Skip to main content

Hot Melt Extrusion and Complex Coacervation System for Delivering Nutraceuticals and Nanonutraceuticals

  • Living reference work entry
  • First Online:
Handbook of Nutraceuticals

Abstract

Nutraceuticals or bioceuticals are termed as oral nutritional constituents considered to have a therapeutic or health benefit. Encapsulation technology has been used in pharmaceutical industry for drug delivery due to various reason, viz., improve bioactive delivery, packing solids, liquids, or gaseous materials in small capsules, lesser degradation of volatile compound, etc. Inside the body various factors can compromise the biologically availability of a compound such as lesser gastric residence time, stability, permeability is very low, and difficulty in gastrointestinal (GI) tract solubility. The delivery systems at various levels and micro- and nanoscale area have fascinated researchers worldwide. Nanocarriers are polymeric, lipid, carbon, metal, etc., based, which are potentially used as delivery tools for various drugs and management and treatment of diseases. Hot-melt extrusion and complex coacervation systems are techniques that are gaining its popularity in the field of nutraceutical industry and has various advantages over conventional processing techniques. Hot melt extrusion technology is successfully adopted for the preparation of solid molecular dispersion of active pharmaceutical ingredients (APIs) whereas in complex coacervation process separation between the insoluble complex coacervates and the liquid will happen due to electrostatic binding between oppositely charged polymers.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alam M, Kaur J, Khaira H, Gupta K (2016) Extrusion and extruded products: changes in quality attributes as affected by extrusion process parameters: a review. Crit Rev Food Sci Nutr 56(3):445–473

    Google Scholar 

  • Andrews GP, Margetson DN, Jones DS, McAllister SM, Diak OA (2008) A basic guide: hot-melt extrusion, vol 13. UKICRS, Rochester

    Google Scholar 

  • Ansari S, Chauhan B, Kalam N, Kumar G (2013) Current concepts and prospects of herbal nutraceutical: a review. J Adv Pharm Technol Res 4(1):4

    Article  PubMed  PubMed Central  Google Scholar 

  • Andreani F, Severino S, Martins-Gomes Tatiana Andreani, Joana F. Fangueiro, Patrícia Severino, Ana Luiza R. de Souza, Carlos Martins-Gomes, Paula M. V. Fernandes, Ana C. Calpena, Maria P. Gremião, Eliana B. Souto, Amélia M. Silva, F (2019) The influence of polysaccharide coating on the physicochemical parameters and cytotoxicity of silica nanoparticles for hydrophilic biomolecules delivery. Nanomaterials 9(8):1081

    Google Scholar 

  • Asadi M, Salami M, Hajikhani M, Emam-Djomeh Z, Aghakhani A, Ghasemi A (2020) Electrospray production of curcumin-walnut protein nanoparticles. Food Biophys 16(1):15–26. https://doi.org/10.1007/s11483-020-09637-9

    Article  Google Scholar 

  • Bagheri H, Abdul Manap M, Solati Z (2014) Antioxidant activity of Piper nigrum L. essential oil extracted by supercritical CO2 extraction and hydro-distillation. Talanta 121:220–228. https://doi.org/10.1016/j.talanta.2014.01.007

    Article  PubMed  Google Scholar 

  • Baker R, Ninomiya Y (1989) Microcapsules prepared by coacervation. US Patent 4808408

    Google Scholar 

  • Bamidele OP, Emmambux MN (2021) Encapsulation of bioactive compounds by “extrusion” technologies: a review. Crit Rev Food Sci Nutr 61(18):3100–3118. https://doi.org/10.1080/10408398.2020.1793724

    Article  PubMed  Google Scholar 

  • Bandari S, Nyavanandi D, Kallakunta V, Janga K, Sarabu S, Butreddy A, Repka M (2020) Continuous twin screw granulation – an advanced alternative granulation technology for use in the pharmaceutical industry. Int J Pharm 580:119–215

    Article  Google Scholar 

  • Baracat M, Nakagawa A, Casagrande R, Georgetti S, Verri W, de Freitas O (2012) Preparation and characterization of microcapsules based on biodegradable polymers: pectin/casein complex for controlled drug release systems. AAPS PharmSciTech 13(2):364–372

    Article  PubMed  PubMed Central  Google Scholar 

  • Baronsky-Probst J, Moltgen CV, Kessler W, Kessler RW (2016) Process design and control of a twin screw hot melt extrusion for continuous pharmaceutical tamper-resistant tablet production. Eur J Pharm Sci 87:14–21

    Article  PubMed  Google Scholar 

  • Barrow C, Wang B, Adhikari B, Liu H (2013) Spray drying and encapsulation of omega-3 oils. In: Jacobsen C, Skall Nielsen N, Frisenfeldt Horn A, Moltke Sørensen AD (eds) Food enrichment with omega-3 fatty acids. Woodhead Publishing, Cambridge, UK, pp 194–225

    Chapter  Google Scholar 

  • Bimakr M, Rahman R, Taip F, Ganjloo A, Salleh L, Selamat J, Hamid A, Zaidull ISM (2011) Comparison of different extraction methods for the extraction of major bioactive flavonoid compounds from spearmint (Mentha spicata L.) leaves. Food Bioprod Process 89(1):67–72. https://doi.org/10.1016/j.fbp.2010.03.002

    Article  Google Scholar 

  • Brown C, Brown C, DiNunzio J, Eglesia M, Forster S, Lamm M, Lowinger M, Marsac P, McKelvey C, Meyer R, Schenck L (2014) Hot-melt extrusion for solid dispersions: composition and design considerations. In: Amorphous solid dispersions. Springer, New York, pp 197–230

    Chapter  Google Scholar 

  • Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos A (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385):2013–2016. https://doi.org/10.1126/science.281.5385.2013

    Article  PubMed  Google Scholar 

  • Burgess D (1994) Complex coacervation: microcapsule formation. In: Dubin PL, Bock J, Davis R, Schulz DN (eds) Macromolecular complexes in chemistry and biology. Springer, Berlin, pp 285–300

    Chapter  Google Scholar 

  • Butreddy A, Dudhipala N, Janga KY, Gaddam RP (2020) Lyophilization of small-molecule injectables: an industry perspective on formulation development, process optimization, scale-up challenges, and drug product quality attributes, AAPS Pharm Sci Tech 3:21(7):252. https://doi.org/10.1208/s12249-020-01787-w

  • Butstraen C, Salaün F (2014) Preparation of microcapsules by complex coacervation of gum Arabic and chitosan. Carbohydr Polym 99:608–616

    Article  PubMed  Google Scholar 

  • Camire M (2003) Nutraceuticals for health promotion and disease prevention. Council for Agricultural Science and Technology, Ames

    Google Scholar 

  • Canizales JR, Rodríguez GRV, Avila JAD, Saldaña AMP, Parrilla EA, Ochoa MAV, Aguila GAG (2018) Encapsulation to protect different bioactives to be used as nutraceuticals and food ingredients. In: Mérillon J-M, Ramawat KG (eds) Bioactive molecules in food. Springer, Cham, pp 1–20

    Google Scholar 

  • Chang C, Nickerson MT (2018) Encapsulation of omega 3-6-9 fatty acids-rich oils using protein-based emulsions with spray drying. J Food Sci Technol 55(8):2850–2861. https://doi.org/10.1007/s13197-018-3257-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Charmot D, Chang H, Klaerner G, Cope M, JLiu M, Liu F Mong T (2009) Ion binding polymers and uses thereof. US7556799 B2

    Google Scholar 

  • Comunian TA, Jafari SM (2019) Production of food bioactive-loaded nanostructures by micro-/nanofluidics. In: Nanoencapsulation of food ingredients by specialized equipment. Academic, Amsterdam, pp 213–250. https://doi.org/10.1016/b978-0-12-815671-1.00005-6

    Chapter  Google Scholar 

  • Correia R, Borges K, Medeiros M, Genovese M (2012) Bioactive compounds and phenolic-linked functionality of powdered tropical fruit residues. Food Sci Technol Int 18(6):539–547. https://doi.org/10.1177/1082013211433077

    Article  PubMed  Google Scholar 

  • Crowley M, Zhang F, Koleng J, McGinity J (2002) Stability of polyethylene oxide in matrix tablets prepared by hot-melt extrusion. Biomaterials 23(21):4241–4248

    Article  PubMed  Google Scholar 

  • Crowley M, Zhang F, Repka M, Thumma S, Upadhye S, Kumar Battu S, McGinity J, Martin C (2007) Pharmaceutical applications of hot-melt extrusion: part I. Drug Dev Ind Pharm 33(9):909–926

    Article  PubMed  Google Scholar 

  • Da Porto C, Natolino A, Decorti D (2014) Extraction of proanthocyanidins from grape marc by supercritical fluid extraction using CO2 as solvent and ethanol–water mixture as co-solvent. J Supercrit Fluids 87:59–64. https://doi.org/10.1016/j.supflu.2013.12.013

    Article  Google Scholar 

  • Deasy P (1984) Microencapsulation and related drug processes. M. Dekker, New York

    Google Scholar 

  • Deng Y, Zhang X, Shen H, He Q, Wu Z, Liao W, Yuan M (2020) Application of the nano-drug delivery system in treatment of cardiovascular diseases. Front Bioeng Biotechnol 7:489

    Article  PubMed  PubMed Central  Google Scholar 

  • Derfus A, Chan W, Bhatia S (2003) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4(1):11–18. https://doi.org/10.1021/nl0347334

    Article  PubMed  PubMed Central  Google Scholar 

  • Expert Comittee on Specification for Pharmaceutical Preparations (2009) WHO technical report series 953, Annex 2, stability testing of active pharmaceutical ingredients and finished pharmaceutical products. WHO, Geneva. https://www.who.int/publications/m/item/who-guidelines-on-stability-testing-of-active-pharmaceutical-ingredients-and-finished-pharmaceutical-products. Retrieved 13 Oct 2022

  • Farré M, Sanchís J, Barceló D (2011) Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment. TrAC Trends Anal Chem 30(3):517–527. https://doi.org/10.1016/j.trac.2010.11.014

    Article  Google Scholar 

  • Ferreira IC, Heleno SA, Reis FS, Stojkovic D, Queiroz MJR, Vasconcelos MH, Sokovic M (2015) Chemical features of Ganoderma polysac-charides with antioxidant, antitumor and antimicrobial activities. Phytochemistry 114:38–55

    Google Scholar 

  • Felder C, Blanco-Príeto M, Heizmann J, Merkle H, Gander B (2003) Ultrasonic atomization and subsequent polymer desolvation for peptide and protein microencapsulation into biodegradable polyesters. J Microencapsul 20(5):553–567

    Article  PubMed  Google Scholar 

  • Fernandez A, Torres-Giner S, Lagaron JM (2009) Novel route to stabilization of bioactive antioxidants by encapsulation in electrospun fibers of zein prolamine. Food Hydrocoll 23(5):1427–1432. https://doi.org/10.1016/j.foodhyd.2008.10.011

    Article  Google Scholar 

  • Follonier N, Doelker E, Cole ET (1994) Evaluation of hot-melt extrusion as a new technique for the production of polymer-based pellets for sustained release capsules containing high loadings of freely soluble drugs. Drug Dev Ind Pharm 20(8):1323–1339

    Article  Google Scholar 

  • Fontes M, Vaz G, Cardoso T, de Oliveira M, Campagnole-Santos M, dos Santos R, Sharma N, Patel K, Frézard F (2018) GABA-containing liposomes: neuroscience applications and translational perspectives for targeting neurological diseases. Nanomedicine 14(3):781–788

    Article  PubMed  Google Scholar 

  • Forssel P (2004) Starch and health. In: Eliasson A-C (ed) Starch in food. Woodhead Publishing, Sawston, pp 461–463

    Chapter  Google Scholar 

  • Gan Q, Wang T (2007) Chitosan nanoparticle as protein delivery carrier – systematic examination of fabrication conditions for efficient loading and release. Colloids Surf B: Biointerfaces 59(1):24–34. https://doi.org/10.1016/j.colsurfb.2007.04.009

    Article  PubMed  Google Scholar 

  • Gómez-Estaca J, Gavara R, Hernández-Muñoz P (2015) Encapsulation of curcumin in electrosprayed gelatin microspheres enhances its bioaccessibility and widens its uses in food applications. Innov Food Sci Emerg Technol 29:302–307

    Article  Google Scholar 

  • Gomez-Mascaraque L, Perez-Masia R, Gonzalez-Barrio R, Periago M, Lopez-Rubio A (2017) Potential of microencapsulation through emulsion-electrospraying to improve the bioaccesibility of β-carotene. Food Hydrocoll 73:1–12

    Article  Google Scholar 

  • González-Ferrero C, Saiz-Abajo MJ (2015) Characterization and stability studies of bioactive compounds and food matrices as evidence in support of health claims. Int J Food Sci Nutr 66:S4–S12

    Article  PubMed  Google Scholar 

  • Gosh S (2006) Functional coatings: by polymer microencapsulation: a general perspective. Wiley, Weinheim, pp 1–28

    Google Scholar 

  • Gryczke A, Schminke S, Maniruzzaman M, Beck J, Douroumis D (2011) Development and evaluation of orally disintegrating tablets (ODTs) containing Ibuprofen granules prepared by hot melt extrusion. Colloids Surf B 86(2):275–284

    Article  Google Scholar 

  • Hardman R (2006) A Toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114(2):165–172. https://doi.org/10.1289/ehp.8284

    Article  PubMed  Google Scholar 

  • Haser A, Huang S, Listro T, White D, Zhang F (2017) An approach for chemical stability during melt extrusion of a drug substance with a high melting pointInternational. J Pharm 524(1–2):55–64

    Google Scholar 

  • Haser A, Haight B, Berghaus A, Machado A, Martin C, Zhang F (2018) Scale-up and in-line monitoring during continuous melt extrusion of an amorphous solid dispersion. AAPS PharmSciTech 19(7):2818–2827

    Article  PubMed  Google Scholar 

  • Immordino M, Dosio F, Cattel L (2006) Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 1(3):297–315

    PubMed  PubMed Central  Google Scholar 

  • Jayan H, Leena MM, Sundari SKS, Moses JA (2019) Improvement of bioavailability for resveratrol through encapsulation in zein using electrospraying technique. J Funct Foods 57:417–424

    Article  Google Scholar 

  • Jincheng W, Xiaoyu Z, Siahao C (2010) Preparation and properties of nanoencapsulated capsaicin by complex coacervation method. Chem Eng Commun 197(7):919–933

    Article  Google Scholar 

  • Katouzian I, Jafari S (2016) Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamins. Trends Food Sci Technol 53:34–48

    Article  Google Scholar 

  • Khor CM, Ng WK, Kanaujia P, Chan KP, Dong Y (2017) Hot-melt extrusion microencapsulation of quercetin for taste-masking. J Microencapsul 34(1):29–37. https://doi.org/10.1080/02652048.2017.1280095

    Article  PubMed  Google Scholar 

  • Kollengode AN, Hanna MA (1997) Cyclodextrin complexed flavors retention in extruded starches. J Food Sci 62(5):1057–1060. https://doi.org/10.1111/j.1365-2621.1997.tb15037.x

    Article  Google Scholar 

  • Kolter K, Karl M, Gryczke A (2012) Hot melt extrusion with BASF pharma polymers-extrusion compendium, 2nd edn. Pharma Ingredients and Services, Ludwigshafen

    Google Scholar 

  • Koning G, Storm G (2003) Targeted drug delivery systems for the intracellular delivery of macromolecular drugs. Drug Discov Today 8(11):482–483

    Article  PubMed  Google Scholar 

  • Kuzyniak W, Adegoke O, Sekhosana K, D’Souza S, Tshangana S, Hoffmann B, Ermilov EA, Nyokong T, Höpfner M (2014) Synthesis and characterization of quantum dots designed for biomedical use. Int J Pharm 466(1–2):382–389. https://doi.org/10.1016/j.ijpharm.2014.03.037

    Article  PubMed  Google Scholar 

  • Kviecinski M, Benelli P, Felipe K, Correia J, Pich C, Ferreira S, Pedrosa R (2011) SFE from Bidens pilosaLinné to obtain extracts rich in cytotoxic polyacetylenes with antitumor activity. J Supercrit Fluids 56(3):243–248. https://doi.org/10.1016/j.supflu.2010.12.011

    Article  Google Scholar 

  • Kwak H (2014) Overview of nano- and microencapsulation for foods. In: Nano- and microencapsulation for foods. Wiley, Chichester, pp 1–14. https://doi.org/10.1002/9781118292327.ch1

    Chapter  Google Scholar 

  • Lemetter C, Meeuse F, Zuidam N (2009) Control of the morphology and the size of complex coacervate microcapsules during scale-up. AICHE J 55(6):1487–1496

    Article  Google Scholar 

  • Leonard N (2000) Stability testing of nutraceuticals and functional foods. In: Handbook of nutraceuticals and functional foods. CRC Press, Boca Raton

    Google Scholar 

  • Li L, AbuBaker O, Shao Z (2006) Characterization of poly(ethylene oxide) as a drug carrier in hot-melt extrusion. Drug Dev Ind Pharm 32(8):991–1002

    Article  PubMed  Google Scholar 

  • Lubrizol Life Science Health (2020) Hot melt extrusion – technical brief. LLS Health CDMO Division. https://lubrizolcdmo.com/technical-briefs/hot-melt-extrusion. Retrieved 16 Dec 2021

  • Maniruzzaman M, Rana M, Boateng J, Mitchell J, Douroumis D (2012) Dissolution enhancement of poorly water-soluble APIs processed by hot-melt extrusion using hydrophilic polymers. Drug Dev Ind Pharm 39(2):218–227

    Article  PubMed  Google Scholar 

  • Maniruzzaman M, Rana MM, Boateng JS, Mitchell JC, Douroumis D (2013) Dissolution enhancement of poorly water-soluble APIs processed by hot-melt extrusion using hydrophilic polymers. Drug Dev Ind Pharm 39(2):218–227

    Article  PubMed  Google Scholar 

  • Mank R, Kala H, Richter M (1990) Preparation of extrusion pellets containing drugs on the base of thermoplastics. 2. Investigations on the improvement of the drug release on the base of thermoplastics. Pharmazie 45(8):592–593

    PubMed  Google Scholar 

  • Mao Q, Xu X, Cao S, Gan R, Corke H, Beta T, Li H (2019) Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods 8(6):185. https://doi.org/10.3390/foods8060185

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin C (2016) Twin screw extruders as continuous mixers for thermal processing: a technical and historical perspective. AAPS PharmSciTech 17(1):3–19

    Article  PubMed  PubMed Central  Google Scholar 

  • Matea C, Mocan T, Tabaran F, Pop T, Mosteanu O, Puia C, Iancu C, Mocan L (2017) Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomedicine 12:5421–5431

    Article  PubMed  PubMed Central  Google Scholar 

  • McGnity J, Koleng J (1997) Preparation and evaluation of rapid release granules using novel melt extrusion technique. AAPS.org 2004, pp 153–154

    Google Scholar 

  • McGinity JW, Zhang F, Koleng JJ, Repka MA (2001) Hot-melt extrusion as a pharmaceutical process. American Pharm. Rev. 4:25–37

    Google Scholar 

  • Miller DA, DiNunzio JC, Yang W, McGinity JW, Williams RO 3rd (2008) Targeted intestinal delivery of supersaturated itraconazole for improved oral absorption. Pharm Res 25(6):1450–1459

    Article  PubMed  Google Scholar 

  • Miyagawa Y, Okabe T, Yamaguchi Y, Miyajima M, Sato H, Sunada H (1996) Controlled-release of diclofenac sodium from wax matrix granule. Int J Pharm 138(2):215–224

    Article  Google Scholar 

  • Mody V, Siwale R, Singh A, Mody H (2010) Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2(4):282

    Article  PubMed  PubMed Central  Google Scholar 

  • Morales J, McConville J (2011) Manufacture and characterization of mucoadhesive buccal films. Eur J Pharm Biopharm 77(2):187–199

    Article  PubMed  Google Scholar 

  • Mudshinge S, Deore A, Patil S, Bhalgat C (2011) Nanoparticles: emerging carriers for drug delivery. Saudi Pharm J 19(3):129–141

    Article  PubMed  PubMed Central  Google Scholar 

  • Nairm J (1995) Coacervation-phase separation technology. Adv Pharm Sci 7:93–219

    Article  Google Scholar 

  • Newton D (1991) Coacervation: principles and applications. In: Polymers for controlled drug delivery. CRC Press, Boca Raton, pp 67–81

    Google Scholar 

  • Nozik A, Mićić O (1998) Colloidal quantum dots of III-V semiconductors. MRS Bull 23(2):24–30. https://doi.org/10.1557/s0883769400031237

    Article  Google Scholar 

  • Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3(11):1941–1949. https://doi.org/10.1002/smll.200700378

    Article  PubMed  Google Scholar 

  • Patil H, Tiwari R, Repka M (2015) Hot-melt extrusion: from theory to application in pharmaceutical formulation. AAPS PharmSciTech 17(1):20–42

    Article  PubMed  PubMed Central  Google Scholar 

  • Perry S, Li Y, Priftis D, Leon L, Tirrell M (2014) The effect of salt on the complex coacervation of vinyl polyelectrolytes. Polymers 6(6):1756–1772

    Article  Google Scholar 

  • Peter L (2011) Towards sustainable photovoltaics: the search for new materials. Philos Trans R Soc A Math Phys Eng Sci 369(1942):1840–1856. https://doi.org/10.1098/rsta.2010.0348

    Article  Google Scholar 

  • Porzio MA, Popplewell LM (1999) Encapsulation compositions. McCormick and Co Inc. US Patent 5,897,897

    Google Scholar 

  • Rajendran S, Udenigwe C, Yada R (2016) Nanochemistry of protein-based delivery agents. Front Chem 4:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Rambali B, Verreck G, Baert L, Massart D (2003) Itraconazole formulation studies of the melt-extrusion process with mixture design. Drug Dev Ind Pharm 29(6):641–652

    Article  PubMed  Google Scholar 

  • Rauwendaal C (2014) Polymer extrusion. Polym Extrusion. https://doi.org/10.3139/9781569905395.fm

  • Ravichandran K, Palaniraj R, Saw NMMT, Gabr AMM, Ahmed AR, Knorr D, Smetanska I (2014) Effects of different encapsulation agents and drying process on stability of betalains extract. J Food Sci Technol 51(9):2216–2221. https://doi.org/10.1007/s13197-012-0728-6

    Article  PubMed  Google Scholar 

  • Repka M (2002) US Patent 6,375,963. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Rippie G, Johnson JR (1969) Regulation of dissolution rate by pellet geometry. J Pharm Sci 58(4):428–431

    Article  PubMed  Google Scholar 

  • Riaz M (2019) Food Extruders. In: Handbook of farm, dairy and food machinery engineering, 3rd edn. Elsevier

    Google Scholar 

  • Robinson J, McGinity J, Delmas P, inventors (2001) Ethypharm SA, Robinson J, McGinity J, Delmas P, assignee. Effervescent granules and methods for their preparation patent. WO/2001/080,822

    Google Scholar 

  • Sánchez-Camargo A, Valdés A, Sullini G, García-Cañas V, Cifuentes A, Ibáñez E, Herrero M (2014) Two-step sequential supercritical fluid extracts from rosemary with enhanced anti-proliferative activity. J Funct Foods 11:293–303. https://doi.org/10.1016/j.jff.2014.10.014

    Article  Google Scholar 

  • Santos DT, Albarelli JQ, Beppu MM, Meireles MAA (2013) Stabilization of anthocyanin extract from jabuticaba skins by encapsulation using supercritical CO2 as solvent. Food Res Int 50:617–624

    Article  Google Scholar 

  • Sarabu S, Bandari S, Kallakunta V, Tiwari R, Patil H, Repka M (2019) An update on the contribution of hot-melt extrusion technology to novel drug delivery in the twenty-first century: part II. Expert Opin Drug Deliv 16(6):567–582

    Article  PubMed  PubMed Central  Google Scholar 

  • Sardoiwala M (2018) Development of engineered nanoparticles expediting diagnostic and therapeutic applications across blood–brain barrier. In: Handbook of nanomaterials for industrial applications. Elsevier, Amsterdam, pp 696–709. https://doi.org/10.1016/B978-0-12-813351-4.00038-9

    Chapter  Google Scholar 

  • Sarei F, Mohammadpour Dounighi N, Zolfagharian H, Khaki P, Moradi Bidhendi S (2013) Alginate nanoparticles as a promising adjuvant and vaccine delivery system. Ind. J Pharm. Sci 75(4):442–449

    Google Scholar 

  • Schmitt C, Turgeon S (2011) Protein/polysaccharide complexes and coacervates in food systems. Adv Colloid Interf Sci 167(1–2):63–70

    Article  Google Scholar 

  • Senapati S, Mahanta A, Kumar S, Maiti P (2018) Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther 3(1):7

    Article  PubMed  PubMed Central  Google Scholar 

  • Severino P, da Silva CF, Andrade LN, de Lima Oliveira D, Campos J, Souto EB (2019) Alginate nanoparticles for drug delivery and targeting. Curr Pharm Design 25:1312–1334

    Google Scholar 

  • Sharma A (1997) Liposomes in drug delivery: progress and limitations. Int J Pharm 154(2):123–140

    Article  Google Scholar 

  • Shinde N, Bangar B, Deshmukh S, Kumbhar P (2014) Nutraceuticals: a review on current status. Res J Pharm Technol 7(1):110–113

    Google Scholar 

  • Singh S, Siddhanta A, Meena R, Prasad K, Bandyopadhyay S, Bohidar H (2007) Intermolecular complexation and phase separation in aqueous solutions of oppositely charged biopolymers. Int J Biol Macromol 41(2):185–192

    Article  PubMed  Google Scholar 

  • Six K, Daems T, de Hoon J, Van Hecken A, Depre M, Bouche M, Prinsen P, Verreck G, Peeters J, Brewster M, Van den Mooter G (2005) Clinical study of solid dispersions of itraconazole prepared by hot-stage extrusion. Eur J Pharm Sci 24(2–3):179–186

    Article  PubMed  Google Scholar 

  • Stoleru E, Munteanu SB, Dumitriu RP, Coroaba A, Drobotă M, Zemljic LF, Vasile C (2016) Polyethylene materials with multifunctional surface properties by electrospraying chitosan/vitamin E formulation destined to biomedical and food packaging applications. Iran Polym J 25(4):295–307. https://doi.org/10.1007/s13726-016-0421-0

    Article  Google Scholar 

  • Suri S, Fenniri H, Singh B (2007) Nanotechnology-based drug delivery systems. J Occup Med Toxicol 2:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan D, Maniruzzaman M, Nokhodchi A (2018) Advanced pharmaceutical applications of hot-melt extrusion coupled with fused deposition modelling (FDM) 3D printing for personalised drug delivery. Pharmaceutics 10(4):203

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor T, Weiss J, Davidson P, Bruce B (2005) Liposomal nanocapsules in food science and agriculture. Crit Rev Food Sci Nutr 45(7–8):587–605

    Article  PubMed  Google Scholar 

  • Tekade R, Maheshwari R, Tekade M, Chougule M (2017) Solid lipid nanoparticle for targeting and delivery of drugs and genes. In: Nanotechnology-based approaches for targeting and delivery of drugs and genes. Academic, Amsterdam, pp 256–286

    Chapter  Google Scholar 

  • Thiry J, Lebrun P, Vinassa C, Adam M, Netchacovitch L, Ziemons E, Hubert P, Krier F, Evrard B (2016) Continuous production of itraconazole-based solid dispersions by hot melt extrusion: preformulation, optimization and design space determination. Int J Pharm 515(1–2):114–124

    Article  PubMed  Google Scholar 

  • Ting Y, Jiang Y, Ho C, Huang Q (2014) Common delivery systems for enhancing in vivo bioavailability and biological efficacy of nutraceuticals. J Funct Foods 7:112–128

    Article  Google Scholar 

  • Tiwari RV, Patil H, Repka MA (2015) Contribution of hot-melt extrusion technology to advance drug delivery in the 21st century. Expert Opin Drug Deliv 13(3):451–464. https://doi.org/10.1517/17425247.2016.1126246

    Article  PubMed  Google Scholar 

  • Turgeon S, Schmitt C, Sanchez C (2007) Protein–polysaccharide complexes and coacervates. Curr Opin Colloid Interface Sci 12(4–5):166–178

    Article  Google Scholar 

  • Wang Y, Kimura K, Dubin P, Jaeger W (2000) Polyelectrolyte-micelle coacervation: effects of micelle surface charge density, polymer molecular weight, and polymer/surfactant ratio. Macromolecules 33(9):3324–3331

    Article  Google Scholar 

  • Wang X, Jiang Y, Wang Y, Huang M, Ho C, Huang Q (2008a) Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions. Food Chem 108(2):419–424. https://doi.org/10.1016/j.foodchem.2007.10.086

    Article  PubMed  Google Scholar 

  • Wang JC, Chen SH, Xu ZC (2008b) Synthesis and properties research on the nanocapsulated capsaicin by simple coacervation method. J Dispers Sci Technol 29(5):687–695

    Article  Google Scholar 

  • Wang B, Taiwo O, Dominic A, Brendan J, Colin J (2018) Coacervation technique as an encapsulation and delivery tool for hydrophobic biofunctional compounds. In: Role of materials science in food bioengineering. Academic, London, pp 235–261. https://doi.org/10.1016/B978-0-12-811448-3.00007-3

    Chapter  Google Scholar 

  • Weinbreck F, Minor M, De Kruif C (2004) Microencapsulation of oils using whey protein/gum arabic coacervates. J Microencapsul 21:667–679

    Article  PubMed  Google Scholar 

  • White JL (1991) Twin screw extrusion: technology and principles. Hanser/Gardner, Cincinnati

    Google Scholar 

  • Whitesides G (2005) Nanoscience, nanotechnology, and chemistry. Small 1(2):172–179. https://doi.org/10.1002/smll.200400130

    Article  PubMed  Google Scholar 

  • Xing F, Cheng G, Yi K, Ma L (2004) Nanoencapsulation of capsaicin by complex coacervation of gelatin, acacia, and tannins. J Appl Polym Sci 96(6):2225–2229

    Article  Google Scholar 

  • Yang R, Wang Y, Zheng X, Meng J, Tang X, Zhang X (2008) Preparation and evaluation of ketoprofen hot-melt extruded enteric and sustained-release tablets. Drug Dev Ind Pharm 34(1):83–89

    Article  PubMed  Google Scholar 

  • Young CR, Koleng JJ, McGinity JW (2002) Production of spherical pellets by a hot-melt extrusion and spheronization process. Int J Pharm 242(1–2):87–92

    Article  PubMed  Google Scholar 

  • Young CR, Crowley M, Dietzsch C, McGinity JW (2007) Physicochemical properties of film-coated melt-extruded pellets. J Microencapsul 24(1):57–71

    Google Scholar 

  • Yu L (2011) Extrusion processing of protein rich food formulations. McGill University, Montreal

    Google Scholar 

  • Zhao Mei-Xia, Zeng Er-Zao (2015) Application of functional quantum dot nanoparticles as fluorescence probes in cell labeling and tumor diagnostic imaging. Nanoscale Res. Letters 10:171

    Google Scholar 

  • Zheng X, Yang R, Tang X, Zheng L (2007) Part I: characterization of solid dispersions of nimodipine prepared by hot-melt extrusion. Drug Dev Ind Pharm 33(7):791–802

    Google Scholar 

  • Zhu JJ, Huang H, Wang W, Liang G (2012) Preparation and analytical applications of quantum dots. In: Comprehensive sampling and sample preparation. Elsevier, Amsterdam, pp 169–187. https://doi.org/10.1016/b978-0-12-381373-2.00072-7

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Samyor, D., Haokip, N. (2024). Hot Melt Extrusion and Complex Coacervation System for Delivering Nutraceuticals and Nanonutraceuticals. In: Rajakumari, R., Thomas, S. (eds) Handbook of Nutraceuticals. Springer, Cham. https://doi.org/10.1007/978-3-030-69677-1_43-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69677-1_43-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69677-1

  • Online ISBN: 978-3-030-69677-1

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics