from soil surfaces and their historical changes in East Asia: a model-based assessment. Prog Earth Planet Sci 5:55. https://doi.org/10.1186/s40645-018-0215-4

    Article  Google Scholar 

  • Jones SK, Famulari D, Di Marco CF et al (2011) Nitrous oxide emissions from managed grassland: a comparison of eddy covariance and static chamber measurements. Atmos Meas Tech 4:2179–2194

    Article  Google Scholar 

  • Joos F, Spahni R, Stocker BD et al (2020) N2O changes from the Last Glacial Maximum to the preindustrial – part 2: terrestrial N2O emissions and carbon–nitrogen cycle interactions. Biogeosciences 17(13):3511–3543

    Article  Google Scholar 

  • Kelley AM, Fay PA, Polley HW et al (2011) Atmospheric CO2 and soil extracellular enzyme activity: a meta-analysis and CO2 gradient experiment. Ecosphere 2(8):art96. https://doi.org/10.1890/Es11-00117.1

    Article  Google Scholar 

  • Kim Y, Park SJ, Lee BY et al (2016) Continuous measurement of soil carbon efflux with Forced Diffusion (FD) chambers in a tundra ecosystem of Alaska. Sci Total Environ 566:175–184

    Article  Google Scholar 

  • Kitzler B, Holtermann C, Zechmeister-Boltenstern S et al (2006) Nitrogen oxides emission from two beech forests subjected to different nitrogen loads. Biogeosciences 3:293–310

    Article  Google Scholar 

  • Klemedtsson L, Klemedtsson AK, Moldan F et al (1996) Nitrous oxide emission from Swedish forest soils in relation to liming and simulated increased N-deposition. Biol Fertil Soils 25:290–295

    Article  Google Scholar 

  • Kroeze C, Mosier A, Bouwman L (1999) Closing the global warming budget: a retrospective analysis 1500–1994. Glob Biogeochem Cycles 13:1–8

    Article  Google Scholar 

  • Kutzbach L, Schneider J, Sachs T et al (2007) CO2 flux determination by closed-chamber methods can be seriously biased by inappropriate application of linear regression. Biogeosciences 4:1005–1025

    Article  Google Scholar 

  • Launiainen S, Rinne J, Pumpanen J et al (2005) Eddy covariance measurements of CO2 and sensible and latent hear fluxes during a full year in a boreal pine forest trunk-space. Boreal Environ Res 10:569–588

    Google Scholar 

  • Lei XD, Peng CH, Tian DL et al (2007) Meta-analysis and its application in global change research. Chin Sci Bull 52(3):289–302

    Article  Google Scholar 

  • Li C, Frolking S, Frolking TA (1992) A model of nitrous oxide evolution from soil driven by rainfall events: 2. Model applications. J Geophys Res Atmos 97(D9):9777–9783

    Article  Google Scholar 

  • Li CS, Narayanan V, Harriss RC (1996) Model estimates of nitrous oxide emissions from agricultural lands in the United States. Glob Biogeochem Cycles 10(2):297–306

    Article  Google Scholar 

  • Li C, Aber J, Stange F et al (2000) A process-oriented model of N2O and NO emissions from forest soils: 1. Model development. J Geophys Res 105(D4):4369–4384

    Article  Google Scholar 

  • Li L, Zheng Z, Wang W et al (2020) Terrestrial N2O emissions and related functional genes under climate change: a global meta-analysis. Glob Chang Biol 26(2):931–943

    Article  Google Scholar 

  • Liu LL, Greaver TL (2009) A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emission. Ecol Lett 12(10):1103–1117

    Article  Google Scholar 

  • Liu LL, Greaver TL (2010) A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecol Lett 13(7):819–828

    Article  Google Scholar 

  • Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125:171–189

    Article  Google Scholar 

  • Liu LL, Wang X, Lajeunesse MJ et al (2016) A cross-biome synthesis of soil respiration and its determinants under simulated precipitation changes. Glob Chang Biol 22(4):1394–1405

    Article  Google Scholar 

  • Liu S, Zheng Y, Ma R et al (2020) Increased soil release of greenhouse gases shrinks terrestrial carbon uptake enhancement under warming. Glob Chang Biol 26:4601–4613

    Article  Google Scholar 

  • Lu X, Cheng G, Xiao F et al (2008) Simulating carbon sequestration and GHGs emissions in Abies fabric forest on the Gongga Mountains using a biogeochemical process model Forest-DNDC. J Mt Sci 5(3):249–256

    Article  Google Scholar 

  • Lu M, Zhou XH, Luo Y et al (2011) Minor stimulation of soil carbon storage by nitrogen addition: a meta-analysis. Agric Ecosyst Environ 140:234–244

    Article  Google Scholar 

  • Lu M, Zhou XH, Yang Q et al (2013) Responses of ecosystem carbon cycle to experimental warming: a meta-analysis. Ecology 94(3):726–738

    Article  Google Scholar 

  • Lundegardh H (1927) Carbon dioxide evolution of soil and crop growth. Soil Sci 23:417–453

    Article  Google Scholar 

  • Luo Y (2007) Terrestrial carbon-cycle feedback to climate warming. Annu Rev Ecol Evol Syst 38:683–712

    Article  Google Scholar 

  • Luo Y, Reynolds JF (1999) Validity of extrapolating field CO2 experiments to predict carbon sequestration in natural ecosystems. Ecology 80(5):1568–1583

    Article  Google Scholar 

  • Luo Y, Schuur EAG (2020) Model parameterization to represent processes at unresolved scales and changing properties of evolving systems. Glob Chang Biol 26:1109–1117

    Article  Google Scholar 

  • Luo Y, Medlyn B, Hui D et al (2001) Gross primary productivity in Duke Forest: modeling synthesis of CO2 experiment and eddy-flux data. Ecol Appl 11:239–252

    Google Scholar 

  • Luo Y, Hui D, Zhang D (2006) Elevated carbon dioxide stimulates net accumulations of carbon and nitrogen in terrestrial ecosystems: a meta-analysis. Ecology 87:53–63

    Article  Google Scholar 

  • Luo Y, Gerten D, le Maire G et al (2008) Modelled interactive effects of precipitation, temperature, and CO2 on ecosystem carbon and water dynamics in different climatic zones. Glob Chang Biol 14:1986–1999

    Article  Google Scholar 

  • Luo Y, Ogle K, Tucker C et al (2011) Ecological forecasting and data assimilation in a data-rich era. Ecol Appl 21(5):1429–1442

    Article  Google Scholar 

  • Ma S, Jiang J, Huang Y et al (2017) Data-constrained projections of methane fluxes in a northern Minnesota peatland in response to elevated CO2 and warming. J Geophys Res Biogeosci 122(11):2841–2861

    Article  Google Scholar 

  • Mammarella I, Werle P, Pihlatie M et al (2010) A case study of eddy covariance flux of N2O measured within forest ecosystems: quality control and flux error analysis. Biogeosciences 7:427–440

    Article  Google Scholar 

  • Martins CS, Nazaries L, Delgado-Baquerizo M et al (2017) Identifying environmental drivers of greenhouse gas emissions under warming and reduced rainfall in boreal–temperate forests. Funct Ecol 31(12):2356–2368

    Article  Google Scholar 

  • Melillo J, Borchers J, Chaney J (1995) Vegetation/ecosystem modeling and analysis project: comparing biogeography and geochemistry models in a continental-scale study of terrestrial ecosystem responses to climate change and CO2 doubling. Glob Biogeochem Cycles 9:407–437

    Article  Google Scholar 

  • Melillo JM, Butler S, Johnson J et al (2011) Soil warming, carbon, nitrogen interactions, and forest carbon budgets. Proc Natl Acad Sci U S A 108:9508–9512

    Article  Google Scholar 

  • Molodovskaya M, Warland J, Richards BK et al (2011) Nitrous oxide from heterogeneous agricultural landscapes: source contribution analysis by eddy covariance and chambers. Soil Sci Soc Am J 75:1829–1838

    Article  Google Scholar 

  • Mosier A, Kroeze C, Nevison C et al (1998) Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle OECD/IPCC/IEA phase II development of IPCC guidelines for national greenhouse gas inventory methodology. Nutr Cycl Agroecosyst 52:225–248

    Article  Google Scholar 

  • Norby RJ, Luo Y (2004) Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytol 162:281–294

    Article  Google Scholar 

  • O’Connell CS, Ruan L, Silver WL (2018) Drought drives rapid shifts in tropical rainforest soil biogeochemistry and greenhouse gas emissions. Nat Commun 9:1348. https://doi.org/10.1038/s41467-018-03352-3

    Article  Google Scholar 

  • Oertel C, Matschullat J, Zurba K et al (2016) Greenhouse gas emissions from soils – review. Geochemistry 76(3):327–352

    Article  Google Scholar 

  • Oikawa PY, Sturtevant C, Knox SH et al (2017) Revisiting the partitioning of net ecosystem exchange of CO2 into photosynthesis and respiration with simultaneous flux measurements of 13CO2 and CO2, soil respiration and a biophysical model, CANVEG. Agric For Meteorol 234:149–163

    Article  Google Scholar 

  • Pape L, Ammann C, Nyfeler-Brunner A et al (2009) An automated dynamic chamber system for surface exchange measurement of non-reactive and reactive trace gases of grassland ecosystems. Biogeosciences 6:405–429

    Article  Google Scholar 

  • Parton WJ, Hartman M, Ojima D et al (1998) DAYCENT and its land surface submodel: description and testing. Glob Planet Chang 19(1–4):35–48

    Article  Google Scholar 

  • Pearson PN, Palmer MR (2000) Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406:695

    Article  Google Scholar 

  • Petersen SO, Ambus P, Elsgaard L et al (2013) Long-term effects of cropping system on N2O emission potential. Soil Biol Biochem 57:706–712

    Article  Google Scholar 

  • Petrakis S, Seyfferth A, Kan J et al (2017) Influence of experimental extreme water pulses on greenhouse gas emissions from soils. Biogeochemistry 133(2):147–164

    Article  Google Scholar 

  • Potter CS, Randerson JT, Field CB et al (1993) Terrestrial ecosystem production: a process model based on global satellite and surface data. Glob Biogeochem Cycles 7(4):811–841

    Article  Google Scholar 

  • Poulter B, Bousquet P, Canadell JG et al (2017) Global wetland contribution to 2000–2012 atmospheric methane growth rate dynamics. Environ Res Lett 12:094013

    Article  Google Scholar 

  • Rafique R, Kumar S, Luo Y et al (2014) Estimation of greenhouse gases (N2O, CH4 and CO2) from no-till cropland under increased temperature and altered precipitation regime: a DAYCENT model approach. Glob Planet Chang 118:106–114

    Article  Google Scholar 

  • Randerson JT, Hoffman FM, Thornton PE et al (2009) Systematic assessment of terrestrial biogeochemistry in coupled climate-carbon models. Glob Chang Biol 15:2462–2484

    Article  Google Scholar 

  • Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125

    Article  Google Scholar 

  • Reichstein M, Bednorz F, Broll G et al (2000) Temperature dependence of carbon mineralisation: conclusions from a long-term incubation of subalpine soil samples. Soil Biol Biochem 32(7):947–958

    Article  Google Scholar 

  • Ren CJ, Zhao FZ, Shi Z et al (2017) Differential responses of soil microbial biomass and carbon-degrading enzyme activities to altered precipitation. Soil Biol Biochem 115:1–10

    Article  Google Scholar 

  • Ren CJ, Chen J, Lu XJ et al (2018) Responses of soil total microbial biomass and community compositions to rainfall reductions. Soil Biol Biochem 116:4–10

    Article  Google Scholar 

  • Riley WJ, Subin ZM, Lawrence DM et al (2011) Barriers to predicting changes in global terrestrial methane fluxes: analyses using CLM4Me, a methane biogeochemistry model integrated in CESM. Biogeosciences 8(7):1925

    Article  Google Scholar 

  • Risk D, Nickerson N, Creelman C et al (2011) Forced diffusion soil flux: a new technique for continuous monitoring of soil gas efflux. Agric For Meteorol 151(12):1622–1631

    Article  Google Scholar 

  • Rochette P, Ellert B, Gregorich EG et al (1997) Description of a dynamic closed chamber for measuring soil respiration and its comparison with other techniques. Can J Soil Sci 77:195–203

    Article  Google Scholar 

  • Romero-Olivares AL, Allison SD, Treseder KK (2017) Soil microbes and their response to experimental warming over time: a meta-analysis of field studies. Soil Biol Biochem 107:32–40

    Article  Google Scholar 

  • Rubino M, Etheridge DM, Thornton DP et al (2019) Revised records of atmospheric trace gases CO2, CH4, N2O, and δ13C-CO2 over the last 2000 years from Law Dome, Antarctica. Earth Syst Sci Data 11(2):473–492

    Article  Google Scholar 

  • Russell EJ, Appleyard A (1915) The atmosphere of the soil: gas composition and the causes of variation. J Agric Sci 7:43

    Article  Google Scholar 

  • Rustad LEJL, Campbell J, Marion G et al (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126(4):543–562

    Article  Google Scholar 

  • Saban JM, Chapman MA, Taylor G (2019) FACE facts hold for multiple generations; evidence from natural CO2 springs. Glob Chang Biol 25(1):1–11

    Article  Google Scholar 

  • Saggar S, Hedley CB, Giltrap DL et al (2007) Measured and modelled estimates of nitrous oxide emission and methane consumption from a sheep-grazed pasture. Agric Ecosyst Environ 122(3):357–365

    Article  Google Scholar 

  • Saikawa E, Prinn RG, Dlugokencky E et al (2014) Global and regional emissions estimates for N2O. Atmos Chem Phys 14:4617–4641

    Article  Google Scholar 

  • Saunois M, Bousquet P, Poulter B et al (2016) The global methane budget 2000–2012. Earth Syst Sci Data 8(2):697–751

    Article  Google Scholar 

  • Schaufler G, Kitzler B, Schindlbacher A et al (2010) Greenhouse gas emissions from European soils under different land use: effects of soil moisture and temperature. Eur J Soil Sci 61:683–696

    Article  Google Scholar 

  • Schimel D, Melillo J, Tian H et al (2000) Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science 287:2004–2006

    Article  Google Scholar 

  • Sillen WMA, Dieleman WIJ (2012) Effects of elevated CO2 and N fertilization on plant and soil carbon pools of managed grasslands: a meta-analysis. Biogeosciences 9(6):2247–2258

    Article  Google Scholar 

  • Smith P, Martino D, Cai ZC et al (2008) Greenhouse gas mitigation in agriculture. Philos Trans R Soc Lond Ser B Biol Sci 363:789–813

    Article  Google Scholar 

  • Smith KE, Runion GB, Prior SA et al (2010) Effects of elevated CO2 and agricultural management on flux of greenhouse gases from soil. Soil Sci 175(7):349–356

    Article  Google Scholar 

  • Song J, Wan S, Piao S et al (2019) A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nat Ecol Evol 3(9):1309–1320

    Article  Google Scholar 

  • Stocker BD, Roth R, Joos F et al (2013) Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios. Nat Clim Chang 3:666–672

    Article  Google Scholar 

  • Tan GC, Wang HY, Xu N et al (2018) Biochar amendment with fertilizers increases peanut N uptake, alleviates soil N2O emissions without affecting NH3 volatilization in field experiments. Environ Sci Pollut Res 25(9):8817–8826

    Article  Google Scholar 

  • Tian HQ, Chen GS, Liu M et al (2010) Model estimates of net primary productivity, evapotranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States during 1895-2007. Forest ecology and management 259(7):1311–1327

    Google Scholar 

  • Tian HQ, Chen GS, Lu CQ et al (2015) North American terrestrial CO2 uptake largely offset by CH4 and N2O emissions: toward a full accounting of the greenhouse gas budget. Clim Chang 129(3–4):413–426

    Article  Google Scholar 

  • Tian H, Lu C, Ciais P, Michalak AM et al (2016) The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature 531(7593):225–228

    Article  Google Scholar 

  • Tian HQ, Yang J, Lu CQ et al (2018) The global N2O model intercomparison project. Bull Am Meteorol Soc 99(6):1231–1252

    Article  Google Scholar 

  • Tian HQ, Yang J, Xu RT et al (2019) Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: magnitude, attribution, and uncertainty. Glob Chang Biol 25(2):640–659

    Article  Google Scholar 

  • Tu C, Li F (2017) Responses of greenhouse gas fluxes to experimental warming in wheat season under conventional tillage and no-tillage fields. J Environ Sci 54:314–327

    Article  Google Scholar 

  • Ussiri DAN, Lal R, Jarecki MK (2009) Nitrous oxide and methane emissions from long-term tillage under a continuous corn cropping system in Ohio. Soil Tillage Res 104:247–255

    Article  Google Scholar 

  • Van Groenigen KJ, Osenberg CW, Hungate BA (2011) Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature 475(7355):214–216

    Article  Google Scholar 

  • Voigt C, Marushchak ME, Abbott BW et al (2020) Nitrous oxide emissions from permafrost-affected soils. Nat Rev Earth Environ 1:1–15

    Article  Google Scholar 

  • Wang X, Liu LL, Piao SL et al (2014) Soil respiration under climate warming: differential response of heterotrophic and autotrophic respiration. Glob Chang Biol 20(10):3229–3237

    Article  Google Scholar 

  • Wang N, Quesada B, Xia LL et al (2019) Effects of climate warming on carbon fluxes in grasslands – a global meta-analysis. Glob Chang Biol 25(5):1839–1851

    Article  Google Scholar 

  • Wen Y, Zang H, Ma Q et al (2020) Impact of water table levels and winter cover crops on greenhouse gas emissions from cultivated peat soils. Sci Total Environ 719:135130

    Article  Google Scholar 

  • Wu ZT, Dijkstra P, Koch GW et al (2011) Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Glob Chang Biol 17(2):927–942

    Article  Google Scholar 

  • Wu G, Chen XM, Ling J et al (2020) Effects of soil warming and increased precipitation on greenhouse gas fluxes in spring maize seasons in the North China Plain. Sci Total Environ 734:139269

    Article  Google Scholar 

  • Xiao W, Chen X, Jing X et al (2018) A meta-analysis of soil extracellular enzyme activities in response to global change. Soil Biol Biochem 123:21–32

    Article  Google Scholar 

  • Xu T, White L, Hui D et al (2006) Probabilistic inversion of a terrestrial ecosystem model: analysis of uncertainty in parameter estimation and model prediction. Glob Biogeochem Cycles 20:GB2007. https://doi.org/10.1029/2005GB002468

    Article  Google Scholar 

  • Xu R, Prentice IC, Spahni R et al (2012a) Modelling terrestrial nitrous oxide emissions and implications for climate feedback. New Phytol 196(2):472–488

    Article  Google Scholar 

  • Xu XF, Tian HQ, Chen GS et al (2012b) Multifactor controls on terrestrial N2O flux over North America from 1979 through 2010. Biogeosciences 9(4):1351–1366

    Article  Google Scholar 

  • Xu X, Shi Z, Li D et al (2016) Soil properties control decomposition of soil organic carbon: results from data-assimilation analysis. Geoderma 262:235–242

    Article  Google Scholar 

  • Yan G, Mu C, Xing Y et al (2018) Responses and mechanisms of soil greenhouse gas fluxes to changes in precipitation intensity and duration: a meta-analysis for a global perspective. Can J Soil Sci 98(4):591–603

    Article  Google Scholar 

  • Yan C, Yuan ZY, Shi XR et al (2020) A global synthesis reveals more response sensitivity of soil carbon flux than pool to warming. J Soils Sediments 20(3):1208–1221

    Article  Google Scholar 

  • Yang S, Liebner S, Alawi M et al (2014) Taxonomic database and cut-off value for processing mcrA gene 454 pyrosequencing data by MOTHUR. J Microbiol Methods 103:3–5

    Article  Google Scholar 

  • Yao Z, Wolf B, Chen W et al (2010) Spatial variability of N2O, CH4 and CO2 fluxes within the Xilin River catchment of Inner Mongolia, China: a soil core study. Plant Soil 331:341–359

    Article  Google Scholar 

  • Yue K, Peng Y, Peng C et al (2016) Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis. Sci Rep 6(1):1–10

    Article  Google Scholar 

  • Zaehle S, Ciais P, Friend AD et al (2011) Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions. Nat Geosci 4(9):601–605

    Article  Google Scholar 

  • Zak DR, Pregitzer KS, King JS et al (2000) Elevated atmospheric CO2, fine roots and the response of soil microorganisms: a review and hypothesis. New Phytol 147(1):201–222

    Article  Google Scholar 

  • Zhang CJ, Chen YL, Pan J et al (2020) Spatial and seasonal variation of methanogenic community in a river-bay system in South China. Appl Microbiol Biotechnol 104(10):4593–4603

    Google Scholar 

  • Zhong L, Bowatte S, Newton PCD et al (2018) An increased ratio of fungi to bacteria indicates greater potential for N2O production in a grazed grassland exposed to elevated CO2. Agric Ecosyst Environ 254:111–116

    Article  Google Scholar 

  • Zhou X, Weng E, Luo Y (2008) Modeling patterns of nonlinearity in ecosystem responses to temperature, CO2, and precipitation changes. Ecol Appl 18(2):453–466

    Article  Google Scholar 

  • Zhou L, Zhou X, Zhang B et al (2014a) Different responses of soil respiration and its components to nitrogen addition among biomes: a meta-analysis. Glob Chang Biol 20:2332–2343

    Article  Google Scholar 

  • Zhou W, Hui D, Shen W (2014b) Effects of soil moisture on the temperature sensitivity of soil heterotrophic respiration: a laboratory incubation study. PLoS One 9(3):e92531

    Article  Google Scholar 

  • Zhou LY, Zhou XH, Shao JJ et al (2016a) Interactive effects of global change factors on soil respiration and its components: a meta-analysis. Glob Chang Biol 22(9):3157–3169

    Article  Google Scholar 

  • Zhou X, Zhou L, Nie Y et al (2016b) Similar responses of soil carbon storage to drought and irrigation in terrestrial ecosystems but with contrasting mechanisms: a meta-analysis. Agric Ecosyst Environ 228:70–81

    Article  Google Scholar 

  • Zhou GY, Luo Q, Chen YJ et al (2019) Interactive effects of grazing and global change factors on soil and ecosystem respiration in grassland ecosystems: a global synthesis. J Appl Ecol 56(8):2007–2019

    Google Scholar 

  • Zhu Q, Liu J, Peng C et al (2014) Modelling methane emissions from natural wetlands by development and application of the TRIPLEX-GHG model. Geosci Model Dev 7:981–999

    Article  Google Scholar 

  • Zhuang Q, Melillo JM, McGuire AD et al (2007) Net emissions of CH4 and CO2 in Alaska: implications for the region’s greenhouse gas budget. Ecol Appl 17(1):203–212

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Science Foundation (NSF) and US Department of Agriculture (USDA) projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dafeng Hui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hui, D., Deng, Q., Tian, H., Luo, Y. (2022). Global Climate Change and Greenhouse Gases Emissions in Terrestrial Ecosystems. In: Lackner, M., Sajjadi, B., Chen, WY. (eds) Handbook of Climate Change Mitigation and Adaptation. Springer, Cham. https://doi.org/10.1007/978-3-030-72579-2_13

Download citation

Publish with us

Policies and ethics