Abstract
Engineered nanoparticles (ENPs) are considered a new class of chemicals because of their novel properties such as size, charge, and shape. Applications of titanium dioxide-engineered nanoparticles (TiO2-ENPs) in various consumer products, including food additives and cosmeceuticals, gained momentum across the globe. Extensive application of TiO2-ENPs leads to their release into the environment, which raised concerns about the environmental health impacts of TiO2-ENPs. In addition, the behavior and fate of TiO2-ENPs in the environment are largely unknown. Although most of the investigations are concerned with the effects of TiO2-ENPs on the aquatic environment, the basis of many food chains depends on the benthic and soil flora and fauna, which could be dramatically affected by the release of TiO2-ENPs into the environment. Therefore, research efforts in evaluating the ecotoxicity of ENPs in soil ecosystems are needed because they reach sediment or soil at the end of the life cycle. Endpoints for assessing ecotoxicity in soil environment include a list of sentinels that can serve as ENPs’ pollution bio-monitors. In this regard, invertebrates’ widespread distribution and sensitivity toward pollutants can assist in monitoring ENPs in the environment. Therefore, the present chapter is intended to present the importance of soil invertebrates as sentinels in assessing the ecotoxicity of TiO2-ENPs. The gaps existing in current knowledge about ecotoxicity assessment of TiO2-ENPs in the soil environment are highlighted. The need for physicochemical characterization of ENPs to adopt appropriate metrics in nanotoxicology has also been discussed.
Similar content being viewed by others
References
Angelstorf JS, Ahlf W, von der Kammer F, Heise S (2014) Impact of particle size and light exposure on the effects of TiO2 nanoparticles on Caenorhabditis elegans. Environ Toxicol Chem 33:2288–2296. https://doi.org/10.1002/etc.2674
Baysal A, Saygin H (2021) Interactions of nanomaterials with the soil. Nanomater Soil Remediat:13–32. https://doi.org/10.1016/B978-0-12-822891-3.00002-5
Bindhu MR, Umadevi M (2015) Antibacterial and catalytic activities of green synthesized silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 135:373–378. https://doi.org/10.1016/j.saa.2014.07.045
Boros B-V, Ostafe V (2020) Evaluation of ecotoxicology assessment methods of nanomaterials and their effects. Nanomaterials 10:610. https://doi.org/10.3390/NANO10040610
Braydich-Stolle LK, Schaeublin NM, Murdock RC et al (2009) Crystal structure mediates mode of cell death in TiO2 nanotoxicity. J Nanopart Res 11:1361–1374. https://doi.org/10.1007/s11051-008-9523-8
Bundy JG, Spurgeon DJ, Svendsen C et al (2002) Earthworm species of the genus Eisenia can be phenotypically differentiated by metabolic profiling. FEBS Lett 521:115–120. https://doi.org/10.1016/S0014-5793(02)02854-5
Canas JE, Qi B, Li S et al (2011) Acute and reproductive toxicity of nano-sized metal oxides (ZnO and TiO(2)) to earthworms (Eisenia fetida). J Environ Monit 13:3351–3357. https://doi.org/10.1039/c1em10497g
Cattaneo AG, Gornati R, Sabbioni E et al (2010) Nanotechnology and human health: risks and benefits. J Appl Toxicol 30:730–744. https://doi.org/10.1002/jat.1609
Clunan KAR-H (2014) Nanotechnology in a globalized world: strategic assessments of an emerging technology
Coll C, Notter D, Gottschalk F et al (2016) Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes). Nanotoxicology 10:436–444. https://doi.org/10.3109/17435390.2015.1073812
Cornelis G (2015) Fate descriptors for engineered nanoparticles: the good, the bad, and the ugly. Environ Sci Nano 2:19–26. https://doi.org/10.1039/C4EN00122B
Cumberland SA, Lead JR (2009) Particle size distributions of silver nanoparticles at environmentally relevant conditions. J Chromatogr A 1216:9099–9105. https://doi.org/10.1016/j.chroma.2009.07.021
Cupi D, Hartmann NB, Baun A (2015) The influence of natural organic matter and aging on suspension stability in guideline toxicity testing of silver, zinc oxide, and titanium dioxide nanoparticles with Daphnia magna. Environ Toxicol Chem 34:497–506. https://doi.org/10.1002/etc.2855
Domingos RF, Tufenkji N, Wilkinson KJ (2009) Aggregation of titanium dioxide nanoparticles: role of a fulvic acid. Environ Sci Technol 43:1282–1286. https://doi.org/10.1021/es8023594
Doshi R, Braida W, Christodoulatos C et al (2008) Nano-aluminum: Transport through sand columns and environmental effects on plants and soil communities. Environ Res 106:296–303. https://doi.org/10.1016/j.envres.2007.04.006
Dowling VA, Sheehan D (2006) Proteomics as a route to identification of toxicity targets in environmental toxicology. Proteomics 6:5597–5604. https://doi.org/10.1002/pmic.200600274
Fent K (2010) Ecotoxicology of engineered nanoparticles. Nanoparticles in the water cycle. Springer Berlin Heidelberg, Berlin/Heidelberg, pp 183–205
Forbes VE, Palmqvist A, Bach L (2006) The use and misuse of biomarkers in ecotoxicology. Environ Toxicol Chem 25:272. https://doi.org/10.1897/05-257R.1
Fourie F, Reinecke SA, Reinecke AJ (2007) The determination of earthworm species sensitivity differences to cadmium genotoxicity using the comet assay. Ecotoxicol Environ Saf 67:361–368. https://doi.org/10.1016/j.ecoenv.2006.10.005
Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222. https://doi.org/10.1021/es9015553
Gottschalk F, Sun T, Nowack B (2013) Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ Pollut 181:287–300. https://doi.org/10.1016/j.envpol.2013.06.003
Gottschalk F, Lassen C, Kjoelholt J et al (2015) Modeling flows and concentrations of nine engineered nanomaterials in the Danish environment. Int J Environ Res Public Health 12:5581–5602. https://doi.org/10.3390/ijerph120505581
Gourmelon A, Ahtiainen J. Organization for economic co-operation and development(2007) Developing test guidelines on invertebrate development and reproduction for the assessment of chemicals, including potential endocrine active substances- the OECD perspective. Ecotoxicology 16:161–167. https://doi.org/10.1007/s10646-006-0105-1
Grand View Research (2015) Nanocoatings market to grow at 22.3% CAGR from 2014 to 2020. In: Gd. View Res
Grand View Research (2021) Titanium dioxide market trends analysis report, 2021–2028
Guo R, Ding X, Xiong W et al (2015) Earthworms as agents for ecotoxicity in roxarsone-contaminated soil ecosystem: a modeling study of ultrastructure and proteomics. Environ Sci Pollut Res 22:12435–12449. https://doi.org/10.1007/s11356-015-4403-0
Halappanavar S, Nymark P, Krug HF et al (2021) Non-animal strategies for toxicity assessment of nanoscale materials: role of adverse outcome pathways in the selection of endpoints. Small 17:2007628. https://doi.org/10.1002/SMLL.202007628
Handy RD, von der Kammer F, Lead JR et al (2008) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314. https://doi.org/10.1007/s10646-008-0199-8
Holden PA, Klaessig F, Turco RF et al (2014) Evaluation of exposure concentrations used in assessing manufactured nanomaterial environmental hazards: Are they relevant? Environ Sci Technol 48:10541–10551. https://doi.org/10.1021/es502440s
Hou J, Wang L, Wang C et al (2019) Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. J Environ Sci 75:40–53. https://doi.org/10.1016/J.JES.2018.06.010
Hu CW, Li M, Cui YB et al (2010) Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biol Biochem 42:586–591. https://doi.org/10.1016/j.soilbio.2009.12.007
ICI (2015) Asia TiO2 prices likely to rise moderately in 2H 2015. http://www.icis.com/resources/news/2015/03/03/9864574/asia-tio2-prices-likely-to-rise-moderately-in-2h-2015/. Accessed 20 Apr 2016
Jemec A, Drobne D, Remškar M et al (2008) Effects of ingested nano-sized titanium dioxide on terrestrial isopods (Porcellio scaber). Environ Toxicol Chem 27:1904–1914. https://doi.org/10.1897/08-036.1
Juganson K, Ivask A, Blinova I et al (2015) NanoE-Tox: New and in-depth database concerning ecotoxicity of nanomaterials. Beilstein J Nanotechnol 6:1788–1804. https://doi.org/10.3762/bjnano.6.183
Kaegi R, Ulrich A, Sinnet B et al (2008) Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ Pollut 156:233–239. https://doi.org/10.1016/j.envpol.2008.08.004
Kahru A, Dubourguier HC (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269:105–119. https://doi.org/10.1016/j.tox.2009.08.016
Kavlock R, Chandler K, Houck K et al (2012) Update on EPA’s toxcast program: providing high throughput decision support tools for chemical risk management. Chem Res Toxicol 25:1287–1302. https://doi.org/10.1021/tx3000939
Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1692. https://doi.org/10.1007/s11051-013-1692-4
Kiser MA, Westerhoff P, Benn T et al (2009) Titanium nanomaterial removal and release from wastewater treatment plants. Environ Sci Technol 43:6757–6763. https://doi.org/10.1021/es901102n
Klaine SJ, Koelmans AA, Horne N et al (2012) Paradigms to assess the environmental impact of manufactured nanomaterials. Environ Toxicol Chem 31:3–14. https://doi.org/10.1002/etc.733
Kohen R, Nyska A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30:620–650. https://doi.org/10.1080/01926230290166724
Kong L, Zepp RG (2012) Production and consumption of reactive oxygen species by fullerenes. Environ Toxicol Chem 31:136–143. https://doi.org/10.1002/etc.711
Landsiedel R, Ma-Hock L, Kroll A et al (2010) Testing metal-oxide nanomaterials for human safety. Adv Mater 22:2601–2627. https://doi.org/10.1002/adma.200902658
Lapied E, Nahmani JY, Moudilou E et al (2011) Ecotoxicological effects of an aged TiO2 nanocomposite measured as apoptosis in the anecic earthworm Lumbricus terrestris after exposure through water, food and soil. Environ Int 37:1105–1110
Lemos MFL, Soares AMVM, Correia AC, Esteves AC (2010) Proteins in ecotoxicology – how, why and why not? Proteomics 10:873–887. https://doi.org/10.1002/pmic.200900470
Lewicka ZA, Benedetto AF, Benoit DN et al (2011) The structure, composition, and dimensions of TiO2 and ZnO nanomaterials in commercial sunscreens. J Nanopart Res 13:3607–3617. https://doi.org/10.1007/s11051-011-0438-4
Li S, Wallis LK, Ma H, Diamond SA (2014) Phototoxicity of TiO2 nanoparticles to a freshwater benthic amphipod: Are benthic systems at risk? Sci Total Environ 466:800–808. https://doi.org/10.1016/j.scitotenv.2013.07.059
McShane H, Sarrazin M, Whalen JK et al (2012) Reproductive and behavioral responses of earthworms exposed to nano-sized titanium dioxide in soil. Environ Toxicol Chem 31:184–193. https://doi.org/10.1002/etc.714
Menard A, Drobne D, Jemec A (2011) Ecotoxicity of nanosized TiO2. review of in vivo data. Environ Pollut 159:677–684. https://doi.org/10.1016/j.envpol.2010.11.027
Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453. https://doi.org/10.1021/es7029637
Musial J, Krakowiak R, Mlynarczyk DT et al (2020) Titanium dioxide nanoparticles in food and personal care products – what do we know about their safety? Nanomaterials 10:1–23. https://doi.org/10.3390/nano10061110
Nel A, Xia T, Meng H et al (2013) Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening. Acc Chem Res 46:607–621. https://doi.org/10.1021/ar300022h
Novais SC, De Coen W, Amorim MJB (2012) Transcriptional responses in Enchytraeus albidus (Oligochaeta): comparison between cadmium and zinc exposure and linkage to reproduction effects. Environ Toxicol Chem 31:2289–2299. https://doi.org/10.1002/etc.1946
OECD (1984) OECD Guidelines for testing of chemicals
OECD WPMN (2017) ENV/JM/MONO(2016)63
Pachapur VL, Dalila Larios A, Cledón M et al (2016) Behavior and characterization of titanium dioxide and silver nanoparticles in soils. Sci Total Environ 563–564:933–943
Pacheco NIN, Roubalova R, Semerad J et al (2021) In vitro interactions of TiO2 nanoparticles with earthworm coelomocytes: immunotoxicity assessment. Nanomaterials 11:250. https://doi.org/10.3390/NANO11010250
Pettitt ME, Lead JR (2013) Minimum physicochemical characterisation requirements for nanomaterial regulation. Environ Int 52:41–50. https://doi.org/10.1016/j.envint.2012.11.009
Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res 14:1109
Rasmussen K, González M, Kearns P et al (2016) Review of achievements of the OECD working party on manufactured nanomaterials’ testing and assessment programme. from exploratory testing to test guidelines. Regul Toxicol Pharmacol 74:147–160. https://doi.org/10.1016/j.yrtph.2015.11.004
Robichaud CO, Uyar AE, Darby MR et al (2009) Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. Environ Sci Technol 43:4227–4233. https://doi.org/10.1021/es8032549
Roh J-Y, Park Y-K, Park K, Choi J (2010) Ecotoxicological investigation of CeO2 and TiO2 nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility, and survival as endpoints. Environ Toxicol Pharmacol 29:167–172. https://doi.org/10.1016/j.etap.2009.12.003
Rui Q, Zhao Y, Wu Q et al (2013) Biosafety assessment of titanium dioxide nanoparticles in acutely exposed nematode Caenorhabditis elegans with mutations of genes required for oxidative stress or stress response. Chemosphere 93:2289–2296. https://doi.org/10.1016/j.chemosphere.2013.08.007
Sun TY, Bornhöft NA, Hungerbühler K, Nowack B (2016) Dynamic probabilistic modeling of environmental emissions of engineered nanomaterials. Environ Sci Technol 50:4701–4711. https://doi.org/10.1021/acs.est.5b05828
Tong T, Hill AN, Alsina MA et al (2015) Spectroscopic characterization of TiO2 polymorphs in wastewater treatment and sediment samples. Environ Sci Technol Lett 2:12–18. https://doi.org/10.1021/ez5004023
Tourinho PS, van Gestel CAM, Lofts S et al (2012) Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environ Toxicol Chem 31:1679–1692. https://doi.org/10.1002/etc.1880
Vance ME, Kuiken T, Vejerano EP et al (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6181(6):1769–1780. https://doi.org/10.3762/BJNANO.6.181
Wang H, Wick RL, Xing B (2009) Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Pollut 157:1171–1177. https://doi.org/10.1016/j.envpol.2008.11.004
Weir A, Westerhoff P, Fabricius L et al (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46:2242–2250. https://doi.org/10.1021/es204168d
Wu Q, Nouara A, Li Y et al (2013a) Comparison of toxicities from three metal oxide nanoparticles at environmental relevant concentrations in nematode Caenorhabditis elegans. Chemosphere 90:1123–1131. https://doi.org/10.1016/j.chemosphere.2012.09.019
Wu S, Xu X, Zhao S et al (2013b) Evaluation of phenanthrene toxicity on earthworm (Eisenia fetida): an ecotoxicoproteomics approach. Chemosphere 93:963–971. https://doi.org/10.1016/j.chemosphere.2013.05.062
Wu F, Seib M, Mauel S et al (2020) A citizen science approach estimating titanium dioxide released from personal care products. PLoS One 15:e0235988. https://doi.org/10.1371/JOURNAL.PONE.0235988
Zhu Y, Wu X, Liu Y et al (2020) Integration of transcriptomics and metabolomics reveals the responses of earthworms to the long-term exposure of TiO2 nanoparticles in soil. Sci Total Environ 719:137492. https://doi.org/10.1016/J.SCITOTENV.2020.137492
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this entry
Cite this entry
Prasad, B.S., Rani, J.U., Ganesh, P.S. (2022). Toxicological Evaluation of TiO2 Engineered Nanoparticles in Soil Invertebrates: A Cue for Revisiting Standard Toxicity Testing for Nanomaterials. In: Shanker, U., Hussain, C.M., Rani, M. (eds) Handbook of Green and Sustainable Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-69023-6_62-1
Download citation
DOI: https://doi.org/10.1007/978-3-030-69023-6_62-1
Received:
Accepted:
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-69023-6
Online ISBN: 978-3-030-69023-6
eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics