Skip to main content

Implications of Green Nanomaterials for Environmental Remediation

  • Living reference work entry
  • First Online:
Handbook of Green and Sustainable Nanotechnology

Abstract

Sustainable approaches to environmental remediation require a fundamental change from traditional techniques of purification and adoption of new method to protect continued human existence. Clean water, soil, and air are central to environmental sustainability, yet they are not readily available. With continuous increase in environmental pollution, several techniques have been explored in remediating this problem using different materials. However, most of these materials become pollutants after use or generate secondary pollutants. This problem coupled with hazardous nature of some materials produced from conventional technologies has led to the search for and production of safer materials. The unique properties of nanoscale materials have bestowed both attention and prospect on nanotechnology for environmental application. Nanomaterials enjoy characteristics like morphology, large surface area, immense reactivity, and plasmon resonance. Some nanomaterials also have the ability to exhibit magnetic properties when manipulated in the presence of magnetic field. Hence, green nanomaterials that are biodegradable, nontoxic, and recyclable and have the potential to be recovered after use are being sought for environmental remediation. Green nanomaterials have become a key component in the future of environmental remediation. The biocompatibility, biodegradability, and their carbon-neutral nature confer upon them the capability to remediate different environmental pollutants. This chapter will explore the current and potential applications of green nanomaterials in environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdelwahab NA, Ghoneim AM (2018) Photocatalytic activity of ZnO coated magnetic crosslinked chitosan/polyvinyl alcohol microspheres. Mater Sci Eng B 228:7–17

    Article  CAS  Google Scholar 

  • Adejumo AL, Azeez LA, Oyedeji AO, Adetoro RO, Aderigbigbe FA et al (2020) Nanostructured and surface functionalized corncob as unique adsorbents for anionic dye remediation. SN Appl Sci 2:301. https://doi.org/10.1007/s42452-020-2109-5

    Article  CAS  Google Scholar 

  • Afshar E, Mohammadi MH, Dashti KH et al (2017) Removal of Hg (I) and Hg (II) ions from aqueous solutions, using TiO2 nanoparticles. Pollution 3(3):505–516

    CAS  Google Scholar 

  • Alfarawati RK, Shaban YA, Turki AJ, Kavil YN, Zobidi MI et al (2020) Solar photocatalytic removal of arsenic from polluted water using carbon-modified titanium oxide nanoparticles supported on activated carbon. Environ Chem 17(8):568–578

    Article  CAS  Google Scholar 

  • Ali I, ALOthman ZA, Alwarthan A (2019) Removal of Metal Ions Using Graphene-based Adsorbents. In: Springer Nanostructured Materials for Treating Aquatic Pollution, pp 1–33

    Google Scholar 

  • Azeez L (2020) Detection and evaluation of nanoparticles in soil environment. Chapter 3. In: Abdeltif A, Mohan D, Nguyen TA, Asadi AA, Yasin G (eds) Environmental impact of nanomaterials in soil, Nanomaterials for soil remediation, Micro and nanotechnology book series. Elsevier, pp 33–63. https://doi.org/10.1016/B978-0-12-822891-3.00003-7

  • Azeez L, Lateef A, Adebisi SA, Oyedeji AO, Adetoro RO et al (2018) Novel biosynthesized silver nanoparticles from cobweb as adsorbent for Rhodamine B: equilibrium isotherm, kinetic and thermodynamic studies. Appl Water Sci 8:32. https://doi.org/10.1007/s13201-018-0676-z

    Article  CAS  Google Scholar 

  • Azizi S, Shahri MM, Mohamad R et al (2017) Green synthesis of zinc oxide nanoparticles for enhanced adsorption of lead ions from aqueous solutions: equilibrium, kinetic and thermodynamic studies. Molecules 22(6). https://doi.org/10.3390/molecules22060831

  • Banerjee S, Dubey S, Gautam RK, Chattopadhyaya MC, Sharma YC et al (2019) Adsorption characteristics of alumina nanoparticles for removal of hazardous dye, Orange G from aqueous solutions. Arab J Chem 12(8):5339–5354

    Article  CAS  Google Scholar 

  • Cai Y, Li C, Wu D, Wang W, Tan F, Wang X, Wong PK, Qiao X et al (2017) Highly active MgO nanoparticles for simultaneous bacterial inactivation and heavy metal removal from aqueous solution. Chem Eng J 312:158–166. https://doi.org/10.1016/j.cej.2016.11.134

    Article  CAS  Google Scholar 

  • Deepak P, Amutha V, Kamaraj C, Balasubramani C, Aiswarya D, Perumal P et al (2019) Chemical and green synthesis of nanoparticles and their efficacy on cancer cells. Chapter 15. In: Green synthesis, characterization and applications of nanoparticles, pp 369–387. https://doi.org/10.1016/B978-0-08-102579-6.00016-2

    Chapter  Google Scholar 

  • Dehaghi MS, Rahmanifar B, Moradi AM, Azar PA et al (2014) Removal of permethrin pesticide from water by chitosan-zinc oxide nanoparticles composite as an adsorbent. J Saudi Chem Soc 18(4):348–355. https://doi.org/10.1016/j.jscs.2014.01.004

    Article  CAS  Google Scholar 

  • Elegbede JA, Lateef A, Azeez MA, Asafa TB, Yekeen TA, Oladipo IC, Hakeem AS, Beukes LS, Gueguim-Kana EB et al (2019) Silver-gold alloy nanoparticles biofabricated by fungal xylanases exhibited potent biomedical and catalytic activities. Biotechnol Prog 35(e2829):1–13. https://doi.org/10.1002/btpr.2829

    Article  CAS  Google Scholar 

  • Guan XH, Du JS, Meng XG, Sun YK, Sun B, Hu QH (2012) et al Application of titanium dioxide in arsenic removal from water: a review. J Hazard Mater 221:303

    Google Scholar 

  • Guerra FD, Attia MF, Whitehead DC, Alexis F (2018) Nanotechnology for environmental remediation: Materials and applications. Molecules 23(7). https://doi.org/10.3390/molecules23071760

  • Guillaume APL, Chelaru AM, Visa M, Lassine O (2018) Titanium oxide-clay as adsorbent and photocatalysts for wastewater treatment. J Membr Sci Technol 8(1):1–11. https://doi.org/10.4172/2155-9589.1000176

    Article  Google Scholar 

  • Hejri Z, Hejri M, Omidvar M, Morshedi S (2020) A novel nanocomposite as adsorbent for formaldehyde removal from aqueous solution. Adv Nano Res 8(1):1–11

    Google Scholar 

  • Hosseinabadi MB (2020) Toxicity/risk assessment of nanomaterials when used in air/gas treatment. Chapter 5. In: Nanomaterials for air remediation, pp 89–105. https://doi.org/10.1016/B978-0-12-818821-7.00005-1

    Chapter  Google Scholar 

  • Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211:317–331. https://doi.org/10.1016/j.jhazmat.2011.10.016

    Article  CAS  Google Scholar 

  • Jaciw-Zurakowsky I, Snowdon MR, Schneider OM, Zhou YM, Liang RL (2020) Advanced oxidation processes using catalytic nanomaterials for air and water remediation. Chapter 9. In: Nanomaterials for air remediation, pp 167–192. https://doi.org/10.1016/B978-0-12-818821-7.00009-9

    Chapter  Google Scholar 

  • Ju-Nam Y, Lead J (2016) Properties, sources, pathways, and fate of nanoparticles in the environment. In: Engineered nanoparticles and the environment: biophysicochemical processes and toxicity, vol 4, pp 95–117

    Google Scholar 

  • Khatami M, Varma RS, Zafarnia N, Yaghoobi H, Sarani M, Kumar VG (2018) Applications of green synthesized Ag, ZnO and Ag/ZnO nanoparticles for making clinical antimicrobial wound-healing bandages. Sustain Chem Pharm 10:9–15

    Article  Google Scholar 

  • Khoshhesab MZ, Souhani S (2018) Adsorptive removal of reactive dyes from aqueous solutions using zinc oxide nanoparticles. J Chin Chem Soc 65(12):1482–1490. https://doi.org/10.1002/jccs.201700477

    Article  CAS  Google Scholar 

  • Kumar KY, Muralidhara HB, Nayaka YA, Balasubramanyam J, Hanumanthappa H (2013) Low-cost synthesis of metal oxide nanoparticles and their application in adsorption of commercial dye and heavy metal ion in aqueous solution. Powder Technol 246:125–136. 10.1016/j.powtec.2013.05.017

    Article  CAS  Google Scholar 

  • Kumar I, Mondal M, Sakthivel N (2019) Green synthesis of phytogenic nanoparticles. In: Green synthesis, characterization and applications of nanoparticles, p 37. https://doi.org/10.1016/B978-0-08-102579-6.00003-4

    Chapter  Google Scholar 

  • Kwok KC, Koong LF, Chen G, McKay G (2014) Mechanism of arsenic removal using chitosan and nanochitosan. J Colloid Interface Sci 416:1–10

    Article  CAS  Google Scholar 

  • Lateef A, Azeez MA, Asafa TB, Yekeen TA, Akinboro A, Oladipo IC, Azeez L, Ojo SA, Gueguim-Kana EB, Beukes LS (2016a) Cocoa pod husk extract mediated activities. J Nanostruct Chem 6(2):159–169

    Article  CAS  Google Scholar 

  • Lateef A, Azeez MA, Asafa TB, Yekeen TA, Akinboro A, Oladipo IC, Azeez L, Ajibade SE, Ojo SA, Gueguim-Kana EB, Beukes LS (2016b) Biogenic synthesis of silver nanoparticles using a pod extract of Cola nitida: antibacterial and antioxidant activities and application as a paint additive. J Taibah Uni Sci 10:551–562

    Article  Google Scholar 

  • Lawal AT, Azeez L, Sulaiman WK (2020) Silver nanoparticles (AgNPs) alleviate naphthalene triggered oxidative stress and physiological deficiencies in Moringa oleifera. Chem Ecol 37:15–31. https://doi.org/10.1080/02757540.2020.1819254

    Article  CAS  Google Scholar 

  • Liu X, Souzandeh H, Zheng Y, Zheng Y, Xie Y, Wang C (2017) Soy protein isolate/bacterial cellulose composite membranes for high efficiency particulate air filtration. Compos Sci Technol 138:124–133

    Article  CAS  Google Scholar 

  • Longwane GH, Sekoai PT, Meyyappan M, Moothi K (2019) Review simultaneous removal of pollutants from water using nanoparticles: a shift from single pollutant control to multiple pollutant control. Sci Total Environ 656:808–833

    Article  Google Scholar 

  • Lu F, Astruc D (2018) Nanomaterials for removal of toxic elements from water. Coord Chem Rev 356:147–164

    Article  CAS  Google Scholar 

  • Marimón-Bolívar W, González EE (2018) Green synthesis with enhanced magnetization and life cycle assessment of Fe3O4 nanoparticles. Environ Nanotechnol Monit Manage 9:58–66

    Google Scholar 

  • Marimuthu S, Antonisamy J, Malayandi S, Rajendran K, Pugazhendhi PTK, Ponnusamy VK (2020) Silver nanoparticles in dye effluent treatment: a review on synthesis, treatment methods, mechanisms, photocatalytic degradation, toxic effects and mitigation of toxicity. J Photochem Photobiol B 205:111823

    Article  CAS  Google Scholar 

  • Muensri P, Danwittayakul S (2017) Removal of arsenic from groundwater using nano-metal oxide adsorbents. Key Eng Mater:766–772. https://doi.org/10.4028/www.scientific.net/KEM.751.766

  • Nalwa K (2017) Synthesis of ZnO nanoparticles and its application in adsorption. Adv Mater Proc 2(11):697–703. https://doi.org/10.5185/amp/2017/696

    Article  Google Scholar 

  • Ng BJH, Zhou J, Giannis A, Chang VWC, Wang JY (2014) J Environ Manag 140:60

    Article  Google Scholar 

  • Nguyen NT, Nguyen NT, Nguyen VA (2020) In situ synthesis and characterization of ZnO/Chitosan nanocomposite as an adsorbent for removal of congo red from aqueous solution. Adv Polym Technol 2020. https://doi.org/10.1155/2020/3892694

  • Niu Y, Qu R, Sun C, Wang C, Chen H, Ji C, Zhang Y, Shao X, Bu F (2013) Adsorption of Pb(II) from aqueous solution by silica-gel supported hyperbranched polyamidoamine dendrimers. J Hazard Mater 244:276–286

    Article  Google Scholar 

  • Oladipo IC, Lateef A, Elegbede JA, Azeez MA, Asafa TB, Yekeen TA, Akinboro A, Gueguim Kana EB, Beukes LS, Oluyide TO, Atanda OR (2017) Enterococcus species for the one pot biofabrication of gold nanoparticles: characterization and nanobiotechnological applications. J Photochem Photobiol B 173:250–257

    Article  CAS  Google Scholar 

  • Olajire AA, Abidemi JJ, Lateef A, Benson NU (2017) Adsorptive desulphurization of model oil by Ag nanoparticles-modified activated carbon prepared from brewer’s spent grains. J Environ Chem Eng 5(1):147–159

    Article  CAS  Google Scholar 

  • Ollier RP, Villanueva ME, Copello GJ, Alvarez VA, Sanchez LM (2020) Engineered nanomaterials for emerging contaminant removal from wastewater. In: Kharissova OV et al (eds) Handbook of nanomaterials and nanocomposites for energy and environmental applications. Springer Nature, Switzerland, pp 1–22. https://doi.org/10.1007/978-3-030-11155-7_63-1

    Chapter  Google Scholar 

  • Oyewo OA, Adeniyi A, Sithole BB, Onyango MS (2020) Sawdust-based cellulose nanocrystals incorporated with ZnO nanoparticles as efficient adsorption media in the removal of methylene blue dye. ACS Omega 5(30):18798–18807. https://doi.org/10.1021/acsomega.0c01924

    Article  CAS  Google Scholar 

  • Pal G, Rai P, Pandey A (2019) Green synthesis of nanoparticles: A greener approach for a cleaner future. Chapter 1. In: Green synthesis, characterization and applications of nanoparticles, pp 1–26. https://doi.org/10.1016/B978-0-08-102579-6.00001-0

    Chapter  Google Scholar 

  • Pasinszki T, Krebsz M (2020) Synthesis and application of zero-valent iron nanoparticles in water treatment, environmental remediation, catalysis, and their biological effects. Nanomaterials 10:917

    Article  CAS  Google Scholar 

  • Pennells J, Godwin ID, Amiralian N, Martin DJ (2020) Trends in the production of cellulose nanofibers from non-wood sources. Cellulose:1–19

    Google Scholar 

  • Prabhakar R, Samadder SR (2018) Low cost and easy synthesis of aluminium oxide nanoparticles for arsenite removal from groundwater: a complete batch study. J Mol Liq 250:192–201. https://doi.org/10.1016/j.molliq.2017.11.173

    Article  CAS  Google Scholar 

  • Putro JN, Kurniawan A, Ismadji S, Ju YH (2017) Nanocellulose based biosorbents for wastewater treatment: study of isotherm, kinetic, thermodynamic and reusability. Environ Nanotechnol Monit Manag 8:134–149

    Google Scholar 

  • Rahman MM, Khan SB, Marwani HM, Asiri AM (2014) SnO2-TiO2 nanocomposites as new adsorbent for efficient removal of La(III) ions from aqueous solutions. J Taiwan Inst Chem Eng 45(4):1964–1974. https://doi.org/10.1016/j.jtice.2014.03.018

    Article  CAS  Google Scholar 

  • Recillas S, García A, González E, Casals E, Puntes V, Sánchez A, Font X (2011) Use of CeO2, TiO2 and Fe3O4 nanoparticles for the removal of lead from water: toxicity of nanoparticles and derived compounds. Desalination 277(1):213–220. https://doi.org/10.1016/j.desal.2011.04.036

    Article  CAS  Google Scholar 

  • Rodríguez C, Tapia C, Leiva-Aravena E, Leiva E (2020) Graphene oxide–ZnO nanocomposites for removal of aluminum and copper ions from acid mine drainage wastewater. Int J Environ Res Public Health 17(18):1–18. https://doi.org/10.3390/ijerph17186911

    Article  CAS  Google Scholar 

  • Ruiz-Palomero C, Soriano ML, Valcárcel M (2017) Nanocellulose as analyte and analytical tool: opportunities and challenges. TrAC Trends Anal Chem 87:1–18

    Article  CAS  Google Scholar 

  • Saadi Z, Saadi R, Fazaeli R (2013) Fixed-bed adsorption dynamics of Pb (II) adsorption from aqueous solution using nanostructured γ-alumina. J Nanostruct Chem 3(1):48. https://doi.org/10.1186/2193-8865-3-48

    Article  Google Scholar 

  • Sadjadi S, Sadjadi S (2018) Dendritic polymers for environmental remediation. In: New Polymer Nanocomposites for Environmental Remediation. Elsevier, pp 279–335. https://doi.org/10.1016/B978-0-12-811033-1.00013-5

    Chapter  Google Scholar 

  • Salem SS, Fouda A (2020) Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol Trace Elem Res. https://doi.org/10.1007/s12011-020-02138-3

  • Sapna, Kumar D (2018) Biodegradable polymer-based nanoadsorbents for environmental remediation. In: New polymer nanocomposites for environmental remediation. Elsevier, pp 261–278. https://doi.org/10.1016/B978-0-12-811033-1.00012-3

    Chapter  Google Scholar 

  • Sarma GK, Gupta SS, Bhattacharyya KG (2019) Nanomaterials as versatile adsorbents for heavy metal ions in water: a review. Environ Sci Pollut Res 26(7):6245–6278. https://doi.org/10.1007/s11356-018-04093-y

    Article  CAS  Google Scholar 

  • Sethy NK, Arif Z, Mishra PK, Kumar P (2020) Green synthesis of TiO2 nanoparticles from Syzygium cumini extract for photo-catalytic removal of lead (Pb) in explosive industrial wastewater. Green Process Synth 9(1):171–181. https://doi.org/10.1515/gps-2020-0018

    Article  Google Scholar 

  • Shaheed MA, Hussein FH (2014) Adsorption of reactive black 5 on synthesized titanium dioxide nanoparticles: equilibrium isotherm and kinetic studies. J Nanomater. https://doi.org/10.1155/2014/198561

  • Shi J, Li H, Lu H, Zhao X (2015) Use of carboxyl functional magnetite nanoparticles as potential sorbents for the removal of heavy metal ions from aqueous solution. J Chem Eng Data 60(7):2035–2041. https://doi.org/10.1021/je5011196

    Article  CAS  Google Scholar 

  • Singh PR, Kumar A, Chaudhary P (2019a) Nanotechnology for water treatment: A green approach. Chapter 20. In: Green synthesis, characterization and applications of nanoparticles, pp 485–512. https://doi.org/10.1016/B978-0-08-102579-6.00021-6

    Chapter  Google Scholar 

  • Singh S, Kumar V, Romero R, Sharma K, Singh J (2019b) Applications of nanoparticles in wastewater treatment. Chapter 17. In: Prasad R et al (eds) Nanobiotechnology in bioformulations, nanotechnology in the life sciences, pp 395–418. https://doi.org/10.1007/978-3-030-17061-5_17

    Chapter  Google Scholar 

  • Soni H, Kumar JN, Patel K, Kumar RN (2016) Photocatalytic decolouration of three commercial dyes in aqueous phase and industrial effluents using TiO2 nanoparticles. Desalin Water Treat 57(14):6355–6364

    Article  CAS  Google Scholar 

  • Tai XH, Lai CW, Juan JC, Lee KM (2020) Nanocatalyst-based catalytic oxidation processes. Chapter 7. In: Nanomaterials for air remediation, pp 133–150. https://doi.org/10.1016/B978-0-12-818821-7.00007-5

    Chapter  Google Scholar 

  • Thivaharan V, Raja S, Ramesh V (2016) Phyto-synthesis of silver nanoparticles from Mussaenda erythrophylla leaf extract and their application in catalytic degradation of methyl orange dye. J Mol Liq. https://doi.org/10.1016/j.molliq.2016.06.064

  • Trache D, Hussin MH, Haafiz MKM, Thakur VK (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9(5):1763–1786

    Article  CAS  Google Scholar 

  • Umar A, Kumar R, Akhtar MS, Kumar G, Kim SH (2015) Growth and properties of well-crystalline cerium oxide (CeO2) nanoflakes for environmental and sensor applications. J Colloid Interface Sci 454:61–68. https://doi.org/10.1016/j.jcis.2015.04.055

    Article  CAS  Google Scholar 

  • Veisi H, Azizi S, Mohammadi P (2018) Green synthesis of the silver nanoparticles mediated by Thymbra spicata extract and its application as a heterogeneous and recyclable nanocatalyst for catalytic reduction of a variety of dyes in water. J Clean Prod. https://doi.org/10.1016/j.jclepro.2017.09.265

  • Yang F, Zhang S, Sun Y, Cheng K, Li J, Tsang DCW (2018) Fabrication and characterization of hydrophilic corn stalk biochar-supported nanoscale zero-valent iron composites for efficient metal removal. Bioresour Technol 265:490–497

    Article  CAS  Google Scholar 

  • Yang J, Hou B, Wang J, Tian B, Bi J, Wang N, Li X, Huang X (2019) Nanomaterials for the removal of heavy metals from wastewater. Nanomaterials 9(3). https://doi.org/10.3390/nano9030424

  • Yusuf M (2020) Cellulose-based nanomaterials for water pollutant remediation: review. In: Kharissova OV et al (eds) Handbook of nanomaterials and nanocomposites for energy and environmental applications. Springer Nature, Switzerland, pp 1–16

    Google Scholar 

  • Zhu X, Pathakoti K, Hwang H-M (2019) Green synthesis of titanium dioxide and zinc oxide nanoparticles and their usage for antimicrobial applications and environmental remediation. Chapter 10. In: Green synthesis, characterization and applications of nanoparticles, pp 223–263. https://doi.org/10.1016/B978-0-08-102579-6.00010-1

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luqmon Azeez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Azeez, L., Adekale, I., Olabode, O.A. (2022). Implications of Green Nanomaterials for Environmental Remediation. In: Shanker, U., Hussain, C.M., Rani, M. (eds) Handbook of Green and Sustainable Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-69023-6_18-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69023-6_18-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69023-6

  • Online ISBN: 978-3-030-69023-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics