Skip to main content

Experimental Approach to Alzheimer’s Disease with Emphasis on Insulin Resistance in the Brain

  • Living reference work entry
  • First Online:
Book cover Handbook of Neurotoxicity

Abstract

This chapter on current experimental models of Alzheimer’s disease (AD) is based on human post-mortem findings showing keystone markers for pathology within the ß-amyloid transduction cascade as well as pathology in the mechanism of phosphorylation of tau protein. Evidence for risk factors triggering this devastating disease focuses on type II diabetes. Therefore, modeling of Alzheimer’s disease aims to gain profound knowledge of these underlying mechanisms by studying experimental animal models. Here, several pharmacological models will be discussed in detail, with special emphasis on the one mirroring type II diabetes-related AD pathology induced by streptozotocin and its influences on the insulin/insulin receptor cascade in the brain as well as ß-amyloid and tau pathologies associated with cognitive impairments. While most of transgenic mouse models, like the APP Tg2576 model, demonstrate ß-amyloid plaque formation and impaired memory in rather old age, streptozotocin is able to aggravate the process of pathology so that AD pathology is seen months earlier. This indicates a profound interaction of AD pathology with the brain insulin/insulin receptor cascade and pathobiochemistry. Since this interaction is gaining more and more interest, it is here discussed in a view of a non-transgenic modeling of AD introduced lately by means of a central application of synthetic β-amyloid. Recent trend of repurposing antidiabetic drugs as possible anti-AD drugs and beneficial effects of the intranasal insulin therapy both in clinical and preclinical trials provides a strong support to the metabolic/brain insulin dysfunction-related core of sporadic AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AChE:

Acetylcholinesterase

AD:

Alzheimer’s disease

Akt/PKB:

Protein kinase B

APOE-4:

Apolipoprotein E4

APP:

Amyloid precursor protein

Aß:

Amyloid ß

AβOs:

Amyloid β oligomers

BACE1:

β-Secretase-1

BBB:

Blood–brain barrier

BDNF:

Brain-derived neurotrophic factor

CAT:

Catalase

CCH:

Chronic carotid hypoperfusion

ChAT:

Choline acetyltransferase

CM:

Cisterna magna

cort:

Corticosterone

cPD3B:

Cyclic phosphodiesterase 3 β

DM:

Diabetes mellitus

EAOD:

Early-onset Alzhemier’s disease

eNOS:

Endothelial nitric oxide synthase

ERK:

Extracellular signal-regulated kinase

FDG-PET:

Fluoro-2-deoxyglucose positron emission tomography

FOXO:

Forkhead box protein O1

GFAP:

Glial fibrillary acidic protein

GLP-1:

Glucagon-like peptide 1

GLUT2:

Glucose transporter 2

GSK3ß:

Glycogen synthase kinase-3ß

HPA:

Hypothalamic-pituitary-adrenal axis

IDE:

Insulin-degrading enzyme

IR:

Insulin receptor

IRS1:

Insulin receptor substrate-1

JNK1:

c-Jun N terminal kinase 1

LOAD:

Late-onset Alzheimer’s disease

MAPK:

Mitogen-activated protein kinase

MDA:

Malondialdehyde

mEAOD:

Mendelian early-onset Alzheimer’s disease

MEK:

MAP/ERK kinase

mTOR:

The mammalian target of rapamycin

NO:

Nitric oxide

p:

Phosphorylation

P70S6:

Ribosomal protein S6 kinase and its substrate ribosomal protein S6

PHF1:

Paired helical filaments 1

PI3K:

Phosphoinositide 3 kinase

PP1/2 A:

Protein phosphatase 1/2 A

PSEN1/2:

Presenilin 1/2

RAF:

Proto-oncogene serine/threonine-protein kinase

Ras:

Ras protein family

sAD:

Sporadic Alzheimer’s disease

SOD:

Superoxide dismutase

SOS:

Son of sevenless

STZ:

Streptozotocin

STZ-icv:

Streptozotocin-intracerebroventricular

T2DM:

Type 2 diabetes mellitus

tg:

Transgenic

TNF-R:

Tumor necrosis factor receptor

ULK:

Unc-51-like autophagy activating kinase

References

  • Agrawal, M., Perumal, Y., Bansal, S., Arora, S., & Chopra, K. (2020). Phycocyanin alleviates ICV-STZ induced cognitive and molecular deficits via PI3-Kinase dependent pathway. Food and Chemical Toxicology, 145, 111684.

    Article  CAS  PubMed  Google Scholar 

  • Ahn, Y., Seo, J., Park, J., Won, J., Yeo, H.-G., Kim, K., Jeon, C.-Y., Huh, J.-W., Lee, S.-R., Lee, D.-S., & Lee, Y. (2020). Synaptic loss and amyloid beta alterations in the rodent hippocampus induced by streptozotocin injection into the cisterna magna. Laboratory Animal Research, 36, 17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Akhtar, A., Dhaliwal, J., Saroj, P., Uniyal, A., Bishnoi, M., & Sah, S. P. (2020). Chromium picolinate attenuates cognitive deficit in ICV-STZ rat paradigm of sporadic Alzheimer’s-like dementia via targeting neuroinflammatory and IRS-1/PI3K/AKT/GSK-3β pathway. Inflammopharmacology, 28, 385–400.

    Article  CAS  PubMed  Google Scholar 

  • Alzheimer’s Association. (2020). Alzheimer’s disease facts and figures. Alzheimers Dement, 16(3). https://www.alz.org/media/Documents/alzheimers-facts-and-figures.pdf

  • Anderson, K. L., Frazier, H. N., Maimaiti, S., Bakshi, V. V., Majeed, Z. R., Brewer, L. D., Porter, N. M., Lin, A.-L., & Thibault, O. (2017). Impact of single or repeated dose intranasal zinc-free insulin in young and aged F344 rats on cognition, signaling, and brain metabolism. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 72, 189–197.

    Article  CAS  PubMed  Google Scholar 

  • Arluison, M., Quignon, M., Nguyen, P., Thorens, B., Leloup, C., & Penicaud, L. (2004a). Distribution and anatomical localization of the glucose transporter 2 (GLUT2) in the adult rat brain – An immunohistochemical study. Journal of Chemical Neuroanatomy, 28, 117–136.

    Article  CAS  PubMed  Google Scholar 

  • Arluison, M., Quignon, M., Thorens, B., Leloup, C., & Penicaud, L. (2004b). Immunocytochemical localization of the glucose transporter 2 (GLUT2) in the adult rat brain. II. Electron microscopic study. Journal of Chemical Neuroanatomy, 28, 137–146.

    Article  CAS  PubMed  Google Scholar 

  • Ashe, K. H. (2001). Learning and memory in transgenic mice modeling Alzheimer’s disease. Learning & Memory, 8, 301–308.

    Article  CAS  Google Scholar 

  • Austin, S. A., Santhanam, A. V., Hinton, D. J., Choi, D.-S., & Katusic, Z. S. (2013). Endothelial nitric oxide deficiency promotes Alzheimer’s disease pathology. Journal of Neurochemistry, 127, 691–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayala-Grosso, C. A., & Urbina-Paez, R. (1999). Septohippocampal adaptive GABAergic responses by AF64A treatment. Journal of Neuroscience Research, 55, 178–186.

    Article  CAS  PubMed  Google Scholar 

  • Babic Perhoc, A., Osmanovic Barilar, J., Knezovic, A., Farkas, V., Bagaric, R., Svarc, A., Grünblatt, E., Riederer, P., & Salkovic-Petrisic, M. (2019). Cognitive, behavioral and metabolic effects of oral galactose treatment in the transgenic Tg2576 mice. Neuropharmacology, 148, 50–67.

    Article  CAS  PubMed  Google Scholar 

  • Barai, P., Raval, N., Acharya, S., Borisa, A., Bhatt, H., & Acharya, N. (2019). Neuroprotective effects of bergenin in Alzheimer’s disease: Investigation through molecular docking, in vitro and in vivo studies. Behavioural Brain Research, 356, 18–40.

    Article  CAS  PubMed  Google Scholar 

  • Barilar, J. O., Knezovic, A., Grünblatt, E., Riederer, P., & Salkovic-Petrisic, M. (2015). Nine-month follow-up of the insulin receptor signalling cascade in the brain of streptozotocin rat model of sporadic Alzheimer’s disease. Journal of Neural Transmission, 122, 565–576.

    Article  PubMed  CAS  Google Scholar 

  • Barragán-Bonilla, M. I., Mendoza-Bello, J. M., Aguilera, P., Parra-Rojas, I., Illades-Aguiar, B., Ramírez, M., & Espinoza-Rojo, M. (2019). Combined administration of streptozotocin and sucrose accelerates the appearance of type 2 diabetes symptoms in rats. Journal Diabetes Research, 2019, 3791061.

    Article  CAS  Google Scholar 

  • Barron, A. M., Tokunaga, M., Zhang, M.-R., Ji, B., Suhara, T., & Higuchi, M. (2016). Assessment of neuroinflammation in a mouse model of obesity and β-amyloidosis using PET. Journal of Neuroinflammation, 13, 221.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bassani, T. B., Bonato, J. M., Machado, M. M. F., Cóppola-Segovia, V., Moura, E. L. R., Zanata, S. M., Oliveira, R. M. M. W., & Vital, M. A. B. F. (2018). Decrease in adult neurogenesis and neuroinflammation are involved in spatial memory impairment in the streptozotocin-induced model of sporadic Alzheimer’s disease in rats. Molecular Neurobiology, 55, 4280–4296.

    CAS  PubMed  Google Scholar 

  • Batista, A. F., Forny-Germano, L., Clarke, J. R., Lyra, E., Silva, N. M., Brito-Moreira, J., Boehnke, S. E., Winterborn, A., Coe, B. C., Lablans, A., Vital, J. F., Marques, S. A., Martinez, A. M., Gralle, M., Holscher, C., Klein, W. L., Houzel, J.-C., Ferreira, S. T., Munoz, D. P., & De Felice, F. G. (2018). The diabetes drug liraglutide reverses cognitive impairment in mice and attenuates insulin receptor and synaptic pathology in a non-human primate model of Alzheimer’s disease. The Journal of Pathology, 245, 85–100.

    Article  CAS  PubMed  Google Scholar 

  • Bekris, L. M., Yu, C.-E., Bird, T. D., & Tsuang, D. W. (2010). Genetics of Alzheimer disease. Journal of Geriatric Psychiatry and Neurology, 23, 213–227.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bell, G. A., & Fadool, D. A. (2017). Awake, long-term intranasal insulin treatment does not affect object memory, odor discrimination, or reversal learning in mice. Physiology & Behavior, 174, 104–113.

    Article  CAS  Google Scholar 

  • Benedict, C., Hallschmid, M., Schultes, B., Born, J., & Kern, W. (2007). Intranasal insulin to improve memory function in humans. Neuroendocrinology, 86, 136–142.

    Article  CAS  PubMed  Google Scholar 

  • Bennett, D. A., Cochran, E. J., Saper, C. B., Leverenz, J. B., Gilley, D. W., & Wilson, R. S. (1993). Pathological changes in frontal cortex from biopsy to autopsy in Alzheimer’s disease. Neurobiology of Aging, 14, 589–596.

    Article  CAS  PubMed  Google Scholar 

  • Biasibetti, R., Tramontina, A. C., Costa, A. P., Dutra, M. F., Quincozes-Santos, A., Nardin, P., Bernardi, C. L., Wartchow, K. M., Lunardi, P. S., & Gonçalves, C.-A. (2013). Green tea (−)epigallocatechin-3-gallate reverses oxidative stress and reduces acetylcholinesterase activity in a streptozotocin-induced model of dementia. Behavioural Brain Research, 236, 186–193.

    Article  CAS  PubMed  Google Scholar 

  • Biswas, J., Gupta, S., Verma, D. K., Gupta, P., Singh, A., Tiwari, S., Goswami, P., Sharma, S., & Singh, S. (2018). Involvement of glucose related energy crisis and endoplasmic reticulum stress: Insinuation of streptozotocin induced Alzheimer’s like pathology. Cellular Signalling, 42, 211–226.

    Article  CAS  PubMed  Google Scholar 

  • Bloch, K., Gil-Ad, I., Vanichkin, A., Hornfeld, S. H., Taler, M., Dar, S., Azarov, D., Vardi, P., & Weizman, A. (2018). Intracranial transplantation of pancreatic islets attenuates cognitive and peripheral metabolic dysfunctions in a rat model of sporadic Alzheimer’s disease. Journal of Alzheimer’s Disease, 65, 1445–1458.

    Article  CAS  PubMed  Google Scholar 

  • Bloch, K., Hornfeld, S. H., Dar, S., Vanichkin, A., Gil-Ad, I., Vardi, P., & Weizman, A. (2020). Long-term effects of intracranial islet grafting on cognitive functioning in a rat metabolic model of sporadic Alzheimer’s disease-like dementia. PLoS One, 15, e0227879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blokland, A., & Jolles, J. (1994). Behavioral and biochemical effects of an ICV injection of streptozotocin in old Lewis rats. Pharmacology Biochemistry and Behavior, 47, 833–837.

    Article  CAS  Google Scholar 

  • Blondel, O., & Portha, B. (1989). Early appearance of in vivo insulin resistance in adult streptozotocin-injected rats. Diabète & Métabolisme, 15, 382–387.

    CAS  Google Scholar 

  • Bomfim, T. R., Forny-Germano, L., Sathler, L. B., Brito-Moreira, J., Houzel, J.-C., Decker, H., Silverman, M. A., Kazi, H., Melo, H. M., McClean, P. L., Holscher, C., Arnold, S. E., Talbot, K., Klein, W. L., Munoz, D. P., Ferreira, S. T., & De Felice, F. G. (2012). An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease- associated Aβ oligomers. The Journal of Clinical Investigation, 122, 1339–1353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Born, J., Lange, T., Kern, W., McGregor, G. P., Bickel, U., & Fehm, H. L. (2002). Sniffing neuropeptides: A transnasal approach to the human brain. Nature Neuroscience, 5, 514–516.

    Article  CAS  PubMed  Google Scholar 

  • Bouter, C., & Bouter, Y. (2019). F-FDG-PET in mouse models of Alzheimer’s disease. Frontiers in Medicine, 6, 71.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouter, C., Henniges, P., Franke, T. N., Irwin, C., Sahlmann, C. O., Sichler, M. E., Beindorff, N., Bayer, T. A., & Bouter, Y. (2018). F-FDG-PET detects drastic changes in brain metabolism in the Tg4-42 model of Alzheimer’s disease. Frontiers in Aging Neuroscience, 10, 425.

    Article  CAS  PubMed  Google Scholar 

  • Brureau, A., Zussy, C., Delair, B., Ogier, C., Ixart, G., Maurice, T., & Givalois, L. (2013). Deregulation of hypothalamic-pituitary-adrenal axis functions in an Alzheimer’s disease rat model. Neurobiology of Aging, 34, 1426–1439.

    Article  CAS  PubMed  Google Scholar 

  • Caminiti, S. P., Ballarini, T., Sala, A., Cerami, C., Presotto, L., Santangelo, R., Fallanca, F., Vanoli, E. G., Gianolli, L., Iannaccone, S., Magnani, G., Perani, D., & BIOMARKAPD Project. (2018). FDG-PET and CSF biomarker accuracy in prediction of conversion to different dementias in a large multicentre MCI cohort. NeuroImage Clinical, 18, 167–177.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cataldo, A. M., Hamilton, D. J., & Nixon, R. A. (1994). Lysosomal abnormalities in degenerating neurons link neuronal compromise to senile plaque development in Alzheimer disease. Brain Research, 640, 68–80.

    Article  CAS  PubMed  Google Scholar 

  • Cha, Y., Lee, S. H., Jang, S. K., Guo, H., Ban, Y.-H., Park, D., Jang, G. Y., Yeon, S., Lee, J.-Y., Choi, E.-K., Joo, S. S., Jeong, H.-S., & Kim, Y.-B. (2017). A silk peptide fraction restores cognitive function in AF64A-induced Alzheimer disease model rats by increasing expression of choline acetyltransferase gene. Toxicology and Applied Pharmacology, 314, 48–54.

    Article  CAS  PubMed  Google Scholar 

  • Chapman, C. D., Schiöth, H. B., Grillo, C. A., & Benedict, C. (2018). Intranasal insulin in Alzheimer’s disease: Food for thought. Neuropharmacology, 136, 196–201.

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee, S., et al. (2016). Type 2 diabetes as a risk factor for dementia in women compared with men: A pooled analysis of 2.3 million people comprising more than 100,000 cases of dementia. Diabetes Care, 39, 300–307.

    Article  CAS  PubMed  Google Scholar 

  • Chen, S. Y., Wright, J. W., & Barnes, C. D. (1996). The neurochemical and behavioral effects of beta-amyloid peptide(25-35). Brain Research, 720, 54–60.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., Liang, Z., Blanchard, J., Dai, C.-L., Sun, S., Lee, M. H., Grundke-Iqbal, I., Iqbal, K., Liu, F., & Gong, C.-X. (2013). A non-transgenic mouse model (icv-STZ mouse) of Alzheimer’s disease: Similarities to and differences from the transgenic model (3xTg-AD mouse). Molecular Neurobiology, 47, 711–725.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., Liang, Z., Tian, Z., Blanchard, J., Dai, C.-L., Chalbot, S., Iqbal, K., Liu, F., & Gong, C.-X. (2014). Intracerebroventricular streptozotocin exacerbates Alzheimer-like changes of 3xTg-AD mice. Molecular Neurobiology, 49, 547–562.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., Guo, Z., Mao, Y.-F., Zheng, T., & Zhang, B. (2018). Intranasal insulin ameliorates cerebral hypometabolism, neuronal loss, and astrogliosis in streptozotocin-induced Alzheimer’s rat model. Neurotoxicity Research, 33, 716–724.

    Article  PubMed  CAS  Google Scholar 

  • Chen, J., Gao, L., Zhang, Y., Su, Y., Kong, Z., Wang, D., & Yan, M. (2020). Acteoside-improved streptozotocin-induced learning and memory impairment by upregulating hippocampal insulin, glucose transport, and energy metabolism. Phytotherapy Research. https://doi.org/10.1002/ptr.6811

  • Chételat, G., et al. (2020). Amyloid-PET and 18F-FDG-PET in the diagnostic investigation of Alzheimer’s disease and other dementias. Lancet Neurology, 19, 951–962.

    Article  PubMed  Google Scholar 

  • Choi, B.-R., Seo, J.-H., Back, D. B., Han, J.-S., Choi, D.-H., Kwon, K. J., Shin, C. Y., Lee, J., & Kim, H. Y. (2020). Effect of amyloid toxicity or chronic cerebral hypoperfusion on brain insulin resistance in a rat model with intracerebroventricular streptozotocin. Brain Research Bulletin, 158, 40–50.

    Article  CAS  PubMed  Google Scholar 

  • Christiansen, C. B., Gabe, M. B. N., Svendsen, B., Dragsted, L. O., Rosenkilde, M. M., & Holst, J. J. (2018). The impact of short-chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon. American Journal of Physiology. Gastrointestinal and Liver Physiology, 315, G53–G65.

    Article  CAS  PubMed  Google Scholar 

  • Claxton, A., Baker, L. D., Wilkinson, C. W., Trittschuh, E. H., Chapman, D., Watson, G. S., Cholerton, B., Plymate, S. R., Arbuckle, M., & Craft, S. (2013). Sex and ApoE genotype differences in treatment response to two doses of intranasal insulin in adults with mild cognitive impairment or Alzheimer’s disease. Journal of Alzheimer’s Disease, 35, 789–797.

    Article  PubMed  CAS  Google Scholar 

  • Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G. W., Roses, A. D., Haines, J. L., & Pericak-Vance, M. A. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science, 261, 921–923.

    Article  CAS  PubMed  Google Scholar 

  • Correia, S. C., Santos, R. X., Santos, M. S., Casadesus, G., Lamanna, J. C., Perry, G., Smith, M. A., & Moreira, P. I. (2013). Mitochondrial abnormalities in a streptozotocin-induced rat model of sporadic Alzheimer’s disease. Current Alzheimer Research, 10, 406–419.

    Article  CAS  PubMed  Google Scholar 

  • Craft, S., Peskind, E., Schwartz, M. W., Schellenberg, G. D., Raskind, M., & Porte, D., Jr. (1998). Cerebrospinal fluid and plasma insulin levels in Alzheimer’s disease: Relationship to severity of dementia and apolipoprotein E genotype. Neurology, 50, 164–168.

    Article  CAS  PubMed  Google Scholar 

  • Craft, S., Baker, L. D., Montine, T. J., Minoshima, S., Watson, G. S., Claxton, A., Arbuckle, M., Callaghan, M., Tsai, E., Plymate, S. R., Green, P. S., Leverenz, J., Cross, D., & Gerton, B. (2012). Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: A pilot clinical trial. Archives of Neurology, 69, 29–38.

    Article  PubMed  Google Scholar 

  • Craft, S., Claxton, A., Baker, L. D., Hanson, A. J., Cholerton, B., Trittschuh, E. H., Dahl, D., Caulder, E., Neth, B., Montine, T. J., Jung, Y., Maldjian, J., Whitlow, C., & Friedman, S. (2017). Effects of regular and long-acting insulin on cognition and Alzheimer’s disease biomarkers: A pilot clinical trial. Journal of Alzheimer’s Disease, 57, 1325–1334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cross, D. A. E., Alessi, D. R., Cohen, P., Andjelkovich, M., & Hemmings, B. A. (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature, 378, 785–789.

    Article  CAS  PubMed  Google Scholar 

  • Croteau, E., Castellano, C. A., Fortier, M., Bocti, C., Fulop, T., Paquet, N., & Cunnane, S. C. (2018). A cross-sectional comparison of brain glucose and ketone metabolism in cognitively healthy older adults, mild cognitive impairment and early Alzheimer’s disease. Experimental Gerontology, 107, 18–26.

    Article  CAS  PubMed  Google Scholar 

  • Dai, S. J., Zhang, J. Y., Bao, Y. T., Zhou, X. J., Lin, L. N., Fu, Y. B., Zhang, Y. J., Li, C. Y., & Yang, Y. X. (2018). Intracerebroventricular injection of Aβ combined with two-vessel occlusion accelerate Alzheimer’s disease development in rats. Pathology, Research and Practice, 214, 1583–1595.

    Article  CAS  PubMed  Google Scholar 

  • Dalli, T., Beker, M., Terzioglu-Usak, S., Akbas, F., & Elibol, B. (2018). Thymoquinone activates MAPK pathway in hippocampus of streptozotocin-treated rat model. Biomedicine & Pharmacotherapy, 99, 391–401.

    Article  CAS  Google Scholar 

  • Davis, D. G., Schmitt, F. A., Wekstein, D. R., & Markesbery, W. R. (1999). Alzheimer neuropathologic alterations in aged cognitively normal subjects. Journal of Neuropathology and Experimental Neurology, 58, 376–388.

    Article  CAS  PubMed  Google Scholar 

  • De Felice, F. G., Vieira, M. N. N., Bomfim, T. R., Decker, H., Velasco, P. T., Lambert, M. P., Viola, K. L., Zhao, W.-Q., Ferreira, S. T., & Klein, W. L. (2009). Protection of synapses against Alzheimer’s-linked toxins: Insulin signaling prevents the pathogenic binding of Abeta oligomers. Proceedings of the National Academy of Sciences of the United States of America, 106, 1971–1976.

    Article  PubMed  PubMed Central  Google Scholar 

  • de la Monte, S. M., & Tong, M. (2014). Brain metabolic dysfunction at the core of Alzheimer’s disease. Biochemical Pharmacology, 88, 548–559.

    Article  PubMed  CAS  Google Scholar 

  • de la Monte, S. M., Tong, M., Lawton, M., & Longato, L. (2009a). Nitrosamine exposure exacerbates high fat diet-mediated type 2 diabetes mellitus, non-alcoholic steatohepatitis, and neurodegeneration with cognitive impairment. Molecular Neurodegeneration, 4, 54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de la Monte, S. M., de la Monte, S. M., & Tong, M. (2009b). Mechanisms of nitrosamine-mediated neurodegeneration: Potential relevance to sporadic Alzheimer’s disease. Journal of Alzheimer’s Disease, 17, 817–825.

    Article  PubMed  CAS  Google Scholar 

  • de la Monte, S. M., de la Monte, S. M., Tong, M., Schiano, I., & Didsbury, J. (2016). Improved brain insulin/IGF signaling and reduced neuroinflammation with T3D-959 in an experimental model of sporadic Alzheimer’s disease. Journal of Alzheimer’s Disease, 55, 849–864.

    Article  CAS  Google Scholar 

  • de Quervain, D. J.-F., Poirier, R., Wollmer, M. A., Grimaldi, L. M. E., Tsolaki, M., Streffer, J. R., Hock, C., Nitsch, R. M., Mohajeri, M. H., & Papassotiropoulos, A. (2004). Glucocorticoid-related genetic susceptibility for Alzheimer’s disease. Human Molecular Genetics, 13, 47–52.

    Article  PubMed  CAS  Google Scholar 

  • Deng, Y., Li, B., Liu, Y., Iqbal, K., Grundke-Iqbal, I., & Gong, C.-X. (2009). Dysregulation of insulin signaling, glucose transporters, O-GlcNAcylation, and phosphorylation of tau and neurofilaments in the brain: Implication for Alzheimer’s disease. The American Journal of Pathology, 175, 2089–2098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhull, D. K., Bhateja, D., Dhull, R. K., & Padi, S. S. V. (2012). Differential role of cyclooxygenase isozymes on neuronal density in hippocampus CA1 region of intracerebroventricular streptozotocin treated rat brain. Journal of Chemical Neuroanatomy, 43, 48–51.

    Article  CAS  PubMed  Google Scholar 

  • Dobarro, M., Orejana, L., Aguirre, N., & Ramírez, M. J. (2013). Propranolol reduces cognitive deficits, amyloid β levels, tau phosphorylation and insulin resistance in response to chronic corticosterone administration. The International Journal of Neuropsychopharmacology, 16, 1351–1360.

    Article  CAS  PubMed  Google Scholar 

  • Dos Santos, J. P. A., Vizuete, A., Hansen, F., Biasibetti, R., & Gonçalves, C. A. (2018). Early and persistent O-GlcNAc protein modification in the streptozotocin model of Alzheimer’s disease. Journal of Alzheimer’s Disease, 61, 237–249.

    Article  PubMed  CAS  Google Scholar 

  • Dos Santos, J. P. A., Vizuete, A. F., & Gonçalves, C. A. (2020). Calcineurin-mediated hippocampal inflammatory alterations in streptozotocin-induced model of dementia. Molecular Neurobiology, 57, 502–512.

    Article  PubMed  CAS  Google Scholar 

  • Dudas, B., Hanin, I., Rose, M., & Wülfert, E. (2004). Protection against inflammatory neurodegeneration and glial cell death by 7beta-hydroxy epiandrosterone, a novel neurosteroid. Neurobiology of Disease, 15, 262–268.

    Article  CAS  PubMed  Google Scholar 

  • Duelli, R., Schröck, H., Kuschinsky, W., & Hoyer, S. (1994). Intracerebroventricular injection of streptozotocin induces discrete local changes in cerebral glucose utilization in rats. International Journal of Developmental Neuroscience, 12, 737–743.

    Article  CAS  PubMed  Google Scholar 

  • Duggal, P., & Mehan, S. (2019). Neuroprotective approach of anti-cancer microtubule stabilizers against tauopathy associated dementia: Current status of clinical and preclinical findings. Journal of Alzheimer’s Disease Reports, 3, 179–218.

    Article  PubMed  PubMed Central  Google Scholar 

  • Erbil, D., Eren, C. Y., Demirel, C., Küçüker, M. U., Solaroğlu, I., & Eser, H. Y. (2019). GLP-1’s role in neuroprotection: A systematic review. Brain Injury, 33, 734–819.

    Article  PubMed  Google Scholar 

  • Esmaeili, M. H., Bahari, B., & Salari, A.-A. (2018). ATP-sensitive potassium-channel inhibitor glibenclamide attenuates HPA axis hyperactivity, depression- and anxiety-related symptoms in a rat model of Alzheimer’s disease. Brain Research Bulletin, 137, 265–276.

    Article  CAS  PubMed  Google Scholar 

  • Evrard, P. A., Ragusi, C., Boschi, G., Verbeeck, R. K., & Scherrmann, J.-M. (1998). Simultaneous microdialysis in brain and blood of the mouse: Extracellular and intracellular brain colchicine disposition. Brain Research, 786, 122–127.

    Article  CAS  PubMed  Google Scholar 

  • Feldmann, R. E., Feldmann, R. E., Maurer, M. H., Feldmann, R. E., Maurer, M. H., Hunzinger, C., Feldmann, R. E., Maurer, M. H., Hunzinger, C., Lewicka, S., Buergers, H. F., Kalenka, A., Hinkelbein, J., Broemme, J. O., Seidler, G. H., Martin, E., & Plaschke, K. (2008). Reduction in rat phosphatidylethanolamine binding protein-1 (PEBP1) after chronic corticosterone treatment may be paralleled by cognitive impairment: A first study. Stress, 11, 134–147.

    Article  CAS  PubMed  Google Scholar 

  • Fidelis, E. M., Savall, A. S. P., da Luz, A. E., Carvalho, F., Teixeira, F. E. G., Haas, S. E., Bazanella Sampaio, T., & Pinton, S. (2019). Curcumin-loaded nanocapsules reverses the depressant-like behavior and oxidative stress induced by β-amyloid in mice. Neuroscience, 423, 122–130.

    Article  CAS  PubMed  Google Scholar 

  • Fisher, A., Mantione, C. R., Abraham, D. J., & Hanin, I. (1982). Long-term central cholinergic hypofunction induced in mice by ethylcholine aziridinium ion (AF64A) in vivo. The Journal of Pharmacology and Experimental Therapeutics, 222, 140–145.

    CAS  PubMed  Google Scholar 

  • Flood, J. F., Morley, J. E., & Roberts, E. (1991). Amnestic effects in mice of four synthetic peptides homologous to amyloid beta protein from patients with Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 88, 3363–3366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Formoso, G., Chen, H., Kim, J.-A., Montagnani, M., Consoli, A., & Quon, M. J. (2006). Dehydroepiandrosterone mimics acute actions of insulin to stimulate production of both nitric oxide and endothelin 1 via distinct phosphatidylinositol 3-kinase- and mitogen-activated protein kinase-dependent pathways in vascular endothelium. Molecular Endocrinology, 20, 1153–1163.

    Article  CAS  PubMed  Google Scholar 

  • Foster, N. L., Chase, T. N., Mansi, L., Brooks, R., Fedio, P., Patronas, N. J., & Di Chiro, G. (1984). Cortical abnormalities in Alzheimer’s disease. Annals of Neurology, 16, 649–654.

    Article  CAS  PubMed  Google Scholar 

  • Frölich, L., Blum-Degen, D., Bernstein, H. G., Engelsberger, S., Humrich, J., Laufer, S., Muschner, D., Thalheimer, A., Türk, A., Hoyer, S., Zöchling, R., Boissl, K. W., Jellinger, K., & Riederer, P. (1998). Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. Journal of Neural Transmission, 105, 423–438.

    Article  PubMed  Google Scholar 

  • Gabbouj, S., Ryhänen, S., Marttinen, M., Wittrahm, R., Takalo, M., Kemppainen, S., Martiskainen, H., Tanila, H., Haapasalo, A., Hiltunen, M., & Natunen, T. (2019). Altered insulin signaling in Alzheimer’s disease brain – Special emphasis on PI3K-Akt pathway. Frontiers in Neuroscience, 13, 629.

    Article  PubMed  PubMed Central  Google Scholar 

  • Garabadu, D., & Verma, J. (2019). Exendin-4 attenuates brain mitochondrial toxicity through PI3K/Akt-dependent pathway in amyloid beta (1-42)-induced cognitive deficit rats. Neurochemistry International, 128, 39–49.

    Article  CAS  PubMed  Google Scholar 

  • Ghosh, R., Sil, S., Gupta, P., & Ghosh, T. (2020). Optimization of intracerebroventricular streptozotocin dose for the induction of neuroinflammation and memory impairments in rats. Metabolic Brain Disease, 35, 1279–1286.

    Article  CAS  PubMed  Google Scholar 

  • Giacomeli, R., de Gomes, M. G., Reolon, J. B., Haas, S. E., Colomé, L. M., & Jesse, C. R. (2020). Chrysin loaded lipid-core nanocapsules ameliorates neurobehavioral alterations induced by β-amyloid1-42 in aged female mice. Behavioural Brain Research, 390, 112696.

    Article  CAS  PubMed  Google Scholar 

  • Giorgino, F., Chen, J. H., & Smith, R. J. (1992). Changes in tyrosine phosphorylation of insulin receptors and a 170,000 molecular weight nonreceptor protein in vivo in skeletal muscle of streptozotocin-induced diabetic rats: Effects of insulin and glucose. Endocrinology, 130, 1433–1444.

    CAS  PubMed  Google Scholar 

  • Gómez-Isla, T., Hollister, R., West, H., Mui, S., Growdon, J. H., Petersen, R. C., Parisi, J. E., & Hyman, B. T. (1997). Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Annals of Neurology, 41, 17–24.

    Article  PubMed  Google Scholar 

  • Götz, M. E., Freyberger, A., Hauer, E., Burger, R., Sofic, E., Gsell, W., Heckers, S., Jellinger, K., Hebenstreit, G., Frölich, L., Beckmann, H., & Riederer, P. (1992). Susceptibility of brains from patients with Alzheimer’s disease to oxygen-stimulated lipid peroxidation and differential scanning calorimetry. Dementia and Geriatric Cognitive Disorders, 3, 213–222.

    Article  Google Scholar 

  • Götz, J., Bodea, L.-G., & Goedert, M. (2018). Rodent models for Alzheimer disease. Nature Reviews. Neuroscience, 19, 583–598.

    Article  PubMed  CAS  Google Scholar 

  • Greenwald, B. S., & Davis, K. L. (1983). Experimental pharmacology of Alzheimer disease. Advances in Neurology, 38, 87–102.

    CAS  PubMed  Google Scholar 

  • Grieb, P., Kryczka, T., Fiedorowicz, M., Frontczak-Baniewicz, M., & Walski, M. (2004). Expansion of the Golgi apparatus in rat cerebral cortex following intracerebroventricular injections of streptozotocin. Acta Neurobiologiae Experimentalis, 64, 481–489.

    PubMed  Google Scholar 

  • Gross, C., & Bassell, G. J. (2014). Neuron-specific regulation of class I PI3K catalytic subunits and their dysfunction in brain disorders. Frontiers in Molecular Neuroscience, 7, 12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grünblatt, E., Salkovic-Petrisic, M., Osmanovic, J., Riederer, P., & Hoyer, S. (2007). Brain insulin system dysfunction in streptozotocin intracerebroventricularly treated rats generates hyperphosphorylated tau protein. Journal of Neurochemistry, 101, 757–770.

    Article  PubMed  CAS  Google Scholar 

  • Grünblatt, E., Bartl, J., Iuhos, D. I., Knezovic, A., Trkulja, V., Riederer, P., Walitza, S., & Salkovic-Petrisic, M. (2015). Characterization of cognitive deficits in spontaneously hypertensive rats, accompanied by brain insulin receptor dysfunction. Journal of Molecular Psychiatry, 3, 6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grunfeld, C., Baird, K., Van Obberghen, E., & Kahn, C. R. (1981). Glucocorticoid-induced insulin resistance in vitro: Evidence for both receptor and postreceptor defects. Endocrinology, 109, 1723–1730.

    Article  CAS  PubMed  Google Scholar 

  • Gsell, W., Conrad, R., Hickethier, M., Sofic, E., Frölich, L., Wichart, I., Jellinger, K., Moll, G., Ransmayr, G., & Beckmann, H. (1995). Decreased catalase activity but unchanged superoxide dismutase activity in brains of patients with dementia of Alzheimer type. Journal of Neurochemistry, 64, 1216–1223.

    Article  CAS  PubMed  Google Scholar 

  • Gulyaeva, N. V., Lazareva, N. A., Libe, M. L., Mitrokhina, O. S., Onufriev, M. V., Stepanichev, M. Y., Chernysevskaya, I. A., & Walsh, T. J. (1996). Oxidative stress in the brain following intraventricular administration of ethylcholine aziridinium (AF64A). Brain Research, 726, 174–180.

    Article  CAS  PubMed  Google Scholar 

  • Guo, Z., Chen, Y., Mao, Y.-F., Zheng, T., Jiang, Y., Yan, Y., Yin, X., & Zhang, B. (2017). Long-term treatment with intranasal insulin ameliorates cognitive impairment, tau hyperphosphorylation, and microglial activation in a streptozotocin-induced Alzheimer’s rat model. Scientific Reports, 7, 45971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta, P., Sil, S., Ghosh, R., Ghosh, A., & Ghosh, T. (2018a). Intracerebroventricular Aβ-induced neuroinflammation alters peripheral immune responses in rats. Journal of Molecular Neuroscience, 66, 572–586.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, S., Yadav, K., Mantri, S. S., Singhal, N. K., Ganesh, S., & Sandhir, R. (2018b). Evidence for compromised insulin signaling and neuronal vulnerability in experimental model of sporadic Alzheimer’s disease. Molecular Neurobiology, 55, 8916–8935.

    Article  CAS  PubMed  Google Scholar 

  • Hardy, J. A., & Higgins, G. A. (1992). Alzheimer’s disease: The amyloid cascade hypothesis. Science, 256, 184–185.

    Article  CAS  PubMed  Google Scholar 

  • Hardy, J., & Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science, 297, 353–356.

    Article  CAS  PubMed  Google Scholar 

  • Harr, S. D., Simonian, N. A., & Hyman, B. T. (1995). Functional alterations in Alzheimer’s disease: Decreased glucose transporter 3 immunoreactivity in the perforant pathway terminal zone. Journal of Neuropathology and Experimental Neurology, 54, 38–41.

    Article  CAS  PubMed  Google Scholar 

  • Hebert, L. E., Weuve, J., Scherr, P. A., & Evans, D. A. (2013). Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology, 80, 1778–1783.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hemonnot, A.-L., Hua, J., Ulmann, L., & Hirbec, H. (2019). Microglia in Alzheimer disease: Well-known targets and new opportunities. Frontiers in Aging Neuroscience, 11, 233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heo, J.-H., Lee, S.-R., Lee, S.-T., Lee, K.-M., Oh, J.-H., Jang, D.-P., Chang, K.-T., & Cho, Z.-H. (2011). Spatial distribution of glucose hypometabolism induced by intracerebroventricular streptozotocin in monkeys. Journal of Alzheimer’s Disease, 25, 517–523.

    Article  PubMed  Google Scholar 

  • Holmes, C., Boche, D., Wilkinson, D., Yadegarfar, G., Hopkins, V., Bayer, A., Jones, R. W., Bullock, R., Love, S., Neal, J. W., Zotova, E., & Nicoll, J. A. R. (2008). Long-term effects of Abeta42 immunisation in Alzheimer’s disease: Follow-up of a randomised, placebo-controlled phase I trial. Lancet, 372, 216–223.

    Article  CAS  PubMed  Google Scholar 

  • Homolak, J., Perhoc, A. B., Knezovic, A., Barilar, J. O., & Salkovic-Petrisic, M. (2020). Additional methodological considerations regarding optimization of the dose of intracerebroventricular streptozotocin A response to: “Optimization of intracerebroventricular streptozotocin dose for the induction of neuroinflammation and memory impairments in rats” by Ghosh et al., Metab Brain Dis 2020 July 21. Metabolic Brain Disease, 36, 97.

    Article  PubMed  CAS  Google Scholar 

  • Hörtnagl, H., Potter, P. E., Singer, E. A., Kindel, G., & Hanin, I. (1989). Clonidine prevents transient loss of noradrenaline in response to cholinergic hypofunction induced by ethylcholine aziridinium (AF64A). Journal of Neurochemistry, 52, 853–858.

    Article  PubMed  Google Scholar 

  • Hoyer, S. (2004). Glucose metabolism and insulin receptor signal transduction in Alzheimer disease. European Journal of Pharmacology, 490, 115–125.

    Article  CAS  PubMed  Google Scholar 

  • Hoyer, S., & Lannert, H. (2008). Long-term effects of corticosterone on behavior, oxidative and energy metabolism of parietotemporal cerebral cortex and hippocampus of rats: Comparison to intracerebroventricular streptozotocin. Journal of Neural Transmission, 115, 1241–1249.

    Article  CAS  PubMed  Google Scholar 

  • Hoyer, S., Nitsch, R., & Oesterreich, K. (1991). Predominant abnormality in cerebral glucose utilization in late-onset dementia of the Alzheimer type: A cross-sectional comparison against advanced late-onset and incipient early-onset cases. Journal of Neural Transmission. Parkinson’s Disease and Dementia Section, 3, 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Hsiao, K., Chapman, P., Nilsen, S., Eckman, C., Harigaya, Y., Younkin, S., Yang, F., & Cole, G. (1996). Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science, 274, 99–102.

    Article  CAS  PubMed  Google Scholar 

  • Ikram, M., Muhammad, T., Rehman, S. U., Khan, A., Jo, M. G., Ali, T., & Kim, M. O. (2019). Hesperetin confers neuroprotection by regulating Nrf2/TLR4/NF-κB signaling in an Aβ mouse model. Molecular Neurobiology, 56, 6293–6309.

    Article  CAS  PubMed  Google Scholar 

  • Isaev, N. K., Genrikhs, E. E., Voronkov, D. N., Kapkaeva, M. R., & Stelmashook, E. V. (2018). Streptozotocin toxicity in vitro depends on maturity of neurons. Toxicology and Applied Pharmacology, 348, 99–104.

    Article  CAS  PubMed  Google Scholar 

  • Ishiguro, K., Shiratsuchi, A., Sato, S., Omori, A., Arioka, M., Kobayashi, S., Uchida, T., & Imahori, K. (1993). Glycogen synthase kinase 3 beta is identical to tau protein kinase I generating several epitopes of paired helical filaments. FEBS Letters, 325, 167–172.

    Article  CAS  PubMed  Google Scholar 

  • Jafari, Z., Mehla, J., Kolb, B. E., & Mohajerani, M. H. (2019). Gestational stress augments postpartum β-amyloid pathology and cognitive decline in a mouse model of Alzheimer’s disease. Cerebral Cortex, 29, 3712–3724.

    Article  PubMed  Google Scholar 

  • Jellinger, K. A. (2015). The diabetic brain and dementia. The Journal of Alzheimer Disease & Parkinsonism, 5, 193.

    Google Scholar 

  • Johnston, A. M., Pirola, L., & Van Obberghen, E. (2003). Molecular mechanisms of insulin receptor substrate protein-mediated modulation of insulin signalling. FEBS Letters, 546, 32–36.

    Article  CAS  PubMed  Google Scholar 

  • Kadowaki, T., Kasuga, M., Akanuma, Y., Ezaki, O., & Takaku, F. (1984). Decreased autophosphorylation of the insulin receptor-kinase in streptozotocin-diabetic rats. The Journal of Biological Chemistry, 259, 14208–14216.

    Article  CAS  PubMed  Google Scholar 

  • Kahn, A. M., Husid, A., Allen, J. C., Seidel, C. L., & Song, T. (1997). Insulin acutely inhibits cultured vascular smooth muscle cell contraction by a nitric oxide synthase-dependent pathway. Hypertension, 30, 928–933.

    Article  CAS  PubMed  Google Scholar 

  • Kapogiannis, D., & Mattson, M. P. (2011). Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer’s disease. Lancet Neurology, 10, 187–198.

    Article  CAS  PubMed  Google Scholar 

  • Karran, E., Mercken, M., & De Strooper, B. (2011). The amyloid cascade hypothesis for Alzheimer’s disease: An appraisal for the development of therapeutics. Nature Reviews. Drug Discovery, 10, 698–712.

    Article  CAS  PubMed  Google Scholar 

  • Katsel, P., Roussos, P., Beeri, M. S., Gama-Sosa, M. A., Gandy, S., Khan, S., & Haroutunian, V. (2018). Parahippocampal gyrus expression of endothelial and insulin receptor signaling pathway genes is modulated by Alzheimer’s disease and normalized by treatment with anti-diabetic agents. PLoS One, 13, e0206547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur, G., & Prakash, A. (2020). Involvement of the nitric oxide signaling in modulation of naringin against intranasal manganese and intracerbroventricular β-amyloid induced neurotoxicity in rats. The Journal of Nutritional Biochemistry, 76, 108255.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. H., Lee, S., & Cho, E. J. (2019). Acer okamotoanum and isoquercitrin improve cognitive function via attenuation of oxidative stress in high fat diet- and amyloid beta-induced mice. Food & Function, 10, 6803–6814.

    Article  CAS  Google Scholar 

  • Knezovic, A., Osmanovic-Barilar, J., Curlin, M., Hof, P. R., Simic, G., Riederer, P., & Salkovic-Petrisic, M. (2015). Staging of cognitive deficits and neuropathological and ultrastructural changes in streptozotocin-induced rat model of Alzheimer’s disease. Journal of Neural Transmission, 122, 577–592.

    Article  CAS  PubMed  Google Scholar 

  • Knezovic, A., Loncar, A., Homolak, J., Smailovic, U., Osmanovic Barilar, J., Ganoci, L., Bozina, N., Riederer, P., & Salkovic-Petrisic, M. (2017). Rat brain glucose transporter-2, insulin receptor and glial expression are acute targets of intracerebroventricular streptozotocin: Risk factors for sporadic Alzheimer’s disease? Journal of Neural Transmission, 124, 695–708.

    Article  CAS  PubMed  Google Scholar 

  • Knezovic, A., Osmanovic Barilar, J., Babic, A., Bagaric, R., Farkas, V., Riederer, P., & Salkovic-Petrisic, M. (2018). Glucagon-like peptide-1 mediates effects of oral galactose in streptozotocin-induced rat model of sporadic Alzheimer’s disease. Neuropharmacology, 135, 48–62.

    Article  CAS  PubMed  Google Scholar 

  • Koepsell, H. (2020). Glucose transporters in brain in health and disease. Pflügers Archiv, 472, 1299–1343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosaraju, J., Gali, C. C., Khatwal, R. B., Dubala, A., Chinni, S., Holsinger, R. M. D., Madhunapantula, V. S. R., Muthureddy Nataraj, S. K., & Basavan, D. (2013a). Saxagliptin: A dipeptidyl peptidase-4 inhibitor ameliorates streptozotocin induced Alzheimer’s disease. Neuropharmacology, 72, 291–300.

    Article  CAS  PubMed  Google Scholar 

  • Kosaraju, J., Murthy, V., Khatwal, R. B., Dubala, A., Chinni, S., Muthureddy Nataraj, S. K., & Basavan, D. (2013b). Vildagliptin: An anti-diabetes agent ameliorates cognitive deficits and pathology observed in streptozotocin-induced Alzheimer’s disease. The Journal of Pharmacy and Pharmacology, 65, 1773–1784.

    Article  CAS  PubMed  Google Scholar 

  • Kozlowski, M. R., & Arbogast, R. E. (1986). Specific toxic effects of ethylcholine nitrogen mustard on cholinergic neurons of the nucleus basalis of Meynert. Brain Research, 372, 45–54.

    Article  CAS  PubMed  Google Scholar 

  • Kraska, A., Santin, M. D., Dorieux, O., Joseph-Mathurin, N., Bourrin, E., Petit, F., Jan, C., Chaigneau, M., Hantraye, P., Lestage, P., & Dhenain, M. (2012). In vivo cross-sectional characterization of cerebral alterations induced by intracerebroventricular administration of streptozotocin. PLoS One, 7, e46196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kullmann, S., Heni, M., Hallschmid, M., Fritsche, A., Preissl, H., & Häring, H.-U. (2016). Brain insulin resistance at the crossroads of metabolic and cognitive disorders in humans. Physiological Reviews, 96, 1169–1209.

    Article  CAS  PubMed  Google Scholar 

  • Kulstad, J. J., Jacob Kulstad, J., McMillan, P. J., Leverenz, J. B., Cook, D. G., Green, P. S., Peskind, E. R., Wilkinson, C. W., Farris, W., Mehta, P. D., & Craft, S. (2005). Effects of chronic glucocorticoid administration on insulin-degrading enzyme and amyloid-beta peptide in the aged macaque. Journal of Neuropathology & Experimental Neurology, 64, 139–146.

    Article  CAS  Google Scholar 

  • Kuo, S.-C., Lai, S.-W., Hung, H.-C., Muo, C.-H., Hung, S. C., Liu, L.-L., Chang, C.-W., Hwu, Y.-J., Chen, S.-L., & Sung, F.-C. (2015). Association between comorbidities and dementia in diabetes mellitus patients: Population-based retrospective cohort study. Journal of Diabetes and its Complications, 29, 1071–1076.

    Article  PubMed  Google Scholar 

  • Kurochkin, I. V., Guarnera, E., & Berezovsky, I. N. (2018). Insulin-degrading enzyme in the fight against Alzheimer’s disease. Trends in Pharmacological Sciences, 39, 49–58.

    Article  CAS  PubMed  Google Scholar 

  • Lacković, Z., & Salković, M. (1990). Streptozotocin and alloxan produce alterations in rat brain monoamines independently of pancreatic beta cells destruction. Life Sciences, 46, 49–54.

    Article  PubMed  Google Scholar 

  • Landrigan, P. J., Sonawane, B., Butler, R. N., Trasande, L., Callan, R., & Droller, D. (2005). Early environmental origins of neurodegenerative disease in later life. Environmental Health Perspectives, 113, 1230–1233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lannert, H., & Hoyer, S. (1998). Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. Behavioral Neuroscience, 112, 1199–1208.

    Article  CAS  PubMed  Google Scholar 

  • Lawlor, P. A., & Young, D. (2011). Aβ Infusion and Related Models of Alzheimer Dementia. NeuroMethods, 48, 347–370.

    Article  CAS  Google Scholar 

  • Ledezma, C., Coria-Lucero, C., Delsouc, M. B., Casais, M., Vedova, C. D., Ramirez, D., Devia, C. M., Delgado, S. M., Navigatore-Fonzo, L., & Anzulovich, A. C. (2021). Effect of an Intracerebroventricular injection of aggregated Beta-amyloid (1-42) on daily rhythms of oxidative stress parameters in the prefrontal cortex. Neuroscience, 458, 99–107.

    Google Scholar 

  • Lee, Y., Kim, Y.-H., Park, S.-J., Huh, J.-W., Kim, S.-H., Kim, S.-U., Kim, J.-S., Jeong, K.-J., Lee, K.-M., Hong, Y., Lee, S.-R., & Chang, K.-T. (2014). Insulin/IGF signaling-related gene expression in the brain of a sporadic Alzheimer’s disease monkey model induced by intracerebroventricular injection of streptozotocin. Journal of Alzheimer’s Disease, 38, 251–267.

    Article  PubMed  Google Scholar 

  • Leloup, C., Arluison, M., Lepetit, N., Cartier, N., Marfaing-Jallat, P., Ferré, P., & Pénicaud, L. (1994). Glucose transporter 2 (GLUT 2): Expression in specific brain nuclei. Brain Research, 638, 221–226.

    Article  CAS  PubMed  Google Scholar 

  • Leloup, C., Allard, C., Carneiro, L., Fioramonti, X., Collins, S., & Pénicaud, L. (2016). Glucose and hypothalamic astrocytes: More than a fueling role? Neuroscience, 323, 110–120.

    Article  CAS  PubMed  Google Scholar 

  • Lester-Coll, N., Rivera, E. J., Soscia, S. J., Doiron, K., Wands, J. R., & de la Monte, S. M. (2006). Intracerebral streptozotocin model of type 3 diabetes: Relevance to sporadic Alzheimer’s disease. Journal of Alzheimer’s Disease, 9, 13–33.

    Article  CAS  PubMed  Google Scholar 

  • Lev-Lehman, E., El-Tamer, A., Yaron, A., Grifman, M., Ginzberg, D., Hanin, I., & Soreq, H. (1994). Cholinotoxic effects on acetylcholinesterase gene expression are associated with brain-region specific alterations in G,C-rich transcripts. Brain Research, 661, 75–82.

    Article  CAS  PubMed  Google Scholar 

  • Lim, D. K., Oh, Y. H., & Kim, H. S. (2001). Impairments of learning and memory following intracerebroventricular administration of AF64A in rats. Archives of Pharmacal Research, 24, 234–239.

    Article  CAS  PubMed  Google Scholar 

  • Lin, F., Jia, J., & Qin, W. (2014). Enhancement of β-amyloid oligomer accumulation after intracerebroventricular injection of streptozotocin, which involves central insulin signaling in a transgenic mouse model. Neuroreport, 25, 1289–1295.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Liu, F., Iqbal, K., Grundke-Iqbal, I., & Gong, C.-X. (2008). Decreased glucose transporters correlate to abnormal hyperphosphorylation of tau in Alzheimer disease. FEBS Letters, 582, 359–364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Y., Liu, F., Grundke-Iqbal, I., Iqbal, K., & Gong, C.-X. (2011). Deficient brain insulin signalling pathway in Alzheimer’s disease and diabetes. The Journal of Pathology, 225, 54–62.

    Article  CAS  PubMed  Google Scholar 

  • Liu, C., Wu, Y., Zha, S., Liu, M., Wang, Y., Yang, G., Ma, K., Fei, Y., Zhang, Y., Hu, X., Yang, W., & Qian, Y. (2016). Treatment effects of tanshinone IIA against intracerebroventricular streptozotocin induced memory deficits in mice. Brain Research, 1631, 137–146.

    Article  CAS  PubMed  Google Scholar 

  • Liu, P., Cui, L., Liu, B., Liu, W., Hayashi, T., Mizuno, K., Hattori, S., Ushiki-Kaku, Y., Onodera, S., & Ikejima, T. (2020). Silibinin ameliorates STZ-induced impairment of memory and learning by up-regulating insulin signaling pathway and attenuating apoptosis. Physiology & Behavior, 213, 112689.

    Article  CAS  Google Scholar 

  • Loera-Valencia, R., Cedazo-Minguez, A., Kenigsberg, P. A., Page, G., Duarte, A. I., Giusti, P., Zusso, M., Robert, P., Frisoni, G. B., Cattaneo, A., Zille, M., Boltze, J., Cartier, N., Buee, L., Johansson, G., & Winblad, B. (2019). Current and emerging avenues for Alzheimer’s disease drug targets. Journal of Internal Medicine, 286, 398–437.

    Article  CAS  PubMed  Google Scholar 

  • Lu, H., Zou, Q., Gu, H., Raichle, M. E., Stein, E. A., & Yang, Y. (2012). Rat brains also have a default mode network. Proceedings of the National Academy of Sciences of the United States of America, 109, 3979–3984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luques, L., Shoham, S., & Weinstock, M. (2007). Chronic brain cytochrome oxidase inhibition selectively alters hippocampal cholinergic innervation and impairs memory: Prevention by ladostigil. Experimental Neurology, 206, 209–219.

    Article  CAS  PubMed  Google Scholar 

  • Lutski, M., Weinstein, G., Goldbourt, U., & Tanne, D. (2017). Insulin resistance and future cognitive performance and cognitive decline in elderly patients with cardiovascular disease. Journal of Alzheimer’s Disease, 57, 633–643.

    Article  CAS  PubMed  Google Scholar 

  • Lv, H., Tang, L., Guo, C., Jiang, Y., Gao, C., Wang, Y., & Jian, C. (2020). Intranasal insulin administration may be highly effective in improving cognitive function in mice with cognitive dysfunction by reversing brain insulin resistance. Cognitive Neurodynamics, 14, 323–338.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma, X., Sun, Z., Han, X., Li, S., Jiang, X., Chen, S., Zhang, J., & Lu, H. (2019). Neuroprotective effect of resveratrol via activation of Sirt1 signaling in a rat model of combined diabetes and Alzheimer’s disease. Frontiers in Neuroscience, 13, 1400.

    Article  PubMed  Google Scholar 

  • Magalhães, D. A. D. E., Kume, W. T., Correia, F. S., Queiroz, T. S., Allebrandt Neto, E. W., Santos, M. P. D., Kawashita, N. H., & França, S. A. D. E. (2019). High-fat diet and streptozotocin in the induction of type 2 diabetes mellitus: A new proposal. Anais da Academia Brasileira de Ciências, 91, e20180314.

    Article  PubMed  CAS  Google Scholar 

  • Mann, D. M., Yates, P. O., & Marcyniuk, B. (1985). Some morphometric observations on the cerebral cortex and hippocampus in presenile Alzheimer’s disease, senile dementia of Alzheimer type and Down’s syndrome in middle age. Journal of the Neurological Sciences, 69, 139–159.

    Article  CAS  PubMed  Google Scholar 

  • Maurer, K., & Hoyer, S. (2006). Alois Alzheimer revisited: Differences in origin of the disease carrying his name. Journal of Neural Transmission, 113, 1645–1658.

    Article  CAS  PubMed  Google Scholar 

  • Mayer, G., Nitsch, R., & Hoyer, S. (1990). Effects of changes in peripheral and cerebral glucose metabolism on locomotor activity, learning and memory in adult male rats. Brain Research, 532, 95–100.

    Article  CAS  PubMed  Google Scholar 

  • McDonald, M. P., Dahl, E. E., Overmier, J. B., Mantyh, P., & Cleary, J. (1994). Effects of an exogenous beta-amyloid peptide on retention for spatial learning. Behavioral and Neural Biology, 62, 60–67.

    Article  CAS  PubMed  Google Scholar 

  • Mehla, J., Pahuja, M., & Gupta, Y. K. (2013). Streptozotocin-induced sporadic Alzheimer’s disease: Selection of appropriate dose. Journal of Alzheimer’s Disease, 3, 17–21.

    Google Scholar 

  • Mielke, R., Herholz, K., Grond, M., Kessler, J., & Heiss, W. D. (1994). Clinical deterioration in probable Alzheimer’s disease correlates with progressive metabolic impairment of association areas. Dementia, 5, 36–41.

    CAS  PubMed  Google Scholar 

  • Minoshima, S., Giordani, B., Berent, S., Frey, K. A., Foster, N. L., & Kuhl, D. E. (1997). Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Annals of Neurology, 42, 85–94.

    Article  CAS  PubMed  Google Scholar 

  • Mishra, S. K., & Hidau, M. (2021). Intranasal insulin enhances intracerebroventricular streptozotocin-induced decrease in olfactory discriminative learning via upregulation of subventricular zone-olfactory bulb neurogenesis in the rat model. Molecular Neurobiology, 58, 1248–1259.

    Google Scholar 

  • Mishra, S. K., Singh, S., Shukla, S., & Shukla, R. (2018). Intracerebroventricular streptozotocin impairs adult neurogenesis and cognitive functions via regulating neuroinflammation and insulin signaling in adult rats. Neurochemistry International, 113, 56–68.

    Article  CAS  PubMed  Google Scholar 

  • Mooradian, A. D., Chung, H. C., & Shah, G. N. (1997). GLUT-1 expression in the cerebra of patients with Alzheimer’s disease. Neurobiology of Aging, 18, 469–474.

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Jiménez, E. P., Flor-García, M., Terreros-Roncal, J., Rábano, A., Cafini, F., Pallas-Bazarra, N., Ávila, J., & Llorens-Martín, M. (2019). Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nature Medicine, 25, 554–560.

    Article  PubMed  CAS  Google Scholar 

  • Mosconi, L. (2005). Brain glucose metabolism in the early and specific diagnosis of Alzheimer?S disease. European Journal of Nuclear Medicine and Molecular Imaging, 32, 486–510.

    Article  CAS  PubMed  Google Scholar 

  • Mosconi, L., Berti, V., Glodzik, L., Pupi, A., De Santi, S., & de Leon, M. J. (2010). Pre-clinical detection of Alzheimer’s disease using FDG-PET, with or without amyloid imaging. Journal of Alzheimer’s Disease, 20, 843–854.

    Article  PubMed  Google Scholar 

  • Mucke, L., Masliah, E., Yu, G.-Q., Mallory, M., Rockenstein, E. M., Tatsuno, G., Hu, K., Kholodenko, D., Johnson-Wood, K., & McConlogue, L. (2000). High-level neuronal expression of Aβ1–42in wild-type human amyloid protein precursor transgenic mice: Synaptotoxicity without plaque formation. The Journal of Neuroscience, 20, 4050–4058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukhina, T. V., Lermontova, N. N., Van’kin, G. I., Öettel, M., P’chev, V. K., & Bachurin, S. O. (2004). The effects of estrogens on learning in rats with chronic brain cholinergic deficiency in a morris water test. Identification of the “passive swimming” component. Neuroscience and Behavioral Physiology, 34, 213–219.

    Article  CAS  PubMed  Google Scholar 

  • Murata, K., Fujita, N., Takahashi, R., & Inui, A. (2018). Ninjinyoeito improves behavioral abnormalities and hippocampal neurogenesis in the corticosterone model of depression. Frontiers in Pharmacology, 9, 1214.

    Article  CAS  Google Scholar 

  • Nakahara, N., Iga, Y., Mizobe, F., & Kawanishi, G. (1988). Effects of intracerebroventricular injection of AF64A on learning behaviors in rats. Japanese Journal of Pharmacology, 48, 121–130.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, S., Murayama, N., Noshita, T., Annoura, H., & Ohno, T. (2001). Progressive brain dysfunction following intracerebroventricular infusion of beta1–42-amyloid peptide. Brain Research, 912, 128–136.

    Article  CAS  PubMed  Google Scholar 

  • Nassar, S. Z., Badae, N. M., & Issa, Y. A. (2020). Effect of amylin on memory and central insulin resistance in a rat model of Alzheimer’s disease. Arch Physiol Biochem, 126, 326–334.

    Google Scholar 

  • Neha, S. R. K., Jaggi, A. S., & Singh, N. (2014). Animal models of dementia and cognitive dysfunction. Life Sciences, 109, 73–86.

    Article  CAS  PubMed  Google Scholar 

  • Nikbakht, F., Khadem, Y., Haghani, S., Hoseininia, H., Moein Sadat, A., Heshemi, P., & Jamali, N. (2019). Protective role of Apigenin against Aβ 25-35 toxicity via inhibition of mitochondrial cytochrome c release. Basic and Clinical Neuroscience, 10, 557–566.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nitsch, R., & Hoyer, S. (1991). Local action of the diabetogenic drug, streptozotocin, on glucose and energy metabolism in rat brain cortex. Neuroscience Letters, 128, 199–202.

    Article  CAS  PubMed  Google Scholar 

  • Nitta, A., Fukuta, T., Hasegawa, T., & Nabeshima, T. (1997). Continuous infusion of beta-amyloid protein into the rat cerebral ventricle induces learning impairment and neuronal and morphological degeneration. Japanese Journal of Pharmacology, 73, 51–57.

    Article  CAS  PubMed  Google Scholar 

  • Nitzan, K., Benhamron, S., Valitsky, M., Kesner, E. E., Lichtenstein, M., Ben-Zvi, A., Ella, E., Segalstein, Y., Saada, A., Lorberboum-Galski, H., & Rosenmann, H. (2019). Mitochondrial transfer ameliorates cognitive deficits, neuronal loss, and gliosis in Alzheimer’s disease mice. Journal of Alzheimer’s Disease, 72, 587–604.

    Article  CAS  PubMed  Google Scholar 

  • Ohyagi, Y., & Takei, S. I. (2020). Insulin signaling as a therapeutic target in Alzheimer’s disease: Efficacy of apomorphine. Neurology and Clinical Neuroscience, 8, 146–154.

    Article  CAS  Google Scholar 

  • Osmanovic, J., Plaschke, K., Salkovic-Petrisic, M., Grünblatt, E., Riederer, P., & Hoyer, S. (2010). Chronic exogenous corticosterone administration generates an insulin-resistant brain state in rats. Stress, 13, 123–131.

    Article  CAS  PubMed  Google Scholar 

  • Ott, A., Breteler, M. M., van Harskamp, F., Claus, J. J., van der Cammen, T. J., Grobbee, D. E., & Hofman, A. (1995). Prevalence of Alzheimer’s disease and vascular dementia: Association with education. The Rotterdam study. BMJ, 310, 970–973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, C. R. (2001). Cognitive effects of insulin in the central nervous system. Neuroscience & Biobehavioral Reviews, 25, 311–323.

    Article  CAS  Google Scholar 

  • Park, S.-H., & Lim, D. K. (2010). Increases in serotonergic neuronal activity following intracerebroventricular administration of AF64A in rats. Archives of Pharmacal Research, 33, 301–308.

    Article  CAS  PubMed  Google Scholar 

  • Park, D., Joo, S. S., Kim, T. K., Lee, S. H., Kang, H., Lee, H. J., Lim, I., Matsuo, A., Tooyama, I., Kim, Y.-B., & Kim, S. U. (2012). Human neural stem cells overexpressing choline acetyltransferase restore cognitive function of Kainic acid-induced learning and memory deficit animals. Cell Transplantation, 21, 365–371.

    Article  CAS  PubMed  Google Scholar 

  • Pascualy, M., Petrie, E. C., Brodkin, K., Peskind, E. R., Wilkinson, C. W., & Raskind, M. A. (2000). Hypothalamic pituitary adrenocortical and sympathetic nervous system responses to the cold pressor test in Alzheimer’s disease. Biological Psychiatry, 48, 247–254.

    Article  CAS  PubMed  Google Scholar 

  • Pathan, A. R., Viswanad, B., Sonkusare, S. K., & Ramarao, P. (2006). Chronic administration of pioglitazone attenuates intracerebroventricular streptozotocin induced-memory impairment in rats. Life Sciences, 79, 2209–2216.

    Article  CAS  PubMed  Google Scholar 

  • Peila, R., Rodriguez, B. L., Launer, L. J., & Honolulu-Asia Aging Study. (2002). Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies: The Honolulu-Asia Aging Study. Diabetes, 51, 1256–1262.

    Article  CAS  PubMed  Google Scholar 

  • Phiel, C. J., Wilson, C. A., Lee, V. M. Y., & Klein, P. S. (2003). GSK-3α regulates production of Alzheimer’s disease amyloid-β peptides. Nature, 423, 435–439.

    Article  CAS  PubMed  Google Scholar 

  • Pimplikar, S. W., Nixon, R. A., Robakis, N. K., Shen, J., & Tsai, L.-H. (2010). Amyloid-independent mechanisms in Alzheimer’s disease pathogenesis. The Journal of Neuroscience, 30, 14946–14954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pineau, F., Canet, G., Desrumaux, C., Hunt, H., Chevallier, N., Ollivier, M., Belanoff, J. K., & Givalois, L. (2016). New selective glucocorticoid receptor modulators reverse amyloid-β peptide-induced hippocampus toxicity. Neurobiology of Aging, 45, 109–122.

    Article  CAS  PubMed  Google Scholar 

  • Plaschke, K., & Hoyer, S. (1993). Action of the diabetogenic drug streptozotocin on glycolytic and glycogenolytic metabolism in adult rat brain cortex and hippocampus. International Journal of Developmental Neuroscience, 11, 477–483.

    Article  CAS  PubMed  Google Scholar 

  • Plaschke, K., Müller, D., & Hoyer, S. (1996). Effect of adrenalectomy and corticosterone substitution on glucose and glycogen metabolism in rat brain. Journal of Neural Transmission, 103, 89–100.

    Article  CAS  PubMed  Google Scholar 

  • Plaschke, K., Kopitz, J., Siegelin, M., Schliebs, R., Salkovic-Petrisic, M., Riederer, P., & Hoyer, S. (2010). Insulin-resistant brain state after intracerebroventricular streptozotocin injection exacerbates Alzheimer-like changes in Tg2576 AbetaPP-overexpressing mice. Journal of Alzheimer’s Disease, 19, 691–704.

    Article  CAS  PubMed  Google Scholar 

  • Prickaerts, J., de Vente, J., Honig, W., Steinbusch, H., Markerink-van Ittersum, M., Blokland, A., & Steinbusch, H. W. M. (2000). Nitric oxide synthase does not mediate neurotoxicity after an i.c.v. injection of streptozotocin in the rat. Journal of Neural Transmission, 107, 745–766.

    Article  CAS  PubMed  Google Scholar 

  • Puzzo, D., Lee, L., Palmeri, A., Calabrese, G., & Arancio, O. (2014). Behavioral assays with mouse models of Alzheimer’s disease: Practical considerations and guidelines. Biochemical Pharmacology, 88, 450–467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi, L., Ke, L., Liu, X., Liao, L., Ke, S., Liu, X., Wang, Y., Lin, X., Zhou, Y., Wu, L., Chen, Z., & Liu, L. (2016). Subcutaneous administration of liraglutide ameliorates learning and memory impairment by modulating tau hyperphosphorylation via the glycogen synthase kinase-3β pathway in an amyloid β protein induced alzheimer disease mouse model. European Journal of Pharmacology, 783, 23–32.

    Article  CAS  PubMed  Google Scholar 

  • Rajasekar, N., Nath, C., Hanif, K., & Shukla, R. (2017a). Intranasal insulin administration ameliorates streptozotocin (ICV)-induced insulin receptor dysfunction, neuroinflammation, amyloidogenesis, and memory impairment in rats. Molecular Neurobiology, 54, 6507–6522.

    Article  CAS  PubMed  Google Scholar 

  • Rajasekar, N., Nath, C., Hanif, K., & Shukla, R. (2017b). Intranasal insulin improves cerebral blood flow, Nrf-2 expression and BDNF in STZ (ICV)-induced memory impaired rats. Life Sciences, 173, 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Reeta, K. H., Singh, D., & Gupta, Y. K. (2017). Chronic treatment with taurine after intracerebroventricular streptozotocin injection improves cognitive dysfunction in rats by modulating oxidative stress, cholinergic functions and neuroinflammation. Neurochemistry International, 108, 146–156.

    Article  CAS  PubMed  Google Scholar 

  • Reger, M. A., & Craft, S. (2006). Intranasal insulin administration: A method for dissociating central and peripheral effects of insulin. Drugs Today, 42, 729–739.

    Article  CAS  Google Scholar 

  • Reitz, C., Rogaeva, E., & Beecham, G. W. (2020). Late-onset vs nonmendelian early-onset Alzheimer disease: A distinction without a difference? Neurology Genetics, 6, e512.

    Article  PubMed  PubMed Central  Google Scholar 

  • Renner, D. B., Svitak, A. L., Gallus, N. J., Ericson, M. E., Frey, W. H., 2nd, & Hanson, L. R. (2012). Intranasal delivery of insulin via the olfactory nerve pathway. The Journal of Pharmacy and Pharmacology, 64, 1709–1714.

    Article  CAS  PubMed  Google Scholar 

  • Rezaei Asl, Z., Sepehri, G., & Salami, M. (2019). Probiotic treatment improves the impaired spatial cognitive performance and restores synaptic plasticity in an animal model of Alzheimer’s disease. Behavioural Brain Research, 376, 112183.

    Article  PubMed  CAS  Google Scholar 

  • Rezaeiasl, Z., Salami, M., & Sepehri, G. (2019). The effects of probiotic and strains on memory and learning behavior, long-term potentiation (LTP), and some biochemical parameters in β-amyloid-induced rat’s model of Alzheimer’s disease. Preventive Nutrition and Food Science, 24, 265–273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rice, L., & Bisdas, S. (2017). The diagnostic value of FDG and amyloid PET in Alzheimer’s disease – A systematic review. European Journal of Radiology, 94, 16–24.

    Article  PubMed  Google Scholar 

  • Riedel, G., Kang, S. H., Choi, D. Y., & Platt, B. (2009). Scopolamine-induced deficits in social memory in mice: Reversal by donepezil. Behavioural Brain Research, 204, 217–225.

    Article  CAS  PubMed  Google Scholar 

  • Riederer, P., Bartl, J., Laux, G., & Grünblatt, E. (2011). Diabetes type II: A risk factor for depression-Parkinson-Alzheimer? Neurotoxicity Research, 19, 253–265.

    Article  PubMed  Google Scholar 

  • Rodrigues, L., Wartchow, K. M., Suardi, L. Z., Federhen, B. C., Selistre, N. G., & Gonçalves, C.-A. (2019). Streptozotocin causes acute responses on hippocampal S100B and BDNF proteins linked to glucose metabolism alterations. Neurochemistry International, 128, 85–93.

    Article  CAS  PubMed  Google Scholar 

  • Rönnemaa, E., Zethelius, B., Sundelöf, J., Sundström, J., Degerman-Gunnarsson, M., Berne, C., Lannfelt, L., & Kilander, L. (2008). Impaired insulin secretion increases the risk of Alzheimer disease. Neurology, 71, 1065–1071.

    Article  PubMed  CAS  Google Scholar 

  • Rostami, F., Javan, M., Moghimi, A., Haddad-Mashadrizeh, A., & Fereidoni, M. (2017). Streptozotocin-induced hippocampal astrogliosis and insulin signaling malfunction as experimental scales for subclinical sporadic Alzheimer model. Life Sciences, 188, 172–185.

    Article  CAS  PubMed  Google Scholar 

  • Sajadi, A., Provost, C., Pham, B., & Brouillette, J. (2016). Neurodegeneration in an animal model of chronic amyloid-beta oligomer infusion is counteracted by antibody treatment infused with osmotic pumps. Journal of Visualized Experiments, 114, 54215.

    Google Scholar 

  • Salković, M., Sabolić, I., & Lacković, Z. (1995). Striatal dopaminergic D1 and D2 receptors after intracerebroventricular application of alloxan and streptozocin in rat. Journal of Neural Transmission. General Section, 100, 137–145.

    Article  PubMed  Google Scholar 

  • Salkovic-Petrisic, M., & Hoyer, S. (2007). Central insulin resistance as a trigger for sporadic Alzheimer-like pathology: An experimental approach. Journal of Neural Transmission. Supplementum, 72, 217–233.

    CAS  Google Scholar 

  • Salkovic-Petrisic, M., Tribl, F., Schmidt, M., Hoyer, S., & Riederer, P. (2006). Alzheimer-like changes in protein kinase B and glycogen synthase kinase-3 in rat frontal cortex and hippocampus after damage to the insulin signalling pathway. Journal of Neurochemistry, 96, 1005–1015.

    Article  CAS  PubMed  Google Scholar 

  • Salkovic-Petrisic, M., Osmanovic, J., Grünblatt, E., Riederer, P., & Hoyer, S. (2009). Modeling sporadic Alzheimer’s disease: The insulin resistant brain state generates multiple long-term morphobiological abnormalities including hyperphosphorylated tau protein and amyloid-beta. Journal of Alzheimer’s Disease, 18, 729–750.

    Article  CAS  PubMed  Google Scholar 

  • Salkovic-Petrisic, M., Osmanovic-Barilar, J., Brückner, M. K., Hoyer, S., Arendt, T., & Riederer, P. (2011). Cerebral amyloid angiopathy in streptozotocin rat model of sporadic Alzheimer’s disease: A long-term follow up study. Journal of Neural Transmission, 118, 765–772.

    Article  CAS  PubMed  Google Scholar 

  • Samy, D. M., Ismail, C. A., Nassra, R. A., Zeitoun, T. M., & Nomair, A. M. (2016). Downstream modulation of extrinsic apoptotic pathway in streptozotocin-induced Alzheimer’s dementia in rats: Erythropoietin versus curcumin. European Journal of Pharmacology, 770, 52–60.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki-Hamada, S., Ikeda, M., & Oka, J.-I. (2019). Glucagon-like peptide-2 rescues memory impairments and neuropathological changes in a mouse model of dementia induced by the intracerebroventricular administration of streptozotocin. Scientific Reports, 9, 13723.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sato, N., & Morishita, R. (2013). Roles of vascular and metabolic components in cognitive dysfunction of Alzheimer disease: Short- and long-term modification by non-genetic risk factors. Frontiers in Aging Neuroscience, 5, 64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena, G., Patro, I. K., & Nath, C. (2011). ICV STZ induced impairment in memory and neuronal mitochondrial function: A protective role of nicotinic receptor. Behavioural Brain Research, 224, 50–57.

    Article  CAS  PubMed  Google Scholar 

  • Schein, P. S. (1969). 1-methyl-1-nitrosourea depression of brain nicotinamide adenine dinucleotide in the production of neurologic toxicity. Proceedings of the Society for Experimental Biology and Medicine, 131, 517–520.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, M., & Gupta, Y. K. (2002). Chronic treatment with trans resveratrol prevents intracerebroventricular streptozotocin induced cognitive impairment and oxidative stress in rats. Life Sciences, 71, 2489–2498.

    Article  CAS  PubMed  Google Scholar 

  • Shekarian, M., Komaki, A., Shahidi, S., Sarihi, A., Salehi, I., & Raoufi, S. (2020). The protective and therapeutic effects of vinpocetine, a PDE1 inhibitor, on oxidative stress and learning and memory impairment induced by an intracerebroventricular (ICV) injection of amyloid beta (aβ) peptide. Behavioural Brain Research, 383, 112512.

    Article  CAS  PubMed  Google Scholar 

  • Shi, L., Zhang, Z., Li, L., & Hölscher, C. (2017). A novel dual GLP-1/GIP receptor agonist alleviates cognitive decline by re-sensitizing insulin signaling in the Alzheimer icv. STZ rat model. Behavioural Brain Research, 327, 65–74.

    Article  CAS  PubMed  Google Scholar 

  • Shingo, A. S., Kanabayashi, T., Murase, T., & Kito, S. (2012). Cognitive decline in STZ-3V rats is largely due to dysfunctional insulin signalling through the dentate gyrus. Behavioural Brain Research, 229, 378–383.

    Article  CAS  PubMed  Google Scholar 

  • Shoham, S., Bejar, C., Kovalev, E., & Weinstock, M. (2003). Intracerebroventricular injection of streptozotocin causes neurotoxicity to myelin that contributes to spatial memory deficits in rats. Experimental Neurology, 184, 1043–1052.

    Article  CAS  PubMed  Google Scholar 

  • Shoham, S., Bejar, C., Kovalev, E., Schorer-Apelbaum, D., & Weinstock, M. (2007). Ladostigil prevents gliosis, oxidative-nitrative stress and memory deficits induced by intracerebroventricular injection of streptozotocin in rats. Neuropharmacology, 52, 836–843.

    Article  CAS  PubMed  Google Scholar 

  • Shonesy, B. C., Thiruchelvam, K., Parameshwaran, K., Rahman, E.A., Karuppagounder, S. S., Huggins, K.W., Pinkert, C.A., Amin, R., Dhanasekaran, M., & Suppiramaniam, V. (2012). Central insulin resistance and synaptic dysfunction in intracerebroventricular-streptozotocin injected rodents. Neurobiol Aging, 33, 430.e5–18.

    Google Scholar 

  • Simpson, I. A., Chundu, K. R., Davies-Hill, T., Honer, W. G., & Davies, P. (1994). Decreased concentrations of GLUT1 and GLUT3 glucose transporters in the brains of patients with Alzheimer’s disease. Annals of Neurology, 35, 546–551.

    Article  CAS  PubMed  Google Scholar 

  • Singh, A., & Kumar, A. (2016). Comparative analysis of intrahippocampal amyloid Beta (1-42) and intracerbroventricular streptozotocin models of Alzheimer’s disease: Possible behavioral, biochemical, mitochondrial, cellular and histopathological evidences. Journal of Alzheimer’s Disease & Parkinsonism, 6, 1.

    Article  Google Scholar 

  • Song, X.-Y., Hu, J.-F., Chu, S.-F., Zhang, Z., Xu, S., Yuan, Y.-H., Han, N., Liu, Y., Niu, F., He, X., & Chen, N.-H. (2013). Ginsenoside Rg1 attenuates okadaic acid induced spatial memory impairment by the GSK3β/tau signaling pathway and the Aβ formation prevention in rats. European Journal of Pharmacology, 710, 29–38.

    Article  CAS  PubMed  Google Scholar 

  • Sonkusare, S., Srinivasan, K., Kaul, C., & Ramarao, P. (2005). Effect of donepezil and lercanidipine on memory impairment induced by intracerebroventricular streptozotocin in rats. Life Sciences, 77, 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Steen, E., Terry, B. M., Rivera, E. J., Cannon, J. L., Neely, T. R., Tavares, R., Xu, X. J., Wands, J. R., & de la Monte, S. M. (2005). Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease – is this type 3 diabetes? Journal of Alzheimer’s Disease, 7, 63–80.

    Article  CAS  PubMed  Google Scholar 

  • Stennis Watson, G., & Craft, S. (2006). Insulin resistance, inflammation, and cognition in Alzheimer’s disease: Lessons for multiple sclerosis. Journal of the Neurological Sciences, 245, 21–33.

    Article  PubMed  CAS  Google Scholar 

  • Stéphan, A., & Phillips, A. G. (2005). A case for a non-transgenic animal model of Alzheimer’s disease. Genes, Brain, and Behavior, 4, 157–172.

    Article  PubMed  CAS  Google Scholar 

  • Sun, P., Knezovic, A., Parlak, M., Cuber, J., Karabeg, M. M., Deckert, J., Riederer, P., Hua, Q., Salkovic-Petrisic, M., & Schmitt, A. G. (2015). Long-term effects of intracerebroventricular streptozotocin treatment on adult neurogenesis in the rat hippocampus. Current Alzheimer Research, 12, 772–784.

    Article  CAS  PubMed  Google Scholar 

  • Sutalangka, C., & Wattanathorn, J. (2017). Neuroprotective and cognitive-enhancing effects of the combined extract of Cyperus rotundus and Zingiber officinale. BMC Complementary and Alternative Medicine, 17, 135.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szkudelski, T. (2001). The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiological Research, 50, 537–546.

    CAS  PubMed  Google Scholar 

  • Talbot, K., Wang, H.-Y., Kazi, H., Han, L.-Y., Bakshi, K. P., Stucky, A., Fuino, R. L., Kawaguchi, K. R., Samoyedny, A. J., Wilson, R. S., Arvanitakis, Z., Schneider, J. A., Wolf, B. A., Bennett, D. A., Trojanowski, J. Q., & Arnold, S. E. (2012). Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. The Journal of Clinical Investigation, 122, 1316–1338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, Z., Pi, X., Chen, F., Shi, L., Gong, H., Fu, H., & Qu, Z. (2012). Fifty percent reduced-dose cerebral CT perfusion imaging of Alzheimer’s disease: Regional blood flow abnormalities. American Journal of Alzheimer’s Disease and Other Dementias, 27, 267–274.

    Article  PubMed  Google Scholar 

  • Tanzi, R. E., & Bertram, L. (2001). New frontiers in Alzheimer’s disease genetics. Neuron, 32, 181–184.

    Article  CAS  PubMed  Google Scholar 

  • Terada, T., Obi, T., Bunai, T., Matsudaira, T., Yoshikawa, E., Ando, I., Futatsubashi, M., Tsukada, H., & Ouchi, Y. (2020). In vivo mitochondrial and glycolytic impairments in patients with Alzheimer disease. Neurology, 94, e1592–e1604.

    Article  CAS  PubMed  Google Scholar 

  • Terwel, D., Prickaerts, J., Meng, F., & Jolles, J. (1995). Brain enzyme activities after intracerebroventricular injection of streptozotocin in rats receiving acetyl-L-carnitine. European Journal of Pharmacology, 287, 65–71.

    Article  CAS  PubMed  Google Scholar 

  • Tota, S., Kamat, P. K., Saxena, G., Hanif, K., Najmi, A. K., & Nath, C. (2012). Central angiotensin converting enzyme facilitates memory impairment in intracerebroventricular streptozotocin treated rats. Behavioural Brain Research, 226, 317–330.

    Article  CAS  PubMed  Google Scholar 

  • Vallée, M., MacCari, S., Dellu, F., Simon, H., Le Moal, M., & Mayo, W. (1999). Long-term effects of prenatal stress and postnatal handling on age-related glucocorticoid secretion and cognitive performance: A longitudinal study in the rat. The European Journal of Neuroscience, 11, 2906–2916.

    Article  PubMed  Google Scholar 

  • Van Cauwenberghe, C., Van Broeckhoven, C., & Sleegers, K. (2016). The genetic landscape of Alzheimer disease: Clinical implications and perspectives. Genetics in Medicine, 18, 421–430.

    Article  PubMed  Google Scholar 

  • van Donkelaar, E. L., Vaessen, K. R. D., Pawluski, J. L., Sierksma, A. S., Blokland, A., Cañete, R., & Steinbusch, H. W. M. (2014). Long-term corticosterone exposure decreases insulin sensitivity and induces depressive-like behaviour in the C57BL/6NCrl mouse. PLoS One, 9, e106960.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Veerendra Kumar, M. H., & Gupta, Y. K. (2003). Effect of Centella asiatica on cognition and oxidative stress in an intracerebroventricular streptozotocin model of Alzheimer’s disease in rats. Clinical and Experimental Pharmacology & Physiology, 30, 336–342.

    Article  CAS  Google Scholar 

  • Vieira, M. N. N., Forny-Germano, L., Saraiva, L. M., Sebollela, A., Blanco Martinez, A. M., Houzel, J.-C., De Felice, F. G., & Ferreira, S. T. (2007). Soluble oligomers from a non-disease related protein mimic Aβ-induced tau hyperphosphorylation and neurodegeneration. Journal of Neurochemistry, 103, 736–748.

    Article  CAS  PubMed  Google Scholar 

  • Vorhees, C. V., & Williams, M. T. (2006). Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nature Protocols, 1, 848–858.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wada, A., Yokoo, H., Yanagita, T., & Kobayashi, H. (2005). New twist on neuronal insulin receptor signaling in health, disease, and therapeutics. Journal of Pharmacological Sciences, 99, 128–143.

    Article  CAS  PubMed  Google Scholar 

  • Wang, R., Zhang, H. Y., & Tang, X. C. (2001). Huperzine A attenuates cognitive dysfunction and neuronal degeneration caused by beta-amyloid protein-(1-40) in rat. European Journal of Pharmacology, 421, 149–156.

    Article  CAS  PubMed  Google Scholar 

  • Webster, S. J., Bachstetter, A. D., Nelson, P. T., Schmitt, F. A., & Van Eldik, L. J. (2014). Using mice to model Alzheimer’s dementia: An overview of the clinical disease and the preclinical behavioral changes in 10 mouse models. Frontiers in Genetics, 5, 88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weina, H., Yuhu, N., Christian, H., Birong, L., Feiyu, S., & Le, W. (2018). Liraglutide attenuates the depressive- and anxiety-like behaviour in the corticosterone induced depression model via improving hippocampal neural plasticity. Brain Research, 1694, 55–62.

    Article  PubMed  CAS  Google Scholar 

  • Weinstock, M., & Shoham, S. (2004). Rat models of dementia based on reductions in regional glucose metabolism, cerebral blood flow and cytochrome oxidase activity. Journal of Neural Transmission, 111, 347–366.

    Article  CAS  PubMed  Google Scholar 

  • Wüppen, K., Oesterle, D., Lewicka, S., Kopitz, J., & Plaschke, K. (2010). A subchronic application period of glucocorticoids leads to rat cognitive dysfunction whereas physostigmine induces a mild neuroprotection. Journal of Neural Transmission, 117, 1055–1065.

    Article  PubMed  CAS  Google Scholar 

  • Wuwongse, S., Cheng, S. S.-Y., Wong, G. T.-H., Hung, C. H.-L., Zhang, N. Q., Ho, Y.-S., Law, A. C.-K., & Chang, R. C.-C. (2013). Effects of corticosterone and amyloid-beta on proteins essential for synaptic function: Implications for depression and Alzheimer’s disease. Biochimica et Biophysica Acta, 1832, 2245–2256.

    Article  CAS  PubMed  Google Scholar 

  • Xu, M., Huang, H., Mo, X., Zhu, Y., Chen, X., Li, X., Peng, X., Xu, Z., Chen, L., Rong, S., Yang, W., Liu, S., & Liu, L. (2020). Quercetin-3-O-glucuronide alleviates cognitive deficit and toxicity in Aβ -induced AD-like mice and SH-SY5Y cells. Molecular Nutrition & Food Research, 65, e2000660.

    Article  CAS  Google Scholar 

  • Yamada, K., Tanaka, T., Mamiya, T., Shiotani, T., Kameyama, T., & Nabeshima, T. (1999). Improvement by nefiracetam ofβ-amyloid-(1-42)-induced learning and memory impairments in rats. British Journal of Pharmacology, 126, 235–244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuliani, T., Lobentanzer, S., & Klein, J. (2020). Central cholinergic function and metabolic changes in streptozotocin-induced rat brain injury. Journal of Neurochemistry. https://doi.org/10.1111/jnc.15155

  • Zappa Villar, M. F., López Hanotte, J., Falomir Lockhart, E., Trípodi, L. S., Morel, G. R., & Reggiani, P. C. (2018). Intracerebroventricular streptozotocin induces impaired Barnes maze spatial memory and reduces astrocyte branching in the CA1 and CA3 hippocampal regions. Journal of Neural Transmission, 125, 1787–1803.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., Chen, C., Mak, M. S., Lu, J., Wu, Z., Chen, Q., Han, Y., Li, Y., & Pi, R. (2020). Advance of sporadic Alzheimer’s disease animal models. Medicinal Research Reviews, 40, 431–458.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, W., Chen, H., Xu, H., Moore, E., Meiri, N., Quon, M. J., & Alkon, D. L. (1999). Brain insulin receptors and spatial memory. Journal of Biological Chemistry, 274, 34893–34902.

    Article  CAS  Google Scholar 

  • Zhao, W.-Q., Chen, H., Quon, M. J., & Alkon, D. L. (2004). Insulin and the insulin receptor in experimental models of learning and memory. European Journal of Pharmacology, 490, 71–81.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, N., Liu, C.-C., Van Ingelgom, A. J., Martens, Y. A., Linares, C., Knight, J. A., Painter, M. M., Sullivan, P. M., & Bu, G. (2017). Apolipoprotein E4 impairs neuronal insulin signaling by trapping insulin receptor in the endosomes. Neuron, 96, 115–129.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, X., Lee, H.-G., Raina, A. K., Perry, G., & Smith, M. A. (2002). The role of mitogen-activated protein kinase pathways in Alzheimer’s disease. Neurosignals, 11, 270–281.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Riederer .

Editor information

Editors and Affiliations

Additional information

The chapter is dedicated to the memory of Professor Sigfried Hoyer, the coauthor of the original version of this chapter in the first edition of the Textbook, who introduced streptozotocin rat model as a model for sporadic Alzheimer’s disease and proposed the hypothesis of dysfunctional insulin and glucose homeostasis in the brain as its etiopathogenic core.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Salkovic-Petrisic, M., Perhoc, A.B., Homolak, J., Knezovic, A., Osmanovic Barilar, J., Riederer, P. (2021). Experimental Approach to Alzheimer’s Disease with Emphasis on Insulin Resistance in the Brain. In: Kostrzewa, R.M. (eds) Handbook of Neurotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-030-71519-9_98-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71519-9_98-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71519-9

  • Online ISBN: 978-3-030-71519-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics