Abstract
The intermittent nature of the demanding renewable energy sources required cheap energy storage systems; however, the currently used advanced energy storage systems mainly rely on lithium- or sodium-based chemistries. Both metals are highly reactive and expensive, hence increasing the energy storage system’s overall cost. Therefore, an alternative system is highly in demand, which should have comparable energy storage capacity at a much lower cost and high safety. In this regard, zinc-based batteries got tremendous attention as its less reactive nature makes it safe, while low cost and high energy density make it affordable. Recently, considerable work has been done on various battery chemistries by utilizing zinc as a charge storing agent. This chapter summarizes recent progress in zinc battery technologies and its possible applications. This chapter first describes the working operation of zinc-based batteries, emphasizing zinc-ion, zinc-air, and aqueous zinc batteries. Then, it addresses the factors which control the performance of zinc-based batteries. Afterward, the various advantages of zinc batteries are discussed along with the associated challenges, and their possible solutions are also listed. In progress, this chapter highlights the recent progress in the development of electrode chemistries for zinc batteries. Further, different applications of various zinc-based batteries are presented to highlight their commercial impact. In the end, a summary is provided with future perspectives to guide for a future possible solution to the associated challenges.
Keywords
- Zinc-based batteries
- Electrodes
- Energy storage
This is a preview of subscription content, access via your institution.
References
Alcazar HBS, Nguyen PD, Pinoli AA (1987) Technology base research on zinc/air battery systems: final report. Retrieved from United States: https://doi.org/10.2172/5560013
Alfaruqi MH, Gim J, Kim S, Song J, Pham DT, Jo J, … Kim J (2015a) A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications. Electrochem Commun 60:121–125. https://doi.org/10.1016/j.elecom.2015.08.019
Alfaruqi MH, Mathew V, Gim J, Kim S, Song J, Baboo JP, … Kim J (2015b) Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chem Mater 27(10):3609–3620. https://doi.org/10.1021/cm504717p
Barton JL, Bockris JOAM (1962) The electrolytic growth of dendrites from ionic solutions. Proc R Soc Lond A 268:485–505. https://doi.org/10.1098/rspa.1962.0154
Biton M, Tariq F, Yufit V, Chen Z, Brandon N (2017) Integrating multi-length scale high resolution 3D imaging and modelling in the characterisation and identification of mechanical failure sites in electrochemical dendrites. Acta Mater 141(141):39–46. https://doi.org/10.1016/j.actamat.2017.09.008
Bussewitz C (2018) Zinc-air batteries provide power in remote areas. PHYS Org. Retrieved from https://phys.org/news/2018-09-zinc-air-batteries-power-remote-areas.html#:~:text=Remote%20villages%20in%20Africa%20and,store%20it%20for%20later%20use
Caramia V, Bozzini B (2014) Materials science aspects of zinc–air batteries: a review. Mater Renew Sustain Energy 3(2). https://doi.org/10.1007/s40243-014-0028-3
Chao D, Zhu CR, Song M, Liang P, Zhang X, Tiep NH, … Fan HJ (2018) A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array. Adv Mater 30(32):e1803181. https://doi.org/10.1002/adma.201803181
Chao D, Zhou W, Ye C, Zhang Q, Chen Y, Gu L, … Qiao S-Z (2019) An electrolytic Zn–MnO2 battery for high-voltage and scalable energy storage. Angew Chem Int Ed 58(23):7823–7828. https://doi.org/10.1002/anie.201904174
Chen P, Wu Y, Zhang Y, Wu T-H, Ma Y, Pelkowski C, … Liu N (2018) A deeply rechargeable zinc anode with pomegranate-inspired nanostructure for high-energy aqueous batteries. J Mater Chem A 6(44):21933–21940. https://doi.org/10.1039/C8TA07809B
Chen CY, Matsumoto K, Kubota K, Hagiwara R, Xu Q (2019) A room-temperature molten hydrate electrolyte for rechargeable zinc–air batteries. Adv Energy Mater 9(22). https://doi.org/10.1002/aenm.201900196
Deiss E, Holzer F, Haas O (2002) Modeling of an electrically rechargeable alkaline Zn–air battery. Electrochim Acta 47(25):3995–4010. https://doi.org/10.1016/s0013-4686(02)00316-x
Fang G, Zhou J, Pan A, Liang S (2018) Recent advances in aqueous zinc-ion batteries. ACS Energy Lett 3(10):2480–2501. https://doi.org/10.1021/acsenergylett.8b01426
Fu J, Cano ZP, Park MG, Yu A, Fowler M, Chen Z (2017) Electrically rechargeable zinc-air batteries: progress, challenges, and perspectives. Adv Mater 29(7). https://doi.org/10.1002/adma.201604685
Goldstein J, Brown I, Koretz B (1999) New developments in the Electric Fuel Ltd. zinc/air system. J Power Sources 80(1–2):171–179. https://doi.org/10.1016/s0378-7753(98)00260-2
Hilder M, Winther-Jensen B, Clark NB (2012) The effect of binder and electrolyte on the performance of thin zinc-air battery. Electrochim Acta 69:308–314. https://doi.org/10.1016/j.electacta.2012.03.004
Hu P, Yan M, Zhu T, Wang X, Wei X, Li J, … Mai L (2017) Zn/V2O5 aqueous hybrid-ion battery with high voltage platform and long cycle life. ACS Appl Mater Interfaces 9(49):42717–42722. https://doi.org/10.1021/acsami.7b13110
Huang J, Wang Z, Hou M, Dong X, Liu Y, Wang Y, Xia Y (2018) Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat Commun 9(1):2906. https://doi.org/10.1038/s41467-018-04949-4
Islam S, Alfaruqi MH, Mathew V, Song J, Kim S, Kim S, … Kim J (2017) Facile synthesis and the exploration of the zinc storage mechanism of β-MnO2 nanorods with exposed (101) planes as a novel cathode material for high performance eco-friendly zinc-ion batteries. J Mater Chem A 5(44):23299–23309. https://doi.org/10.1039/C7TA07170A
Kang Z, Wu C, Dong L, Liu W, Mou J, Zhang J, … Xu C (2019) 3D porous copper skeleton supported zinc anode toward high capacity and Long cycle life zinc ion batteries. ACS Sustain Chem Eng 7(3):3364–3371. https://doi.org/10.1021/acssuschemeng.8b05568
Kasiri G, Trócoli R, Bani Hashemi A, La Mantia F (2016) An electrochemical investigation of the aging of copper hexacyanoferrate during the operation in zinc-ion batteries. Electrochim Acta 222:74–83. https://doi.org/10.1016/j.electacta.2016.10.155
Knight JC, Therese S, Manthiram A (2015) Chemical extraction of Zn from ZnMn2O4-based spinels. J Mater Chem A 3(42):21077–21082. https://doi.org/10.1039/C5TA06482A
Kong L, Li C, Jiang J, Pecht M (2018) Li-ion battery fire hazards and safety strategies. Energies 11(9). https://doi.org/10.3390/en11092191
Kordesh K, Weissenbacher M (1994) Rechargeable alkaline manganese dioxide/zinc batteries. J Power Sources 51(1–2):61–78. https://doi.org/10.1016/0378-7753(94)01955-x
Kumar GG, Sampath S (2003) Electrochemical characterization of poly(vinylidenefluoride)-zinc triflate gel polymer electrolyte and its application in solid-state zinc batteries. Solid State Ionics 160(3):289–300. https://doi.org/10.1016/S0167-2738(03)00209-1
Kundu D, Adams BD, Duffort V, Vajargah SH, Nazar LF (2016) A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat Energy 1(10):16119. https://doi.org/10.1038/nenergy.2016.119
Kundu D, Hosseini Vajargah S, Wan L, Adams B, Prendergast D, Nazar LF (2018) Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy Environ Sci 11(4):881–892. https://doi.org/10.1039/c8ee00378e
Lee B, Yoon CS, Lee HR, Chung KY, Cho BW, Oh SH (2014) Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide. Sci Rep 4(1):6066. https://doi.org/10.1038/srep06066
Li Y, Dai H (2014) Recent advances in zinc-air batteries. Chem Soc Rev 43(15):5257–5275. https://doi.org/10.1039/c4cs00015c
Li H, Han C, Huang Y, Huang Y, Zhu M, Pei Z, … Zhi C (2018a). An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ Sci 11(4):941–951. https://doi.org/10.1039/c7ee03232c
Li H, Liu Z, Liang G, Huang Y, Huang Y, Zhu M, … Zhi C (2018b) Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte. ACS Nano 12(4):3140–3148. https://doi.org/10.1021/acsnano.7b09003
Li H, Ma L, Han C, Wang Z, Liu Z, Tang Z, Zhi C (2019) Advanced rechargeable zinc-based batteries: recent progress and future perspectives. Nano Energy 62:550–587. https://doi.org/10.1016/j.nanoen.2019.05.059
Li C, Zhang X, He W, Xu G, Sun R (2020) Cathode materials for rechargeable zinc-ion batteries: from synthesis to mechanism and applications. J Power Sources 449:227596. https://doi.org/10.1016/j.jpowsour.2019.227596
Liu W, Bao J, Xu L, Guan M, Wang Z, Qiu J, … Li H (2019) NiCo2O4 ultrathin nanosheets with oxygen vacancies as bifunctional electrocatalysts for Zn-air battery. Appl Surf Sci 478:552–559. https://doi.org/10.1016/j.apsusc.2019.01.243
Ma L, Chen S, Long C, Li X, Zhao Y, Liu Z, … Zhi C (2019) Achieving high-voltage and high-capacity aqueous rechargeable zinc ion battery by incorporating two-species redox reaction. Adv Energy Mater 9(45):1902446. https://doi.org/10.1002/aenm.201902446
Mahmood N, Hou Y (2014) Electrode nanostructures in lithium-based batteries. Adv Sci 1(1):1400012. https://doi.org/10.1002/advs.201400012
Mainar AR, Leonet O, Bengoechea M, Boyano I, de Meatza I, Kvasha A, … Alberto Blázquez J (2016) Alkaline aqueous electrolytes for secondary zinc-air batteries: an overview. Int J Energy Res 40(8):1032–1049. https://doi.org/10.1002/er.3499
Minakshi M, Appadoo D, Martin DE (2010) The anodic behavior of planar and porous zinc electrodes in alkaline electrolyte. ECS Solid State Lett 13(7). https://doi.org/10.1149/1.3387672
Ming F, Liang H, Lei Y, Kandambeth S, Eddaoudi M, Alshareef HN (2018) Layered MgxV2O5·nH2O as cathode material for high-performance aqueous zinc ion batteries. ACS Energy Lett. 3(10):2602–2609. https://doi.org/10.1021/acsenergylett.8b01423
Ming J, Guo J, Xia C, Wang W, Alshareef HN (2019) Zinc-ion batteries: materials, mechanisms, and applications. Mater Sci Eng R Rep 135:58–84. https://doi.org/10.1016/j.mser.2018.10.002
Nair N-KC, Garimella N (2010) Battery energy storage systems: assessment for small-scale renewable energy integration. Energ Buildings 42(11):2124–2130. https://doi.org/10.1016/j.enbuild.2010.07.002
Naybour RD (1969) The effect of electrolyte flow on the morphology of zinc electrodeposited from aqueous alkaline solution containing zincate ions. J Electrochem Soc 116. https://iopscience.iop.org/article/10.1149/1.2411939/pdf
Padigi P, Thiebes J, Swan M, Goncher G, Evans D, Solanki R (2015) Prussian green: a high rate capacity cathode for potassium ion batteries. Electrochim Acta 166:32–39. https://doi.org/10.1016/j.electacta.2015.03.084
Pan H, Shao Y, Yan P, Cheng Y, Han KS, Nie Z, … Liu J (2016) Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat Energy 1(5):16039. https://doi.org/10.1038/nenergy.2016.39
Pan J, Xu YY, Yang H, Dong Z, Liu H, Xia BY (2018) Advanced architectures and relatives of air electrodes in Zn-air batteries. Adv Sci 5(4):1700691. https://doi.org/10.1002/advs.201700691
Pang Q, Sun C, Yu Y, Zhao K, Zhang Z, Voyles PM, … Wang X (2018) H2V3O8 nanowire/graphene electrodes for aqueous rechargeable zinc ion batteries with high rate capability and large capacity. Adv Energy Mater 8(19):1800144. https://doi.org/10.1002/aenm.201800144
Parker JF, Chervin CN, Pala IR, Machler M, Burz MF, Long JW, Rolison DR (2017) Rechargeable nickel-3D zinc batteries: an energy-dense, safer alternative to lithium-ion. Science 356(6336):415–418. https://doi.org/10.1126/science.aak9991
Pei P, Wang K, Ma Z (2014) Technologies for extending zinc–air battery’s cyclelife: a review. Appl Energy 128:315–324. https://doi.org/10.1016/j.apenergy.2014.04.095
Poullikkas A (2013) A comparative overview of large-scale battery systems for electricity storage. Renew Sust Energ Rev 27:778–788. https://doi.org/10.1016/j.rser.2013.07.017
Qiu H, Du X, Zhao J, Wang Y, Ju J, Chen Z, … Cui G (2019) Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. Nat Commun 10(1):5374. https://doi.org/10.1038/s41467-019-13436-3
Sang-Don H, Premkumar S, Sanja T, Nav Nidhi R, Xiaohui Q, Soojeong K, … John TV (2017) Case studies on nonaqueous Zn2+ ion chemistry with a reversible intercalation cathodes for the development of multivalent metal batteries. Meet Abstr MA2017-02:507. https://doi.org/10.1149/ma2017-02/5/507
Selvakumaran D, Pan A, Liang S, Cao G (2019) A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries. J Mater Chem A 7(31):18209–18236. https://doi.org/10.1039/c9ta05053a
Shaigan N, Qu W, Takeda T (2010) Morphology control of electrodeposited zinc from alkaline zincate solutions for rechargeable zinc air batteries. ECS Trans 28:35–44. https://iopscience.iop.org/article/10.1149/1.3507925/meta
Solangi KH, Islam MR, Saidur R, Rahim NA, Fayaz H (2011) A review on global solar energy policy. Renew Sust Energ Rev 15(4):2149–2163. https://doi.org/10.1016/j.rser.2011.01.007
Sun J, Zhang Y, Liu Y, Jiang H, Dong X, Hu T, Meng C (2021) Synthesis and electrochemical properties of V2O5nH2O compound with reduced graphene oxide/polyvinyl alcohol film as the free-standing cathode for coin-typed aqueous Zn-ion batteries. Colloids Surf A Physicochem Eng Asp 613:126087. https://doi.org/10.1016/j.colsurfa.2020.126087
Tang B, Shan L, Liang S, Zhou J (2019) Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ Sci. https://doi.org/10.1039/c9ee02526j
Trócoli R, La Mantia F (2015) An aqueous zinc-ion battery based on copper hexacyanoferrate. ChemSusChem 8(3):481–485. https://doi.org/10.1002/cssc.201403143
Verma V, Kumar S, Manalastas W, Satish R, Srinivasan M (2019) Progress in rechargeable aqueous zinc- and aluminum-ion battery electrodes: challenges and outlook. Adv Sustain Syst 3(1). https://doi.org/10.1002/adsu.201800111
Vu A, Qian Y, Stein A (2012) Porous electrode materials for lithium-ion batteries – how to prepare them and what makes them special. Adv Energy Mater 2(9):1056–1085. https://doi.org/10.1002/aenm.201200320
Wan F, Niu Z (2019) Design strategies for vanadium-based aqueous zinc-ion batteries. Angew Chem Int Ed 58(46):16358–16367. https://doi.org/10.1002/anie.201903941
Wang L, Zheng J (2020) Recent advances in cathode materials of rechargeable aqueous zinc-ion batteries. Mater Today Adv 7:100078. https://doi.org/10.1016/j.mtadv.2020.100078
Wang F, Borodin O, Gao T, Fan X, Sun W, Han F, … Wang C (2018) Highly reversible zinc metal anode for aqueous batteries. Nat Mater 17(6):543–549. https://doi.org/10.1038/s41563-018-0063-z
Wu TH, Zhang Y, Althouse ZD, Liu N (2019) Nanoscale design of zinc anodes for high-energy aqueous rechargeable batteries. Mater Today Nano 6:100032. https://doi.org/10.1016/j.mtnano.2019.100032
Xu W, Wang Y (2019) Recent progress on zinc-ion rechargeable batteries. Nano-Micro Lett 11(1):90. https://doi.org/10.1007/s40820-019-0322-9
Xu C, Du H, Li B, Kang F, Zeng Y (2009) Reversible insertion properties of zinc ion into manganese dioxide and its application for energy storage. Electrochem Solid-State Lett 12(4):A61. https://doi.org/10.1149/1.3065967
Xu C, Li B, Du H, Kang F (2012) Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew Chem Int Ed Engl 51(4):933–935. https://doi.org/10.1002/anie.201106307
Xu M, Ivey DG, Xie Z, Qu W (2015) Rechargeable Zn-air batteries: progress in electrolyte development and cell configuration advancement. J Power Sources 283:358–371. https://doi.org/10.1016/j.jpowsour.2015.02.114
Yan C, Wang X, Cui M, Wang J, Kang W, Foo CY, Lee PS (2014) Stretchable silver-zinc batteries based on embedded nanowire elastic conductors. Adv Energy Mater 4(5). https://doi.org/10.1002/aenm.201301396
Yan M, He P, Chen Y, Wang S, Wei Q, Zhao K, … Yang J (2018) Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv Mater 30(1):1703725. https://doi.org/10.1002/adma.201703725
Yang Q, Liang G, Guo Y, Liu Z, Yan B, Wang D, … Zhi C (2019) Do zinc dendrites exist in neutral zinc batteries: a developed electrohealing strategy to in situ rescue in-service batteries. Adv Mater 31(43):e1903778. https://doi.org/10.1002/adma.201903778
Yap CK, Tan WC, Alias SS, Mohamad AA (2009) Synthesis of zinc oxide by zinc–air system. J Alloys Compd 484(1–2):934–938. https://doi.org/10.1016/j.jallcom.2009.05.073
Yuan C, Zhang Y, Pan Y, Liu X, Wang G, Cao D (2014) Investigation of the intercalation of polyvalent cations (Mg2+, Zn2+) into λ-MnO2 for rechargeable aqueous battery. Electrochim Acta 116:404–412. https://doi.org/10.1016/j.electacta.2013.11.090
Yufit V, Tariq F, Eastwood DS, Biton M, Wu B, Lee PD, Brandon NP (2019) Operando visualization and multi-scale tomography studies of dendrite formation and dissolution in zinc batteries. Joule 3(2):485–502. https://doi.org/10.1016/j.joule.2018.11.002
Zamfir MR, Nguyen HT, Moyen E, Lee YH, Pribat D (2013) Silicon nanowires for Li-based battery anodes: a review. J Mater Chem A 1(34). https://doi.org/10.1039/c3ta11714f
Zeng X, Hao J, Wang Z, Mao J, Guo Z (2019) Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes. Energy Stor Mater 20:410–437. https://doi.org/10.1016/j.ensm.2019.04.022
Zhang XG (2006) Fibrous zinc anodes for high power batteries. J Power Sources 163(1):591–597. https://doi.org/10.1016/j.jpowsour.2006.09.034
Zhang L, Chen L, Zhou X, Liu Z (2015) Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc Hexacyanoferrate system. Adv Energy Mater 5(2):1400930. https://doi.org/10.1002/aenm.201400930
Zhang N, Cheng F, Liu Y, Zhao Q, Lei K, Chen C, … Chen J (2016) Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J Am Chem Soc 138(39):12894–12901. https://doi.org/10.1021/jacs.6b05958
Zhang N, Cheng F, Liu J, Wang L, Long X, Liu X, … Chen J (2017) Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat Commun 8(1):405. https://doi.org/10.1038/s41467-017-00467-x
Zhang J, Zhou Q, Tang Y, Zhang L, Li Y (2019) Zinc–air batteries: are they ready for prime time? Chem Sci 10(39):8924–8929. https://doi.org/10.1039/c9sc04221k
Zhang N, Chen X, Yu M, Niu Z, Cheng F, Chen J (2020) Materials chemistry for rechargeable zinc-ion batteries. Chem Soc Rev 49(13):4203–4219. https://doi.org/10.1039/C9CS00349E
Zhang M, Liang R, Or T, Deng Y-P, Yu A, Chen Z (2021) Recent progress on high-performance cathode materials for zinc-ion batteries. Small Struct 2(2):2000064. https://doi.org/10.1002/sstr.202000064
Zhao Z, Zhao J, Hu Z, Li J, Li J, Zhang Y, … Cui G (2019) Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ Sci 12(6):1938–1949. https://doi.org/10.1039/C9EE00596J
Zhou J, Shan L, Wu Z, Guo X, Fang G, Liang S (2018) Investigation of V2O5 as a low-cost rechargeable aqueous zinc ion battery cathode. Chem Commun 54(35):4457–4460. https://doi.org/10.1039/C8CC02250J
Zhou Z, Zhang Y, Chen P, Wu Y, Yang H, Ding H, … Liu N (2019) Graphene oxide-modified zinc anode for rechargeable aqueous batteries. Chem Eng Sci 194:142–147. https://doi.org/10.1016/j.ces.2018.06.048
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this entry
Cite this entry
Gbadamasi, S., Loomba, S., Khan, M.W., Shabbir, B., Mahmood, N. (2022). Zinc Batteries: Basics, Materials Functions, and Applications. In: Shanker, U., Hussain, C.M., Rani, M. (eds) Handbook of Green and Sustainable Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-69023-6_106-1
Download citation
DOI: https://doi.org/10.1007/978-3-030-69023-6_106-1
Received:
Accepted:
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-69023-6
Online ISBN: 978-3-030-69023-6
eBook Packages: Springer Reference Chemistry & Mat. ScienceReference Module Physical and Materials Science