Skip to main content

Environmental Remediation Through Metal Green Nanomaterials

  • Living reference work entry
  • First Online:
Handbook of Green and Sustainable Nanotechnology

Abstract

Rapid modernization and advancement in industrial development have led to both advantages and disadvantages in today’s human life. In effect of industrial development, waste effluents are tremendously discharged and impose prominent threats to the environment and human/aquatic organisms. Currently, researchers and scientists are developing innovative approaches to environmental remediation for the protection of environment. In the current worldwide scenario, nanotechnology is the most significant leading technique for the science, engineering, and industrial development. Advanced nanomaterials emerge central position in human day-to-day lifestyles and open up uses in almost all fields such as environmental remediation, electronic devices, sensors, catalysts, cosmetics, disinfectants, and biomedical industries. Nanomaterials acquire numerous unique characteristics, i.e., specific small sizes (1–100 nm), compositions, shapes, higher surface area-to-volume ratio, electrical, magnetic, and optical properties retaining their individual integrity. Contemporarily, the scientific community is focusing on novel rational approaches with reliable, sustainable, and ecofriendly protocols for the development of broad variety of nanomaterials. In this direction, development of metal green nanomaterials has gained widespread attention due to cost effective, easy synthetic route, ecofriendly nature, and environmentally sustainable materials. Metal green nanomaterials are designed by the general green chemistry practices, metal/metal oxides, and biological sources such as plant extract, cellulose, terpenoids, polyphenols, and microorganisms. The metal green nanomaterials provide outstanding potential to minimize unwanted adverse effect related with the conventionally synthesized nanomaterials. Metal green nanomaterials are used to reduce the toxic effect in environment through small size, stable nature, and diverse structures/morphology. In view of invariable progress in metal green nanomaterials, the present chapter deals with rational synthetic approaches in development of various metal green nanomaterials, their environmental remediation in respect of antimicrobial activity, toxic dye eradication, and heavy metal ion sensing, ongoing challenges, and future prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

NMs:

Nanomaterials

nZVI:

Nano zero-valent iron

PVP:

Poly-N-vinyl pyrrolidone

THPC:

Tetrakishydroxymethylphosphonium chloride

References

  • Ahmed S, Chaudhry SA, Ikram S (2017) A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: a prospect towards green chemistry. J Photochem Photobiol B Biol 166:272–284

    Article  CAS  Google Scholar 

  • Ahmed E, Kalathil S, Shi L, Alharbi O, Wang P (2018) Synthesis of ultra-small platinum, palladium and gold nanoparticles by Shewanella loihica PV-4 electrochemically active biofilms and their enhanced catalytic activities. J Saudi Chem Soc 22(8):919–929

    Article  CAS  Google Scholar 

  • Anastas PT, Warner J (1998) Green chemistry: theory and practice. Oxford University Press, London, p 160

    Google Scholar 

  • Atarod M, Nasrollahzadeh M, Mohammad SS (2016) Green synthesis of Pd/RGO/Fe3O4 nanocomposite using Withania coagulans leaf extract and its application as magnetically separable and reusable catalyst for the reduction of 4-nitrophenol. J Colloid Interface Sci 465:249–258

    Article  CAS  Google Scholar 

  • Baer DR, Engelhard MH, Johnson GE, Laskin J, Lai J, Mueller K, Munusamy P, Thevuthasan S, Wang H, Washton N (2013) Surface characterization of nanomaterials and nanoparticles: important needs and challenging opportunities. J Vac Sci Technol A 31(5):050820-1-34

    Article  Google Scholar 

  • Banasiuk R, Krychowiak M, Swigon D, Tomaszewicz W, Michalak A, Chylewska A, Ziabka M, Lapinski M, Koscielska B, Narajczyk M, Krolicka A (2020) Carnivorous plants used for green synthesis of silver nanoparticles with broad-spectrum antimicrobial activity. Arab J Chem 13(1):1415–1428

    Article  CAS  Google Scholar 

  • Buazar F, Baghlani-Nejazd MH, Badri M, Kashisaz M, Khaledi-Nasab A, Kroushawi F (2016) Facile one-pot phytosynthesis of magnetic nanoparticles using potato extract and their catalytic activity. Starch/Staerke 68:796–804

    Article  CAS  Google Scholar 

  • Chatterjee S, Mahanty S, Das P, Chaudhuri P, Das S (2019) Biofabrication of iron oxide nanoparticles using manglicolous fungus Aspergillus niger BSC-1 and removal of Cr (VI) from aqueous solution. Chem Eng J 385:123790

    Article  Google Scholar 

  • Cunha FA, Cunha MCDO, da Frota SM, Mallmann EJ, Freire TM, Costa LS, Paula AJ, Menezes EA, Fechine PB (2018) Biogenic synthesis of multifunctional silver nanoparticles from Rhodotorula glutinis and Rhodotorula mucilaginosa: antifungal, catalytic and cytotoxicity activities. World J Microbiol Biotechnol 34:127

    Article  Google Scholar 

  • Dahoumane SA, Yepremian C, Djediat C, Coute A, Fievet F, Coradin T, Brayner R (2014) A global approach of the mechanism involved in the biosynthesis of gold colloids using micro-algae. J Nanopart Res 16:2607

    Article  Google Scholar 

  • Darroudi M, Ahmad MB, Zamiri R, Zak AK, Abdullah AH, Ibrahim NA (2011) Time-dependent effect in green synthesis of silver nanoparticles. Int J Nanomed 6(1):677–681

    Article  CAS  Google Scholar 

  • Essawy AA, Alsohaimi IH, Alhumaimess MS, Hassan HMA, Kamel MM (2020) Green synthesis of spongy nano-ZnO productive of hydroxyl radicals for unconventional solar-driven photocatalytic remediation of antibiotic enriched wastewater. J Environ Manag 271:110961

    Article  CAS  Google Scholar 

  • Farhadi K, Forough M, Molaei R, Hajizadeh S, Rafipour A (2012) Highly selective Hg2+ colorimetric sensor using green synthesized and unmodified silver nanoparticles. Sensors Actuators B 161:880–885

    Article  CAS  Google Scholar 

  • Fazlzadeh M, Rahmani K, Zarei A et al (2017) A novel green synthesis of zero valent iron nanoparticles (NZVI) using three plant extracts and their efficient application for removal of Cr(VI) from aqueous solutions. Adv Powder Technol 28:122–130

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Parsons JG, Gomez E, Peralta-Videa J, Troian HE, Santiago P, Jose Yacaman M (2002) Formation and growth of Au nanoparticles inside live Alfalfa plants. Nano Lett 2(4):397–401

    Article  CAS  Google Scholar 

  • Gil-Diaz M, Diez-Pascual S, Gonzalez A, Alonso J, Rodriguez-Valdes E, Gallego JR (2016) A nanoremediation strategy for the recovery of an As-polluted soil. Chemosphere 149:137–145

    Google Scholar 

  • Govindaraju K, Basha SK, Kumar VG, Singaravelu G (2008) Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. J Mater Sci 43:5115–5122

    Article  CAS  Google Scholar 

  • Groiss S, Selvaraj R, Varadavenkatesan T, Vinayagam R (2017) Structural characterization, antibacterial and catalytic effect of iron oxide nanoparticles synthesised using the leaf extract of Cynometra ramiflora. J Mol Struct 1128:572–578

    Article  CAS  Google Scholar 

  • Harshiny M, Matheswaran M (2015) Amaranthus spinosus leaf extract mediated FeO nanoparticles: physicochemical traits, photocatalytic and antioxidant activity. ACS SustainChem Eng 3:3149–3156

    Article  Google Scholar 

  • Harshiny M, Nivedhini IC, Matheswaran M (2015) Biogenic synthesis of iron nanoparticles using Amaranthus dubius leaf extract as a reducing agent. Powder Technol 286:744–749

    Article  CAS  Google Scholar 

  • He F, Zhao D (2005) Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ Sci Technol 39:3314–3320

    Article  CAS  Google Scholar 

  • He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 61:3984–3987

    Article  CAS  Google Scholar 

  • Herrera-Becerra R, Rius JL, Zorrilla C (2010) Tannin biosynthesis of iron oxide nanoparticles. Appl Phys A 100:453–459

    Article  CAS  Google Scholar 

  • Hoag E, Collins JB, Holcomb JL, Hoag JR, Nadagouda MN, Varma RS (2009) Degradation of bromothymol blue by “greener” nano-scale zero-valent iron synthesized using tea polyphenols. J Mater Chem 19:8671–8677

    Article  CAS  Google Scholar 

  • Huang L, Luo F, Chen Z, Megharaj M, Naidu R (2015) Green synthesized conditions impacting on the reactivity of Fe NPs for the degradation of malachite green. Spectrochim Acta A 137:154–159

    Article  CAS  Google Scholar 

  • Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Curr Res Pharm Sci 9:385–406

    CAS  Google Scholar 

  • Ismail E, Khamlich S, Dhlamini M, Maaza M (2016) Green biosynthesis of ruthenium oxide nanoparticles on nickel foam as electrode material for supercapacitor applications. RSC Adv 6:86843–86850

    Article  CAS  Google Scholar 

  • Jain N, Bhargava A, Majumdar S, Tarafdar JC, Panwar J (2011) Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism prospective. Nanoscale 3(2):635–641

    Article  CAS  Google Scholar 

  • Jebril S, Jenana RKB, Dridi C (2020) Green synthesis of silver nanoparticles using Melia azedarach leaf extract and their antifungal activities: in vitro and in vivo. Mater Chem Phys 248:122898

    Article  CAS  Google Scholar 

  • Jia L, Zhang Q, Li Q, Song H (2009) The biosynthesis of palladium nano particles by antioxidants in Gardenia jasminoides Ellis: long lifetime nanocatalysts for p-nitrotoluene hydrogenation. Nanotechnology 20(38):385601

    Article  Google Scholar 

  • Jo JH, Singh P, Kim YJ, Wang C, Mathiyalagan R, Jin CG, Yang DC (2016) Pseudomonas deceptionensis DC5-mediated synthesis of extracellular silver nanoparticles. Artif Cells Nanomed Biotechnol 44:1576–1581

    Article  CAS  Google Scholar 

  • Jyoti K, Singh A (2016) Green synthesis of nanostructured silver particles and their catalytic application in dye degradation. J Genet Eng Biotechnol 14:311–317

    Article  Google Scholar 

  • Kalaiarasi R, Jayallakshmi N, Venkatachalam P (2010) Phytosynthesis of nano-particles and its applications. Plant Cell Biotechnol Mol Biol 11(1/4):1–16

    CAS  Google Scholar 

  • Kalpana VN, Kataru BAS, Sravani N, Vigneshwari T, Panneerselvam A, Devi Rajeswari V (2018) Biosynthesis of zinc oxide nanoparticles using culture filtrates of Aspergillus niger: antimicrobial textiles and dye degradation studies. OpenNano 3:48–55

    Article  Google Scholar 

  • Karthiga D, Anthony SP (2013) Selective colorimetric sensing of toxic metal cations by green synthesized silver nanoparticles over a wide pH range. RSC Adv 3:16765–16774

    Article  CAS  Google Scholar 

  • Khaghani S, Ghanbari SK (2017) Green synthesis of iron oxide-palladium nanocomposites by pepper extract and its application in removing of colored pollutants from water. J Nano Chem 7(3):175–182

    CAS  Google Scholar 

  • Khatami M, Alijani HQ, Heli H, Sharifi I (2018) Rectangular shaped zinc oxide nanoparticles: green synthesis by Stevia and its biomedical efficiency. Ceram Int 44(13):15596–15602

    Article  CAS  Google Scholar 

  • Krishna R, Titus E, Krishna R, Bardhan N, Bahadur D, Gracio J (2012) Wet-chemical green synthesis of L-lysine amino acid stabilized biocompatible iron-oxide magnetic nanoparticles. J Nanosci Nanotechnol 12:6645–6651

    Article  CAS  Google Scholar 

  • Kuchibhatla SVNT, Karakoti AS, Baer DR, Samudrala S, Engelhard MH, Amonette JE, Thevuthasan S, Seal S (2012) Influence of aging and environment on nanoparticle chemistry: implication to confinement effects in nanoceria. J Phys Chem C Nanomater Interfaces 116(26):14108–14114

    Article  CAS  Google Scholar 

  • Kulkarni R, Harip S, Kumar AR, Deobagkar D, Zinjarde S (2018) Peptide stabilized gold and silver nanoparticles derived from the mangrove isolate Pseudoalteromonas lipolytica mediate dye decolorization. Colloids Surf A Physicochem Eng Asp 555:180–190

    Article  CAS  Google Scholar 

  • Kumari MM, Jacob J, Philip D (2015) Green synthesis and applications of Au–Ag bimetallic nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 137:185–192

    Article  Google Scholar 

  • Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z (2008) Polysaccharides-based nano-particles as drug delivery systems. Adv Drug Deliv Rev 60:1650–1662

    Article  CAS  Google Scholar 

  • Machado S, Stawiński W, Slonina P, Pinto AR, Grosso JP, Nouws HPA, Albergaria JT, Delerue-Matos C (2013) Application of green zero-valent iron nanoparticles to the remediation of soils contaminated with ibuprofen. Sci Total Environ 461–462:323–329

    Article  Google Scholar 

  • Machado S, Pacheco JG, Nouws HPA, Albergaria JT, Delerue-Matos C (2017) Green zero-valent iron nanoparticles for the degradation of amoxicillin. Int J Environ Sci Technol 14(5):1109–1118

    Article  CAS  Google Scholar 

  • Madhavi V, Prasad V, Reddy AVB et al (2013) Application of phytogenic zerovalent iron nanoparticles in the adsorption of hexavalent chromium. Spectrochim Acta A Mol Biomol Spectrosc 116:17–25

    Article  CAS  Google Scholar 

  • Mahanty S, Bakshi M, Ghosh S, Gaine T, Chatterjee S, Bhattacharya S, Das S, Das P, Chaudhuri P (2019) Mycosynthesis of iron oxide nanoparticles using manglicolous fungi isolated from Indian sundarbans and its application for the treatment of chromium containing solution: synthesis, adsorption isotherm, kinetics and thermodynamics study. Environ Nanotechnol Monit Manag 12:100276

    Google Scholar 

  • Martínez-Cabanas M, Lopez-García M, Barriada JL, Herrero R, Sastre de Vicente ME (2016) Green synthesis of iron oxide nanoparticles. Development of magnetic hybrid materials for efficient As(V) removal. Chem Eng J 301:83–91

    Google Scholar 

  • Maruyama T, Fujimoto Y, Maekawa T (2015) Synthesis of gold nanoparticles using various amino acids. J Colloid Interface Sci 447:254–257

    Article  CAS  Google Scholar 

  • Mehrotra N, Tripathi RM, Zafar F, Singh MP (2017) Catalytic degradation of dichlorvos using biosynthesized zero valent iron nanoparticles. IEEE Trans Nanobiosci 16(4):280–286

    Article  Google Scholar 

  • Mohanraj S, Kodhaiyolii S, Rengasamy M, Pugalenthi V (2014) Green synthesized iron oxide nanoparticles effect on fermentative hydrogen production by Clostridium acetobutylicum. Appl Biochem Biotechnol 173:318–331

    Google Scholar 

  • Mourato A, Gadanho M, Lino AR, Tenreiro R (2011) Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. Bioinorg Chem Appl 1:1

    Article  Google Scholar 

  • Mukherjee D, Ghosh S, Majumdar S, Annapurna K (2016) Green synthesis of α-Fe2O3 nanoparticles for arsenic (V) remediation with a novel aspect for sludge management. J Environ Chem Eng 4:639–650

    Google Scholar 

  • Nasrollahzadeh M, Atarod M, Mohammad Sajadi S (2016) Green synthesis of the Cu/Fe3O4 nanoparticles using Morinda morindoides leaf aqueous extract: a highly efficient magnetically separable catalyst for the reduction of organic dyes in aqueous medium at room temperature. Appl Surf Sci 364:636–644

    Article  CAS  Google Scholar 

  • Nava OJ, Gómez-Gutiérrez CM, Vilchis-Nestor AR, Castro-Beltrán A, Mota-González ML, Olivas A (2017) Influence of Camellia sinensis extract on zinc oxide nanoparticle green synthesis. J Mol Struct 1134:121–125

    Article  CAS  Google Scholar 

  • Nitta SK, Numata K (2013) Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci 14:1629–1654

    Article  CAS  Google Scholar 

  • Njagi EC, Huang H, Stafford L (2011) Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir 27:264–271

    Article  CAS  Google Scholar 

  • Noman M, Shahid M, Ahmed T, Khan Niazi MB, Hussain S, Song F, Manzoor I (2019) Use of biogenic copper nanoparticles synthesized from a native Escherichia sp. as photocatalysts for azo dye degradation and treatment of textile effluents. Environ Pollut 257:113514

    Article  Google Scholar 

  • Panigrahi S, Kundu S, Ghosh S, Nath S, Pal T (2004) General method of synthesis for metal nanoparticles. J Nanopart Res 6:411–414

    Article  CAS  Google Scholar 

  • Pelgrift RY, Friedman AJ (2013) Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev 65:1803–1815

    Article  CAS  Google Scholar 

  • Poguberovic SS, Krcmar DM, Maletic SP et al (2016) Removal of As(III) and Cr(VI) from aqueous solutions using “green” zero-valent iron nanoparticles produced by oak, mulberry and cherry leaf extracts. Ecol Eng 90:42–49

    Article  Google Scholar 

  • Prasad KS, Gandhi P, Selvaraj K (2014) Synthesis of green nano iron particles (GnIP) and their application in adsorptive removal of As(III) and As(V) from aqueous solution. Appl Surf Sci 317:1052–1059

    Article  CAS  Google Scholar 

  • Prasad C, Karlapudi S, Venkateswarlu P, Bahadur I, Kumar S (2017a) Green arbitrated synthesis of Fe3O4 magnetic nanoparticles with nanorod structure from pomegranate leaves and Congo red dye degradation studies for water treatment. J Mol Liq 240:322–328

    Google Scholar 

  • Prasad C, Yuvaraja G, Venkateswarlu P (2017b) Biogenic synthesis of Fe3O4 magnetic nanoparticles using Pisum sativum peels extract and its effect on magnetic and Methyl orange dye degradation studies. J Magn Magn Mater 424:376–381

    Google Scholar 

  • Rana A, Yadav K, Jagadevan S (2020) A comprehensive review on green synthesis of nature-inspired metal nanoparticles: mechanism, application and toxicity. J Clean Prod 272:122880–122900

    Article  CAS  Google Scholar 

  • Rao A, Bankar A, Kumar AR et al (2013) Removal of hexavalent chromium ions by Yarrowia lipolytica cells modified with phyto-inspired FeO/Fe3O4 nanoparticles. J Contam Hydrol 146:63–73

    Article  CAS  Google Scholar 

  • Ruckenstein E, Kong XZ (1999) Control of pore generation and pore size in nanoparticles of poly(styrene-methyl methacrylate acrylic acid). J Appl Polym Sci 72(3):419–426

    Article  CAS  Google Scholar 

  • Saikia I, Hazarika M, Hussian N, Das MR, Tamuly C (2017) Biogenic synthesis of Fe2O3@SiO2 nanoparticles for ipso-hydroxylation of boronic acid in water. Tetrahedron Lett 58(45):4255–4259

    Article  CAS  Google Scholar 

  • Sajadi SM, Nasrollahzadeh M, Maham M (2016) Aqueous extract from seeds of Silybum marianum L. as a green material for preparation of the Cu/Fe3O4 nanoparticles: a magnetically recoverable and reusable catalyst for the reduction of nitroarenes. J Colloid Interface Sci 469:93–98

    Article  CAS  Google Scholar 

  • Salunke BK, Sawant SS, Lee SI, Kim BS (2015) Comparative study of MnO2 nanoparticle synthesis by marine bacterium Saccharophagus degradans and yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 99:5419–5427

    Article  CAS  Google Scholar 

  • Samari F, Baluchi L, Salehipoor H, Yousefinejad S (2019) Controllable phyto-synthesis of cupric oxide nanoparticles by aqueous extract of Capparis spinosa (caper) leaves and application in iron sensing. Microchem J 150:104158

    Google Scholar 

  • Saravanan A, Kumar PS, Karishma S, Vo D-V N, Jeevanantham S, Yaashikaa P, George CS (2021) A review on biosynthesis of metal nanoparticles and its environmental applications. Chemosphere 264:128580. https://doi.org/10.1016/j.chemosphere.2020.128580

  • Saxena A, Tripathi R, Zafar F, Singh P (2012) Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterisation of their antibacterial activity. Mater Lett 67:91–94

    Article  CAS  Google Scholar 

  • Seshadri S, Saranya K, Kowshik M (2011) Green synthesis of lead sulfide nano-particles by the lead resistant marine yeast, Rhodosporidium diobovatum. Biotechnol Prog 27:1464–1469

    Article  CAS  Google Scholar 

  • Sethy NK, Arif Z, Mishra PK, Kumar P (2020) Green synthesis of TiO2 nanoparticles from Syzygium cumini extract for photo-catalytic removal of lead (Pb) in explosive industrial wastewater. Green Processes Synth 9:171–181

    Article  Google Scholar 

  • Shahwan T, Sirriah AS, Nairat M et al (2011) Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem Eng J 172:258–266

    Article  CAS  Google Scholar 

  • Shankar SS, Ahmad A, Pasricha R, Sastry M (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822

    Article  CAS  Google Scholar 

  • Shanker U, Jassal V, Rani M (2017) Green synthesis of iron hexacyanoferrate nanoparticles: potential candidate for the degradation of toxic PAHs. J Environ Chem Eng 5(4):4108–4120

    Article  CAS  Google Scholar 

  • Sharma D, Sabela MI, Kanchi S, Mdluli PS, Singh G, Stenström TA, Bisetty K (2016) Biosynthesis of ZnO nanoparticles using Jacaranda mimosifolia flowers extract: synergistic antibacterial activity and molecular simulated facet specific adsorption studies. J Photochem Photobiol B 162:199–207

    Article  CAS  Google Scholar 

  • Sheny DS, Mathew J, Philip D (2011) Phytosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale. Spectrochim Acta A Mol Biomol Spectrosc 79(1):254–262

    Article  CAS  Google Scholar 

  • Singh P, Kim YJ, Singh H, Wang C, Hwang KH, Farh MEA, Yang DC (2015) Biosynthesis, characterization, and antimicrobial applications of silver nanoparticles. Int J Nanomed 10:2567

    CAS  Google Scholar 

  • Singh P, Singh H, Kim YJ, Mathiyalagan R, Wang C, Yang DC (2016) Extra-cellular synthesis of silver and gold nanoparticles by Sporosarcina koreensis DC4 and their biological applications. Enzym Microb Technol 86:75–83

    Google Scholar 

  • Singh J, Singh N, Rathi A, Kukkar D, Rawat M (2017) Facile approach to synthesize and characterization of silver nanoparticles by using mulberry leaves extract in aqueous medium and its application in antimicrobial activity. J Nanostruct 7:134–140

    Google Scholar 

  • Siskova KM, Straska J, Krizek M, Tucek J, Machala L, Zboril R (2013) Formation of zero-valent iron nanoparticles mediated by amino acids. Procedia Environ Sci 18:809–817

    Article  CAS  Google Scholar 

  • Soni N, Prakash S (2011) Factors affecting the geometry of silver nanoparticles synthesis in Chrysosporium tropicum and Fusarium oxysporum. Am J Nanotechnol 2(1):112–121

    CAS  Google Scholar 

  • Subramaniyam V, Subashchandrabose SR, Thavamani P, Megharaj M, Chen Z, Naidu R (2015) Chlorococcum sp. MM11 – a novel phyco-nanofactory for the synthesis of iron nanoparticles. J Appl Phycol 27:1861–1869

    Article  CAS  Google Scholar 

  • Tagad C, Seo HH, Tongaonkar R, Yu YW, Lee JH, Dingre M, Kulkarni A, Fouad H, Ansari SA, Moh SH (2017) Green synthesis of silver nanoparticles using Panax ginseng root extract for the detection of Hg2+. Sens Mater 29(2):205–215

    Google Scholar 

  • Tran QH, Nguyen VQ, Le AT (2013) Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci Nanosci Nanotechnol 4:033001

    Article  CAS  Google Scholar 

  • Varma RS (2014) Journey on greener pathways: from the use of alternate energy inputs and benign reaction media to sustainable applications of nano-catalysts in synthesis and environmental remediation. Green Chem 16:2027–2041

    Article  CAS  Google Scholar 

  • Velayutham K, Rahuman AA, Rajakumar G, Santhoshkumar T, Marimuthu S, Jayaseelan C et al (2012) Evaluation of Catharanthus roseus leaf extract-mediated biosynthesis of titanium dioxide nanoparticles against Hippobosca maculata and Bovicola bovis. Parasitol Res 111:2329–2337

    Article  Google Scholar 

  • Venkateswarlu S, Kumar BN, Prasad C, Venkateswarlu P, Jyothi N (2014) Bio-inspired green synthesis of Fe3O4 spherical magnetic nanoparticles using Syzygium cumini seed extract. Phys B Condens Matter 4(49):67–71

    Article  Google Scholar 

  • Wang T, Jin X, Chen Z, Megharaj M, Naidu R (2014a) Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic waste-water. Sci Total Environ 466–467:210–213

    Article  Google Scholar 

  • Wang T, Lin J, Chen Z, Megharaj M, Naidu R (2014b) Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution. J Clean Prod 83:413–419

    Article  CAS  Google Scholar 

  • Wei Y, Fang Z, Zheng L, Pokeung E (2017) Biosynthesized iron nanoparticles in aqueous extracts of Eichhornia crassipes and its mechanism in the hexavalent chromium removal. Appl Surf Sci 399:322–329

    Article  CAS  Google Scholar 

  • Weng X, Jina X, Lina J et al (2016) Removal of mixed contaminants Cr(VI) and Cu(II) by green synthesized iron based nanoparticles. Ecol Eng 97:32–39

    Article  Google Scholar 

  • Zhang X, Qu Y, Shen W, Wang J, Li H, Zhang Z, Li S, Zhou J (2016) Biogenic synthesis of gold nanoparticles by yeast Magnusiomyces ingens LH-F1 for catalytic reduction of nitrophenols. Colloids Surf A Physicochem Eng Asp 497:280–285

    Article  CAS  Google Scholar 

  • Zhao X, Zhou L, Riaz Rajoka MS, Yan L, Jiang C, Shao D, Zhu J, Shi J, Huang Q, Yang H, Jin M (2018) Fungal silver nanoparticles: synthesis, application and challenges. Crit Rev Biotechnol 38(6):817–835

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors Ruchi Gaur and Dipankar Sutradhar are grateful to authorities of UGC (Dr. D S Kothari fellowship) Pune, India, and NPDF New Delhi, India, for their financial supports. Authors (Parashuram Kallem and Fawzi Banat) would like to thank the Center for Membranes and Advanced Water Technology (CMAT) at Khalifa University of Science and Technology, United Arab Emirates, for financial support through Grant No. RC2-2018-009.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gaur, R., Kallem, P., Sutradhar, D., Banat, F. (2022). Environmental Remediation Through Metal Green Nanomaterials. In: Shanker, U., Hussain, C.M., Rani, M. (eds) Handbook of Green and Sustainable Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-69023-6_7-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69023-6_7-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69023-6

  • Online ISBN: 978-3-030-69023-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics