Skip to main content

Smart Energy Frameworks for Smart Cities: The Need for Polycentrism

  • Reference work entry
  • First Online:
Handbook of Smart Cities

Abstract

Rapid growth in megacities has prompted deep transformations intended to change sociotechnical systems, deep social and institutional practices, and scientific inquiries to better understand energy and material flows of cities. Typically, these processes are defined by sociotechnical experimentation and purposive re-shaping of the synergies between jurisdictions, sectors, and technical solutions required to optimize resource management and improve institutional diversity and its configurations. This chapter studies features of smart energy frameworks for smart cities leadership in an attempt to ignite transformations in energy business models for sustainability systems from the bottom up. Following this polycentric approach, the chapter documents seven emerging models for smart city energy governance, namely distributed energy resources development, energy storage, microgrids, demand response and energy management systems, smart measuring systems, energy harvesting, and green technology innovations. One observation is that while Singapore and Shanghai are a product of advanced polycentric strategic planning, the urban developments around the greater Jakarta area is an outcome of gradual alignments and reconfigurations of urban design toward the polycentric goal. In addition, energy systems and utility business models are changing simultaneously in several cities with respect to institutional contexts, urban planning, and customer choice. A key message of this chapter is that capturing the impacts of these urban transformation across the quartiles of energy resource development, technological progress, and policy stringency requires the design and implementation processes that simultaneously promotes polycentric authority and contributes to informed understanding of the scale and consequences of these transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agbemabiese, L., Nyangon, J., Lee, J. S., & Byrne, J. (2018). Enhancing climate finance readiness: A review of selected investment frameworks as tools of multilevel governance. Center for Energy & Environmental Policy, University of Delaware. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3082542.

  • Aligica, P., & Tarko, V. (2012). Polycentricity: From Polanyi to Ostrom, and beyond. Governance, 25(2), 237–262.

    Article  Google Scholar 

  • Alizadeh, T. (2017). An investigation of IBM's Smarter Cites Challenge: What do participating cities want? Cities, 63, 70–80. https://doi.org/10.1016/j.cities.2016.12.009

  • ASCE. (2017). The 2017 infrastructure report card: Energy. Reston: American Society of Civil Engineers (ASCE). ID: 4990453400. http://www.infrastructurereportcard.org/wp-content/uploads/2017/01/Energy-Final.pdf

  • Ascione, F., Bianco, N., De Masi, R. F., Mauro, G. M., & Vanoli, G. P. (2017). Resilience of robust cost-optimal energy retrofit of buildings to global warming: A multi-stage, multi-objective approach. Energy and Buildings, 153, 150–167.

    Article  Google Scholar 

  • Bartos, M. D., & Chester, M. V. (2014). The conservation nexus: Valuing interdependent water and energy savings in Arizona. Environmental Science & Technology, 48(4), 2139–2149.

    Article  Google Scholar 

  • Beires, P., Vasconcelos, M. H., Moreira, C. L., & Peças Lopes, J. A. (2018). Stability of autonomous power systems with reversible hydro power plants: A study case for large scale renewables integration. Electric Power Systems Research, 158, 1–14.

    Article  Google Scholar 

  • Biesbroek, R., & Lesnikowski, A. (2018). Adaptation: The neglected dimension of polycentric climate governance? In A. Jordan, D. Huitema, H. V. Asselt, & J. Forster (Eds.), Governing climate change: Polycentricity in action? (p. 308). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Bisello, A., & Vettorato, D. (2018). Multiple benefits of smart urban energy transition. In P. Droege (Ed.), Urban energy transition: Renewable strategies for cities and regions (pp. 467–490). London: Elsevier. https://doi.org/10.1016/B978-0-08-102074-6.00037-1. ISBN: 9780081020746.

  • Blunt, K., & Gold, R. (2019). PG&E files for bankruptcy following California wildfires. Wall Street Journal. Retrieved from https://www.wsj.com/articles/pg-e-files-for-bankruptcy-following-california-wildfires-11548750142

  • Bulkeley, H., & Castán Broto, V. (2013). Government by experiment? Global cities and the governing of climate change. Transactions of the Institute of British Geographers, 38(3), 361–375.

    Article  Google Scholar 

  • Burch, S., Gupta, A., Inoue, C., Kalfagianni, A., Persson, A., Gerlak, A. K., Ishii, A., Patterson, J., Pickering, J., Scobie, M., van der Heijden, J., Vervoort, J., Adler, C., Bloomfield, M., Djalante, R., Dryzek, J., Galaz, V., Gordon, C., Harmon, R., Jinnah, S., Kim, R. E., Olsson, L., van Leeuwen, J., Ramasar, V., Wapner, P., & Zondervan, R. (2019). New directions in earth system governance research. Earth System Governance, 1, 100006.

    Article  Google Scholar 

  • Burger, S., Jenkins, J., Huntington, S., & Pérez-Arriaga, I. (2019). Why distributed? A critical review of the tradeoffs between centralized and decentralized resources. IEEE Power & Energy, 17(2), 16–24.

    Article  Google Scholar 

  • Burillo, D., Chester, M. V., Pincetl, S., & Fournier, E. (2019). Electricity infrastructure vulnerabilities due to long-term growth and extreme heat from climate change in Los Angeles County. Energy Policy, 128, 943–953.

    Article  Google Scholar 

  • Byrne, J., & Taminiau, J. (2018). Utilizing the urban fabric as the solar power plant of the future. In P. Droege (Ed.), Urban energy transition (2nd ed., pp. 31–49). New York City: Elsevier.

    Chapter  Google Scholar 

  • Capano, G., & Woo, J. J. (2017). Resilience and robustness in policy design: A critical appraisal. Policy Sciences: Integrating Knowledge and Practice to Advance Human Dignity, 50(3), 399–426.

    Article  Google Scholar 

  • Chhetri, P., Han, J. H., Chandra, S., & Corcoran, J. (2013). Mapping urban residential density patterns: Compact city model in Melbourne, Australia. City, Culture and Society, 4(2), 77–85.

    Article  Google Scholar 

  • Chiu, R. L. H. (2012). Urban sustainability and the urban forms of China’s leading mega cities: Beijing, Shanghai and Guangzhou. Urban Policy and Research, 30(4), 359–383.

    Article  Google Scholar 

  • Choudhary, B. K., Tripathi, A. K., & Rai, J. (2019). Can ‘poor’ cities breathe: Responses to climate change in low-income countries. Urban Climate, 27, 403–411.

    Article  Google Scholar 

  • Clark, S. S., Chester, M. V., Seager, T. P., & Eisenberg, D. A. (2019). The vulnerability of interdependent urban infrastructure systems to climate change: Could Phoenix experience a Katrina of extreme heat? Sustainable and Resilient Infrastructure, 4(1), 21–35.

    Article  Google Scholar 

  • Cortekar, J., & Groth, M. (2015). Adapting energy infrastructure to climate change – Is there a need for government interventions and legal obligations within the German “Energiewende”? Energy Procedia, 73, 12–17.

    Article  Google Scholar 

  • d’Alençon, A. P., Smith, H., Álvarez de Andrés, E., Cabrera, C., Fokdal, J., Lombard, M., Mazzolini, A., Michelutti, E., Moretto, L., & Spire, A. (2018). Interrogating informality: Conceptualisations, practices and policies in the light of the new urban agenda. Habitat International, 75, 59–66.

    Article  Google Scholar 

  • Davoudi, S. (2012). Resilience: A bridging concept or a dead end? Planning Theory & Practice, 13(2), 299.

    Article  Google Scholar 

  • de Jong, P., Barreto, T. B., Tanajura, C. A. S., Kouloukoui, D., Oliveira-Esquerre, K. P., Kiperstok, A., & Torres, E. A. (2019). Estimating the impact of climate change on wind and solar energy in Brazil using a South American regional climate model. Renewable Energy, 141, 390–401.

    Article  Google Scholar 

  • DeRolph, C. R., McManamay, R. A., Morton, A. M., & Nair, S. S. (2019). City energysheds and renewable energy in the United States. Nature Sustainability, 2(5), 412–420.

    Article  Google Scholar 

  • Du, K., & Li, J. (2019). Towards a green world: How do green technology innovations affect total-factor carbon productivity. Energy Policy, 131, 240–250.

    Article  Google Scholar 

  • Duncan, N. B. (1995). Capturing flexibility of information technology infrastructure: A study of resource characteristics and their measure. Journal of Management Information Systems, 12(2), 37–57.

    Article  Google Scholar 

  • Eid, C., Codani, P., Perez, Y., Reneses, J., & Hakvoort, R. (2016). Managing electric flexibility from distributed energy resources: A review of incentives for market design. Renewable and Sustainable Energy Reviews, 64, 237–247.

    Article  Google Scholar 

  • Emodi, N. V., Chaiechi, T., & Beg, A. B. M. R. A. (2019). The impact of climate variability and change on the energy system: A systematic scoping review. Science of the Total Environment, 676, 545–563.

    Article  Google Scholar 

  • Ewing, R., Tian, G., Lyons, T., & Terzano, K. (2017). Trip and parking generation at transit-oriented developments: Five US case studies. Landscape and Urban Planning, 160(3), 69–78.

    Article  Google Scholar 

  • Farhangi, H. (2010). The path of the smart grid. IEEE Power and Energy Magazine, 8(1), 18–28.

    Article  MathSciNet  Google Scholar 

  • Faruqui, A., & Leyshon, K. (2017). Fixed charges in electric rate design: A survey. The Electricity Journal, 30(10), 32–43.

    Article  Google Scholar 

  • Farzan, F., Lahiri, S., Kleinberg, M., Gharieh, K., Farzan, F., & Jafari, M. (2013). Microgrids for fun and profit: The economics of installation investments and operations. IEEE Power and Energy Magazine, 11(4), 52–58.

    Article  Google Scholar 

  • Field, B. G. (1999). The morphology of planning in an urban laboratory. Property Management, 17(2), 139–156.

    Article  Google Scholar 

  • Fischedick, M., Byrne, J., Hermwille, L., Taminiau, J., Luhmann, H., Stelzer, F., & Vallentin, D. (2018). Reflections on the state of climate change policy: From COP21 to cities. In S. Lele, E. S. Brondizio, J. Byrne, G. M. Mace, & J. Martinez-Alier (Eds.), Rethinking environmentalism: Linking justice, sustainability, and diversity. Cambridge, MA: MIT Press. ISBN: 9780262038966.

    Google Scholar 

  • Fox-Penner, P. S. (2010). Smart power: Climate change, the smart grid, and the future of electric utilities (1st ed.). Washington, DC: Island Press. ISBN: 9781597267052.

    Google Scholar 

  • Habitat III. (2019). New urban agenda. http://habitat3.org/the-new-urban-agenda/. Accessed 30 July 2019.

  • Hakelberg, L. (2014). Governance by diffusion: Transnational municipal networks and the spread of local climate strategies in Europe. Global Environmental Politics, 14(1), 107–129.

    Article  Google Scholar 

  • Hall, P. G., & Pain, K. (2006). The polycentric metropolis: Learning from mega-city regions in Europe. Sterling: Earthscan. ISBN: 9781844073290.

    Google Scholar 

  • Hiremath, R. B., Balachandra, P., Kumar, B., Bansode, S. S., & Murali, J. (2013). Indicator-based urban sustainability – A review. Energy for Sustainable Development, 17(6), 555–563.

    Article  Google Scholar 

  • Hoarau, Q., & Perez, Y. (2019). Network tariff design with prosumers and electromobility: Who wins, who loses? Energy Economics, 83, 26–39.

    Article  Google Scholar 

  • Hölscher, K., Frantzeskaki, N., McPhearson, T., & Loorbach, D. (2019). Tales of transforming cities: Transformative climate governance capacities in New York City, U.S. and Rotterdam, Netherlands. Journal of Environmental Management, 231, 843–857.

    Article  Google Scholar 

  • Hudalah, D., & Firman, T. (2012). Beyond property: Industrial estates and post-suburban transformation in Jakarta Metropolitan Region. Cities, 29(1), 40–48.

    Article  Google Scholar 

  • Hughes, L. (2015). The effects of event occurrence and duration on resilience and adaptation in energy systems. Energy, 84, 443–454.

    Article  Google Scholar 

  • Hussain, A., Bui, V., & Kim, H. (2019). Microgrids as a resilience resource and strategies used by microgrids for enhancing resilience. Applied Energy, 240, 56–72.

    Article  Google Scholar 

  • Johnson, S. (2001). Emergence: The connected lives of ants, brains, cities, and software. New York: Scribner. ISBN: 9780684868752.

    Google Scholar 

  • Jones, C. & Kammen, D. M. (2014) Spatial Distribution of U.S. Household Carbon Footprints Reveals Suburbanization Undermines Greenhouse Gas Benefits of Urban Population Density. Environmental Science & Technology, 48(2), 895–902

    Google Scholar 

  • Jordan, A. J., Huitema, D., Hildén, M., van Asselt, H., Rayner, T. J., Schoenefeld, J. J., Tosun, J., Forster, J., & Boasson, E. L. (2015). Emergence of polycentric climate governance and its future prospects. Nature Climate Change, 5(11), 977–982.

    Article  Google Scholar 

  • Kanger, L., Geels, F. W., Sovacool, B., & Schot, J. (2019). Technological diffusion as a process of societal embedding: Lessons from historical automobile transitions for future electric mobility. Transportation Research Part D: Transport and Environment, 71, 47–66.

    Article  Google Scholar 

  • Kennedy, C. A., Stewart, I., Facchini, A., Cersosimo, I., Mele, R., Chen, B., Uda, M., Kansal, A., Chiu, A., Kim, K., Dubeux, C., Lebre La Rovere, E., Cunha, B., Pincetl, S., Keirstead, J., Barles, S., Pusaka, S., Gunawan, J., Adegbile, M., Nazariha, M., Hoque, S., Marcotullio, P. J., González Otharán, F., Genena, T., Ibrahim, N., Farooqui, R., Cervantes, G., & Sahin, A. D. (2015). Energy and material flows of megacities. Proceedings of the National Academy of Sciences of the United States of America, 112(19), 5985–5990. https://doi.org/10.1073/pnas.1504315112

  • Keohane, R. O., & Victor, D. G. (2011). The regime complex for climate change. Perspectives on Politics, 9(1), 7–23.

    Article  Google Scholar 

  • Kim, J., & Larsen, K. (2017). Can new urbanism infill development contribute to social sustainability? The case of Orlando, Florida. Urban Studies, 54(16), 3843–3862.

    Article  Google Scholar 

  • Kuiken, D., & Más, H. F. (2019). Integrating demand side management into EU electricity distribution system operation: A Dutch example. Energy Policy, 129, 153–160.

    Article  Google Scholar 

  • Lam, P., Chan, E., Poon, C., Chau, C., & Chun, K. (2010). Factors affecting the implementation of green specifications in construction. Journal of Environmental Management, 91(3), 654–661.

    Article  Google Scholar 

  • Lee, S. K., Kwon, H. R., Cho, H., Kim, J., & Lee, D. (2016). International case studies of smart cities Songdo, Republic of Korea. Inter-American Development Bank. Washington, D.C.

    Google Scholar 

  • Levin, K., Cashore, B., Bernstein, S., & Auld, G. (2012). Overcoming the tragedy of super wicked problems: Constraining our future selves to ameliorate global climate change. Policy Sciences, 45(2), 123–152.

    Article  Google Scholar 

  • Li, Y., Xiong, W., & Wang, X. (2019). Does polycentric and compact development alleviate urban traffic congestion? A case study of 98 Chinese cities. Cities, 88, 100–111.

    Article  Google Scholar 

  • Lightner, E. M., & Widergren, S. E. (2010). An orderly transition to a transformed electricity system. IEEE Transactions on Smart Grid, 1(1), 3–10.

    Article  Google Scholar 

  • MacLeod, G. (2013). New urbanism/smart growth in the Scottish highlands. Urban Studies, 50(11), 2196–2221.

    Article  Google Scholar 

  • Maki, S., Chandran, R., Fujii, M., Fujita, T., Shiraishi, Y., Ashina, S., & Yabe, N. (2019). Innovative information and communication technology (ICT) system for energy management of public utilities in a post-disaster region: Case study of a wastewater treatment plant in Fukushima. Journal of Cleaner Production, 233, 1425–1436.

    Article  Google Scholar 

  • Markolf, S. A., Hoehne, C., Fraser, A., Chester, M. V., & Underwood, B. S. (2019). Transportation resilience to climate change and extreme weather events – Beyond risk and robustness. Transport Policy, 74, 174–186.

    Article  Google Scholar 

  • Martinez-Alier, J., Temper, L., Del Bene, D., & Scheidel, A. (2016). Is there a global environmental justice movement? The Journal of Peasant Studies, 43(3), 731–755.

    Article  Google Scholar 

  • Martišauskas, L., Augutis, J., & Krikštolaitis, R. (2018). Methodology for energy security assessment considering energy system resilience to disruptions. Energy Strategy Reviews, 22, 106–118.

    Article  Google Scholar 

  • Miller, J. D., & Hutchins, M. (2017). The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. Journal of Hydrology: Regional Studies, 12, 345–362.

    Google Scholar 

  • Mumford, L. (1938). The culture of cities. New York: Harcourt Brace and Company.

    Google Scholar 

  • Nyangon, J. (2017). Distributed energy generation systems based on renewable energy and natural gas blending: New business models for economic incentives, electricity market design and regulatory innovation. Ph.D. Dissertation. Energy and Environmental Policy, College of Engineering, University of Delaware. 

    Google Scholar 

  • Smith, A., Lott, N., Houston, T., Shein, K., Crouch, J., Enloe, J. (2019). Billion-dollar weather and climate disasters (2019). National Oceanic and Atmospheric Administration (NOAA), National Centers for Environmental Information. Washington, D.C. https://www.ncdc.noaa.gov/billions/events.pdf

  • Noel, L., Papu Carrone, A., Jensen, A. F., Zarazua de Rubens, G., Kester, J., & Sovacool, B. K. (2019). Willingness to pay for electric vehicles and vehicle-to-grid applications: A Nordic choice experiment. Energy Economics, 78, 525–534.

    Article  Google Scholar 

  • Noland, R. B., Weiner, M. D., DiPetrillo, S., & Kay, A. I. (2017). Attitudes towards transit-oriented development: Resident experiences and professional perspectives. Journal of Transport Geography, 60, 130–140.

    Article  Google Scholar 

  • Nyangon, J. (2014). International environmental governance: Lessons from UNEA and perspectives on the post-2015 era. Journal of Sustainable Development Law and Policy (The), 4(1), 174–202.

    Google Scholar 

  • Nyangon, J., & Byrne, J. (2018). Diversifying electricity customer choice: REVing up the New York energy vision for polycentric innovation. In P. V. Tsvetkov (Ed.), Energy systems and environment (pp. 3–23). London: IntechOpen. https://doi.org/10.5772/intechopen.76023.

    Chapter  Google Scholar 

  • Nyangon, J., Alabbas, N., & Agbemabiese, L. (2017a). Entangled systems at the energy-water-food nexus: Challenges and opportunities. In P. Rao & Y. Patil (Eds.), Reconsidering the impact of climate change on global water supply, use, and management (pp. 145–165). Hershey: IGI Global.

    Google Scholar 

  • Nyangon, J., Byrne, J., & Taminiau, J. (2017b). An assessment of price convergence between natural gas and solar photovoltaic in the U.S. electricity market. Wiley Interdisciplinary Reviews: Energy and Environment, 6(3), 1–20.

    Google Scholar 

  • Nykvist, B., & Nilsson, M. (2015). Rapidly falling costs of battery packs for electric vehicles. Nature Climate Change, 5(4), 329–332.

    Article  Google Scholar 

  • Nykvist, B., Sprei, F., & Nilsson, M. (2019). Assessing the progress toward lower priced long range battery electric vehicles. Energy Policy, 124, 144–155.

    Article  Google Scholar 

  • Oprea, V. S., Bâra, A., & Ifrimb, G. (2018). Flattening the electricity consumption peak and reducing the electricity payment for residential consumers in the context of smart grid by means of shifting optimization algorithm. Computers & Industrial Engineering, 122, 125–139.

    Article  Google Scholar 

  • Ostrom, E. (2010). A long polycentric journey. Annual Review of Political Science, 13, 1–23.

    Article  Google Scholar 

  • Pallonetto, F., De Rosa, M., Milano, F., & Finn, D. P. (2019). Demand response algorithms for smart-grid ready residential buildings using machine learning models. Applied Energy, 239(1), 1265–1282.

    Article  Google Scholar 

  • Papadopoulos, S., & Kontokosta, C. E. (2019). Grading buildings on energy performance using city benchmarking data. Applied Energy, 233–234, 244–253.

    Article  Google Scholar 

  • Pasichnyi, O., Wallin, J., & Kordas, O. (2019). Data-driven building archetypes for urban building energy modelling. Energy, 181, 360–377.

    Article  Google Scholar 

  • Pérez-Arriaga, I., & Knittel, C. (2016). Utility of the future: An MIT energy initiative response to an industry in transition. Boston: MIT Energy Initiative.

    Google Scholar 

  • Pires, S. M., Fidélis, T., & Ramos, T. B. (2014). Measuring and comparing local sustainable development through common indicators: Constraints and achievements in practice. Cities, 39, 1–9.

    Article  Google Scholar 

  • Prinsloo, G., Mammoli, A., & Dobson, R. (2016). Discrete cogeneration optimization with storage capacity decision support for dynamic hybrid solar combined heat and power systems in isolated rural villages. Energy, 116, 1051–1064.

    Article  Google Scholar 

  • Radzi, A. (2018). The 100% renewable energy metropolis: Governing the design of cities for renewable energy infrastructures. In P. Droege (Ed.), Urban energy transition (pp. 85–113). London: Elsevier. https://doi.org/10.1016/B978-0-08-102074-6.00023-1. ISBN: 9780081020746.

  • Rattanachot, W., Wang, Y., Chong, D., Suwansawas, S. (2015). Adaptation strategies of transport infrastructures to global climate change. Transport Policy 41, 159–166. https://doi.org/10.1016/j.tranpol.2015.03.001

  • Revi, A., Satterthwaite, D. E., Aragón-Durand, F., Corfee-Morlot, J., Kiunsi, R. Z. R., Pelling, M., Roberts, D. C., Solecki, W., Silva, J., Dodman, D., Maskrey, A., Gajjar, S. P., Tuts, R., Balbus, J., Cardona, O. D., & Sverdlik, A. (2014). Urban Areas. In C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, … L. L. White (Eds.), Climate change 2014 impacts, adaptation, and vulnerability part A: Global and sectoral aspects. contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change (pp. 535–580). Cambridge, UK/New York: Cambridge University Press.

    Google Scholar 

  • Sircar, I., Sage, D., Goodier, C., Fussey, P., & Dainty, A. (2013). Constructing resilient futures: Integrating UK multi-stakeholder transport and energy resilience for 2050. Futures, 49, 49–63.

    Article  Google Scholar 

  • Spaans, M., & Waterhout, B. (2017). Building up resilience in cities worldwide – Rotterdam as participant in the 100 Resilient Cities programme. Cities, 61, 109–116.

    Article  Google Scholar 

  • STAR Communities. (2015). Technical guide to STAR Community rating system V. 1.2. Washington, DC: STAR Communities. https://reporting.starcommunities.org/shop/product/100-20130306

  • STAR Communities. (2017). Leading STAR Community indicators. Washington, DC: STAR Communities. https://reporting.starcommunities.org/uploads/Leading-Indicators-brochure-Final.pdf

  • Taminiau, J., Nyangon, J., Lewis, A. S., & Byrne, J. (2017). Sustainable business model innovation: Using polycentric and creative climate change governance. In Z. Fields (Ed.), Collective creativity for responsible and sustainable business practice (pp. 140–159) IGI Global.

    Google Scholar 

  • Taminiau, J., Banks, J. P., Bleviss, D., & Byrne, J. (2019). Advancing transformative sustainability: A comparative analysis of electricity service and supply innovators in the United States. Wiley Interdisciplinary Reviews: Energy and Environment, 8(4), e337.

    Google Scholar 

  • Taylor, M. A., Philp, M. L. (2015). Investigating the impact of maintenance regimes on the design life of road pavements in a changing climate and the implications for transport policy. Transport Policy 41, 117–135. https://doi.org/10.1016/j.tranpol.2015.01.005

  • Trencher, G., & van der Heijden, J. (2019). Instrument interactions and relationships in policy mixes: Achieving complementarity in building energy efficiency policies in New York, Sydney and Tokyo. Energy Research & Social Science, 54, 34–45.

    Article  Google Scholar 

  • U.S. Department of Energy. (2015). Quadrennial energy review: Energy transmission, storage, and distribution infrastructure. Washington, DC: United States Department of Energy (DOE).

    Google Scholar 

  • Underwood, B. S., Guido, Z., Gudipudi, P., & Feinberg, Y. (2017). Increased costs to US pavement infrastructure from future temperature rise. Nature Climate Change, 7, 704.

    Article  Google Scholar 

  • United Nations. (2014). World urbanization prospects: The 2014 revision, highlights (ST/ESA/SER.A/352). United Nations, Department of Economic and Social Affairs, Population Division. New York (USA)

    Google Scholar 

  • Varma, R., & Sushil. (2019). Bridging the electricity demand and supply gap using dynamic modeling in the Indian context. Energy Policy, 132, 515–535.

    Article  Google Scholar 

  • Wang, Y., Lin, H., Liu, Y., Sun, Q., & Wennersten, R. (2018). Management of household electricity consumption under price-based demand response scheme. Journal of Cleaner Production, 204, 926–938.

    Article  Google Scholar 

  • Wang, H., Wang, S., & Tang, R. (2019). Development of grid-responsive buildings: Opportunities, challenges, capabilities and applications of HVAC systems in non-residential buildings in providing ancillary services by fast demand responses to smart grids. Applied Energy, 250(1), 697–712.

    Article  Google Scholar 

  • Washom, B., Dilliot, J., Weil, D., Kleissl, J., Balac, N., Torre, W., & Richter, C. (2013). Ivory tower of power: Microgrid implementation at the University of California, San Diego. IEEE Power and Energy Magazine, 11(4), 28–32.

    Article  Google Scholar 

  • Weina, D., Gilli, M., Mazzanti, M., & Nicolli, F. (2016). Green inventions and greenhouse gas emission dynamics: A close examination of provincial Italian data. Environmental Economics and Policy Studies, 18(2), 247–263.

    Article  Google Scholar 

  • Wey, W., & Hsu, J. (2014). New urbanism and smart growth: Toward achieving a smart National Taipei University District. Habitat International, 42, 164–174.

    Article  Google Scholar 

  • Wu, F. (1998). Polycentric urban development and land-use change in a transitional economy: The case of Guangzhou. Environment and Planning A, 30(6), 1077–1100.

    Article  Google Scholar 

  • Yan, X., Ozturk, Y., Hu, Z., & Song, Y. (2018). A review on price-driven residential demand response. Renewable and Sustainable Energy Reviews, 96, 411–419.

    Article  Google Scholar 

  • Youn, H., Strumsky, D., Bettencourt, L., & Lobo, J. (2015). Invention as a combinatorial process: Evidence from US patents. Journal of the Royal Society Interface, 12(106) 3-6.

    Google Scholar 

  • Zelli, F., & Asselt, H. (2013). The institutional fragmentation of global environmental governance: Causes, consequences, and responses. Global Environmental Politics, 13(3), 1–13.

    Article  Google Scholar 

  • Ziegler, E. H. (2006). China’s polycentric regional growth: Shanghai’s satellite cities, the automobile, and new urbanism with Chinese characteristics. Georgia State University Law Review, 22, 959–1031.

    Google Scholar 

  • Zou, Y., Lu, Y., & Cheng, Y. (2019). The impact of polycentric development on regional gap of energy efficiency: A Chinese provincial perspective. Journal of Cleaner Production, 224, 838–851.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Nyangon .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nyangon, J. (2021). Smart Energy Frameworks for Smart Cities: The Need for Polycentrism. In: Augusto, J.C. (eds) Handbook of Smart Cities. Springer, Cham. https://doi.org/10.1007/978-3-030-69698-6_4

Download citation

Publish with us

Policies and ethics