Skip to main content

Biogenic Metallic Nanoparticles: Synthesis and Applications Using Medicinal Plants

  • Living reference work entry
  • First Online:
Handbook of Green and Sustainable Nanotechnology

Abstract

In the last decade, the synthesis of nanoparticles is one of the most concerned fields in research due to their high applicability in various segments of science and technology, ranging from material science to biotechnology. The environmentalists have grown interests in the preparation of nanoparticles from the point of view of biological and environmental safety. As the physicochemical production of nanoparticles requires an extreme environments and toxic chemicals in a large quantity, green methods of nanoparticle synthesis employing biological sources are in vogue. Green fabrications of metallic nanoparticles are growing rapidly due to their eco-friendly nature and low cost. In the past decade, the field of nanobiotechnology has been employed rigorously for biosynthesis of metallic nanoparticles. Due to their spectacular biophysical properties and enrichment in biocompatibility, the metallic nanoparticles have significant impact on the food processing, biomedical, environmental, agricultural, and industrial areas. Due to availability of various biologically active compounds such as phenolic acids, saponins, tannins, terpenoids, flavonoids, and alkaloids, plants have promising medicinal significance. Medicinal plant extracts were widely utilized for green synthesis of metallic nanoparticles as stabilizing agents. In order to synthesize biomolecule-encapsulated metallic nanoparticles, metallic ions are reduced by phytochemicals present in plant extracts. The growth of multiple drug-resistant bacteria may be inhibited by biogenic metallic nanoparticles. The present chapter provides information on highly stable, biocompatible, environment friendly, and cost-effective approach for metallic nanoparticles synthesis using diverse medicinal plants and their applications as a powerful nanomedicine against multidrug-resistant pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdulwahid KE, Dwaish AS, Dakhil OA (2019) Green synthesis and characterization of zinc oxide nanoparticles from cladophora glomerata and its antifungal activity against some fungal isolates. Plant Arch 19:3527–3532

    Google Scholar 

  • Afzal B, Yasin D, Naaz H, Sami N, Zaki A, Rizvi MA, Kumar R, Srivastava P, Fatma T (2021) Biomedical potential of Anabaena variabilis NCCU-441 based selenium nanoparticles and their comparison with commercial nanoparticles. Sci Rep 11:13507. https://doi.org/10.1038/s41598-021-91738-7

    Article  CAS  Google Scholar 

  • Agarwal H, Menon S, Kumar SV, Rajeshkumar S (2018) Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chem Biol Interact 286:60–70

    CAS  Google Scholar 

  • Ahmed S, Ahmad M, Swami BL, Ikram S (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7:17–28

    CAS  Google Scholar 

  • Ahmed T, Ren H, Noman M et al (2021) Green synthesis and characterization of zirconium oxide nanoparticles by using a native Enterobacter sp. and its antifungal activity against bayberry twig blight disease pathogen Pestalotiopsis versicolor. Nano Impact 21:100281. https://doi.org/10.1016/j.impact.2020.100281

    Article  CAS  Google Scholar 

  • Al-Dhabi NA, Mohammed GAK, Arasu MV (2018) Characterization of silver nanomaterials derived from marine streptomyces sp. Al-dhabi-87 and its in vitro application against multidrug resistant and extended-spectrum beta-lactamase clinical pathogens. Nanomaterials 8:2–13

    Google Scholar 

  • Anbumani A, Dhandapani KV, Manoharan J, Babujanarthanam R, Bashir AKH, Muthusamy K, Alfarhan A, Kanimozhi K (2022) Green synthesis and antimicrobial efficacy of titanium dioxide nanoparticles using Luffa acutangula leaf extract. J King Saud Univ Sci 34:1–11

    Google Scholar 

  • Anju VT, Paramanantham P, Lal SBS, Sharan A, Syed A, Bahkali NA, Alsaedi MH, Kaviyarasu K, Busi S (2019) Antimicrobial photodynamic activity of toluidine blue-carbon nanotube conjugate against Pseudomonas aeruginosa and Staphylococcus aureus-understanding the mechanism of action. Photodiagn Photodyn Ther 27:305–316

    Google Scholar 

  • Arya A, Gupta K, Chundawat TS, Vaya D (2018) Biogenic synthesis of copper and silver nanoparticles using green alga Botryococcus braunii and its antimicrobial activity. Bioinorg Chem Appl 2018:7879403. https://doi.org/10.1155/2018/7879403

    Article  CAS  Google Scholar 

  • Asghari-Paskiabi F, Imani M, Rafii-Tabar H, Razzaghi-Abyaneh M (2019) Physicochemical properties, antifungal activity and cytotoxicity of selenium sulfide nanoparticles green synthesized by Saccharomyces cerevisiae. Biochem Biophys Res Commun 516:1078–1084. https://doi.org/10.1016/j.bbrc.2019.07.007

    Article  CAS  Google Scholar 

  • Bahrulolum H, Nooraei S, Javanshir N, Tarrahimofrad H, Mirbagheri VS, Easton AJ, Ahmadian G (2021) Green synthesis of metal nanoparticlesusing microorganisms and their applicationin the agrifood sector. J Nanobiotechnol 19(86):1–26

    Google Scholar 

  • Bartolucci C, Antonacci A, Arduini F, Moscone D, Fraceto L, Campos E, Attaallah R, Amine A, Zanardi C, Cubillana-Aguilera LM, Santander JMP, Scognamiglio V (2020) Green nanomaterials fostering agrifood sustainability. Trends Anal Chem 125:115840

    CAS  Google Scholar 

  • Barui AK, Das S, Patra CR (2019) Biomedical applications of green-synthesized metal nanoparticles using polysaccharides. In: Functional polysaccharides for biomedical applications. Chapter 10. Sabyasachi Maiti and Sougata Jana, Woodhead Publishing (Elsevier). https://doi.org/10.1016/B978-0-08-102555-0.00010-8

  • Bhattacharya P, Chatterjee K, Swarnakar S, Banerjee S (2020) Green synthesis of zinc oxide nanoparticles via algal route and its action on cancerous cells and pathogenic microbes. Adv Nano Res 3:15–27

    Google Scholar 

  • Borah D, Das N, Das N, Bhattacharjee A, Samah P, Ghosh K, Chandel M, Rout J, Pandey P, Ghos NN, Bhattacharjee CR (2020) Alga-mediated facile green synthesis of silver nanoparticles: photophysical, catalytic and antibacterial activity. Appl Organomet Chem 34(5):1–10. https://doi.org/10.1002/aoc.5597

    Article  CAS  Google Scholar 

  • Chakraborty B, Kumar RS, Almansour AI, Kotresha D, Rudrappa M, Pallavi SS, Hiremath H, Perumal K, Nayaka S (2021) Evaluation of antioxidant, antimicrobial and antiproliferative activity of silver nanoparticles derived from Galphimia glauca leaf extract. J King Saud Univ Sci 33:1–9

    Google Scholar 

  • Chauhan A, Zubair S, Tufail S, Sherwani A, Sajid M, Raman SC, Azam A, Owais M (2011) Fungus-mediated biological synthesis of gold nanoparticles: potential in detection of liver cancer. Int J Nanomedicine 6:2305–2319

    CAS  Google Scholar 

  • Chi Z-L, Zhao X-Y, Chen Y-L, Hao J-L, Yu G-H, Goodman BA, Gadd GM (2021) Intrinsic enzyme-like activity of magnetite particles is enhanced by cultivation with Trichodermaguizhouense. Environ Microbiol 23:893–907

    CAS  Google Scholar 

  • Chunchegowda UA, Shivaram AB, Mahadevamurthy M, Ramachndrappa LT, Lalitha SG, Krishnappa HKN, Anandan S, Sudarshana BS, Chanappa EG, Ramachandrappa NS (2021) Biosynthesis of zinc oxide nanoparticles using leaf extract of passiflora subpeltata: characterization and antibacterial activity against Escherichia coli isolated from poultry faeces. J Clust Sci 32:1663–1672

    CAS  Google Scholar 

  • Consolo VF, Torres-Nicolini A, Alvarez VA (2020) Mycosinthetized Ag, CuO and ZnO nanoparticles from a promising Trichoderma harzianum strain and their antifungal potential against important phytopathogens. Sci Rep 10:20499. https://doi.org/10.1038/s41598-020-77294-6

    Article  CAS  Google Scholar 

  • Dutta D, Das BM (2021) Scope of green nanotechnology towards amalgamation of green chemistry for cleaner environment: a review on synthesis and applications of green nanoparticles. Environ Nanotech Monitor Manag 15:1–19

    Google Scholar 

  • El-Sayyad GS, Mosallam FM, El-Batal AI (2018) One-pot green synthesis of magnesium oxide nanoparticles using Penicillium chrysogenum melanin pigment and gamma rays with antimicrobial activity against multidrug-resistant microbes. Adv Powder Technol 29:2616–2625. https://doi.org/10.1016/j.apt.2018.07.009

    Article  CAS  Google Scholar 

  • Groiss S, Selvaraj R, Varadavenkatesan T, Vinayagam R (2017) Structural characterization, antibacterial and catalytic effect of iron oxide nanoparticles synthesised using the leaf extract of Cynometra ramiflora. J Mol Struct 1128:572–578

    CAS  Google Scholar 

  • Gudkov SV, Shafeev GA, Glinushkin AP, Shkirin AV, Barmina EV, Rakov II, Simakin AV, Kislov AV, Astashev ME, Vodeneev VA, Kalinichenko VP (2020) Production and use of selenium nanoparticles as fertilizers. ACS Omega 5(28):17767–17774

    CAS  Google Scholar 

  • Guilger-Casagrande M, Lima RD (2019) Synthesis of silver nanoparticles mediated by fungi. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2019.00287

  • Guo H, White JC, Wang Z, Xing B (2018) Nano-enabled fertilizers to control the release and use efficiency of nutrients. Curr Opin Environ Sci Health 6:77–83

    Google Scholar 

  • Gupta H (2016) Photocatalytic degradation of phenanthrene in the presence of akaganeite nano-rods and the identification of degradation products. RSC Adv 6(114):112721–112727

    CAS  Google Scholar 

  • Gupta B, Gupta H (2015) Iron oxide mediated degradation of mutagen pyrene and determination of degradation products. Int J Environ Sci Dev 6(12):908–912

    CAS  Google Scholar 

  • Hano C, Abbasi BH (2022) Plant-based green synthesis of nanoparticles: production, characterization and applications. Biomol Ther 12(31):1–9. https://doi.org/10.3390/biom12010031

    Article  CAS  Google Scholar 

  • Hassan SE, Fouda A, Saied E, Farag MMS, Eid AM, Barghoth MG, Awad MA, Hamza MF, Awad MF (2021) Rhizopus oryzae-mediated green synthesis of magnesium oxide nanoparticles (MgO-NPs): a promising tool for antimicrobial, mosquitocidal action, and tanning effluent treatment. J Fungi 7(372):1–25

    Google Scholar 

  • Hosseinzadeh N, Shomali T, Hosseinzadeh S, Fard FR, Pourmontaseri M, Fazebi M (2020) Green synthesis of gold nanoparticles by using Ferula persica Willd. Gum essential oil: production, characterization and in vitro anti-cancer effects. J Pharm Pharmacol 72(8):1013–1025. https://doi.org/10.1111/jphp.13274

    Article  CAS  Google Scholar 

  • Huang Y, Fan C, Dong H, Wang S, Yang X, Yang S (2017) Current applications and future prospects of nanomaterials in tumor therapy. Int J Nanomed 12:1815–1825

    CAS  Google Scholar 

  • Huq MA (2020) Green synthesis of silver nanoparticles using Pseudoduganella eburnea MAHUQ-39 and their antimicrobial mechanisms investigation against drug resistant human pathogens. Int J Mol Sci:21

    Google Scholar 

  • Jaggessar A, Yarlagadda PKDV (2020) Modelling the growth of hydrothermally synthesised bactericidal nanostructures, as a function of processing conditions. Mater Sci Eng C 108:110434. https://doi.org/10.1016/j.msec.2019.110434

    Article  CAS  Google Scholar 

  • Jan H, Shah M, Usman H, Khan MA, Zia M, Hano C, Abbasi BH (2020) Biogenic synthesis and characterization of antimicrobial and antiparasitic zinc oxide (ZnO) nanoparticles using aqueous extracts of the Himalayan columbine (Aquilegia pubiflora). Front Mater 7:1–14

    Google Scholar 

  • Karima N, Jasur S, Shaxnoza S (2016) Storage biologically active substances by convection drying food and medicinal plants. J Food Process Technol 7(7):1–3. https://doi.org/10.4172/2157-7110.1000599

    Article  CAS  Google Scholar 

  • Kaur P, Thakur R, Duhan JS, Chaudhury A (2018) Management of wilt disease of chickpea in vivo by silver nanoparticles biosynthesized by rhizospheric microflora of chickpea (cicer arietinum). J Chem Technol Biotechnol 93:3233–3243

    CAS  Google Scholar 

  • Kaur A, Shukla A, Shukla RK (2021) In vitro antidiabetic and inti-inflammatory activities of Ehretia acuminata R. Br. Bark. Ind J Nat Prod Res 12(4):538–543

    CAS  Google Scholar 

  • Khan AU, Khan JUH, Yuan Q, Ahmad A, Wei Y, Ali F, Khan SU, Tahir SAK, Nazir S (2016) Ultra-efficient photocatalytic deprivation of methylene blue and biological activities of biogenic silver nanoparticles. RSC Adv 6:23775–23782

    CAS  Google Scholar 

  • Khan ZUH, Khan A, Chen YM, Shaha NS, Muhammadd N, Khan AU, Tahirf K, Khan FU, Murtazaa B, Hassane SU, Qaisrania SA, Wan P (2017) Biomedical applications of green synthesized nobel metal nanoparticles. J Photochem Photobio 173:150–164

    Google Scholar 

  • Khan MJ, Kumari S, Shameli K, Selamat J, Sazili AQ (2019) Green synthesis and characterization of pullulan mediated silver nanoparticles through ultraviolet irradiation. Materials 12:1–12

    Google Scholar 

  • Khan AK, Renouard S, Drouet S, Blondeau J, Anjum I, Hano C, Abbasi BH, Anjum S (2021) Effect of UV irradiation (A and C) on Casuarina equisetifolia-mediated biosynthesis and characterization of antimicrobial and anticancer activity of biocompatible zinc oxide nanoparticles. Pharmaceutics 13:1–22

    CAS  Google Scholar 

  • Koul B, Taak P (2018) Biotechnological strategies for effective remediation of polluted soils. Springer, Singapore, pp 77–84

    Google Scholar 

  • Koul B, Poonia AK, Yadav D, Jin J (2021) Microbe-mediated biosynthesis of nanoparticles: applications and future prospects. Biomol Ther 11:1–33

    Google Scholar 

  • Loganathan S, Selvam K, Padmavathi G, Shivakumar MS, Senthil-Nathan S, Sumathi AG, Ali MA, Almutairi SM (2022) Biological synthesis and characterization of Passiflora subpeltata Ortega aqueous leaf extract in silver nanoparticles and their evaluation of antibacterial, antioxidant, anti-cancer and larvicidal activities. J King Saud Univ Sci 34:1–9

    Google Scholar 

  • Mahanty S, Bakshi M, Ghosh S, Chatterjee S, Bhattacharyya S, Das P, Das S, Chaudhuri P (2019) Green synthesis of iron oxide nanoparticles mediated by filamentous fungi isolated from sundarban mangrove ecosystem, India. Bionanosci 9:637–651. https://doi.org/10.1007/s12668-019-00644-w

    Article  Google Scholar 

  • Mani M, Harikrishnan R, Purushothaman P, Pavithra S, Rajkumar P, Kumaresan S, Al Farraj DA, Elshikh MS, Balasubramanian B, Kaviyarasu K (2021) Systematic green synthesis of silver oxide nanoparticles for antimicrobial activity. Environ Res 202:111627. https://doi.org/10.1016/j.envres.2021.111627

    Article  CAS  Google Scholar 

  • Naimi-Shamel N, Pourali P, Dolatabadi S (2019) Green synthesis of gold nanoparticles using Fusarium oxysporum and antibacterial activity of its tetracycline conjugant. J Mycol Med 29:7–13. https://doi.org/10.1016/j.mycmed.2019.01.005

    Article  CAS  Google Scholar 

  • Ogunyemi SO, Abdallah Y, Zhang M, Fouad H, Hong X, Ibrahim E, Masum MMI, Hossain A, Mo J, Li B (2019) Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. oryzae. Artif Cells Nanomed Biotechnol 47:341–352

    CAS  Google Scholar 

  • Omomowo IO, Adenigba VO, Ogunsona SB, Adeyinka GC, Oluyide OO, Adedayo AA, Fatukasi GC (2020) Antimicrobial and antioxidant activities of algal-mediated silver and gold nanoparticles. IOP Conf Ser Mater Sci Eng 805:12010. https://doi.org/10.1088/1757-899x/805/1/012010

    Article  CAS  Google Scholar 

  • Panimalar S, Logambal S, Thambidurai R, Inmozhi C, Uthrakumar R, Muthukumaran A, Rasheed RA, Gatasheh MK, Raja A, Kennedy J, Kaviyarasu K (2022) Effect of Ag doped MnO2 nanostructures suitable for wastewater treatment and other environmental pollutant applications. Environ Res 205. https://doi.org/10.1016/j.envres.2021.112560

  • Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin HS (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16(1). https://doi.org/10.1186/s12951-018-0392-8

  • Qianwei L, Feixue LIU, Min L, Chunmao CHEN, Geoffrey MGADD (2021) Nanoparticle and nanomineral production by fungai. Fung Bio Rev:1–14

    Google Scholar 

  • Radhakrishnan R, Lakshmi D, Khan FLA, Ramalingam G, Kaviyarasu K (2020) Bio-synthesis of iron oxide nanoparticles using neem leaf cake extract and its influence in the agronomical traits of vigna mungo plant. Asian J Nanosci Mater 3(1):38–46

    Google Scholar 

  • Rai M, Bonde S, Golinska P, TrzciÅ„ska-Wencel J, Gade A, Abd-Elsalam K, Shende S, Gaikwad S, Ingle AP (2021) Fusarium as a novel fungus for the synthesis of nanoparticles: mechanism and applications. J Fungi 7(2):139

    CAS  Google Scholar 

  • Rajeshkumar S, Bharath LV (2017) Mechanism of plant-mediated synthesis of silver nanoparticles – a review on biomolecules involved, characterisation and antibacterial activity. https://doi.org/10.1016/j.cbi.2017.06.019

  • Ramesh R, Vidhya V, Liakath F, Khan A, Muhammed AA, Alkahtani J, Elshikh MS, Kaviyarasu K (2022) Shockwave treated seed germination and physiological growth of Vigna mungo (L) in red soil environment. Physiol Mol Plant Pathol 117:1–7

    Google Scholar 

  • Rani M, Shankar U (2018) Removal of chlorpyrifos, thiamethoxam, and tebuconazole from water using green synthesized metal hexacyanoferrate nanoparticles. Environ Sci Pollut Res 25:10878–10893

    CAS  Google Scholar 

  • Rani M, Shankar U (2020) Green synthesis of TiO2 and its photocatalytic activity. In: Handbook of smart photocatalytic materials fundamentals, fabrications, and water resources applications. pp 11–61. https://doi.org/10.1016/B978-0-12-819051-7.00002-6

  • Rani M, Shankar U, Jassal V (2017) Recent strategies for removal and degradation of persistent & toxic organochlorine pesticides using nanoparticles: a review. J Environ Manag 190:208–222

    CAS  Google Scholar 

  • Rao MD, Pennathur G (2017) Green synthesis and characterization of cadmium sulphide nanoparticles from Chlamydomonas reinhardtii and their application as photocatalysts. Mater Res Bull 85:64–73. https://doi.org/10.1016/j.materresbull.2016.08.049

    Article  CAS  Google Scholar 

  • Rawtani D, Khatri N, Tyagi S, Pandey G (2018) Nanotechnology-based recent approaches for sensing and remediation of pesticides. J Environ Manag 206:749–762

    CAS  Google Scholar 

  • Rehman S, Jermy BR, Akhtar S, Borgio JF, Azeez SA, Rvinyagam V, Jindan RA, Alsaem ZH, Buhameid A, Gani A (2019) Isolation and characterization of a novel thermophile; Bacillus haynesii, applied for the green synthesis of ZnO nanoparticles. Artif Cells Nanomed Biotechnol 47:2072–2082. https://doi.org/10.1080/21691401.2019.1620254

    Article  CAS  Google Scholar 

  • Roychoudhury P, Gopal PK, Paul S, Pal R (2016) Cyanobacteria assisted biosynthesis of silver nanoparticles-a potential antileukemic agent. J Appl Phycol 28:3387–3394

    CAS  Google Scholar 

  • Saleem K, Khursheed Z, Hano C, Anjum I, Anjum S (2019) Applications of nanomaterials in Leishmaniasis: a focus on recent advances and challenges. Nano 9:1–18

    Google Scholar 

  • Saravanan M, Gopinath V, Chaurasia MK, Syed A, Ameen F, Purushothaman N (2018) Green synthesis of anisotropic zinc oxide nanoparticles with antibacterial and cytofriendly properties. Microb Pathog 115:57–63. https://doi.org/10.1016/j.micpath.2017.12.039

    Article  CAS  Google Scholar 

  • Scala A, Piperno A, Hada A et al (2019) Marine bacterial exopolymers-mediated green synthesis of noble metal nanoparticles with antimicrobial properties. Polymers 11(1157):1–11

    Google Scholar 

  • Senthilkumar P, Surendran L, Sudhagar B, Ranjith Santhosh Kumar DS (2019) Facile green synthesis of gold nanoparticles from marine algae gelidiella acerosa and evaluation of its biological potential. SN Appl Sci 1:284. https://doi.org/10.1007/s42452-019-0284-z

    Article  CAS  Google Scholar 

  • Sharma JL, Dhayal V, Sharma RK (2021) White-rot fungus mediated green synthesis of zinc oxide nanoparticles and their impregnation on cellulose to develop environmental friendly antimicrobial fibers. Biotech 11(269):1–10. https://doi.org/10.1007/s13205-021-02840-6

    Article  Google Scholar 

  • Shukla A, Kaur A, Shukla RK (2021) Evaluation of different biological activities of leaves of Ehretia acuminata R.Br. Ind Drugs 58(4):42–49

    Google Scholar 

  • Singh P, Kim Y-J, Zhang D, Yang D-C (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34(7):588–599

    CAS  Google Scholar 

  • Sutradhar KB, Amin M (2014) Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotech, pp 1–12

    Google Scholar 

  • Thangavelu RM, Ganapathy R, Ramasamy P, Krishnan K (2020) Fabrication of virus metal hybrid nanomaterials: an ideal reference for bio semiconductor. Arab J Chem 13:2750–2765

    CAS  Google Scholar 

  • Vanlalveni C, Rajkumari K, Biswas A, Adhikari PP, Lalfakzuala R, Rokhum L (2018) Green synthesis of silver nanoparticles using nostoc linckia and its antimicrobial activity: a novel biological approach. Bionanosci 8:624–631. https://doi.org/10.1007/s12668-018-0520-9

    Article  Google Scholar 

  • Wang D, Xue B, Wang L, Zhang Y, Liu L, Zhou Y (2021) Fungus-mediated green synthesis of nano-silver using Aspergillus sydowii and its antifungal/antiproliferative activities. Sci Rep 11:10356. https://doi.org/10.1038/s41598-021-89854-5

    Article  CAS  Google Scholar 

  • Yu X, Li J, Mu D, Zhang H, Liu Q, Chen G (2021) Green synthesis and characterizations of silver nanoparticles with enhanced antibacterial properties by secondary metabolites of Bacillus subtilis (SDUM301120). Green Chem Lett Rev 14:190–203. https://doi.org/10.1080/17518253.2021.1894244

    Article  CAS  Google Scholar 

  • Zabin D, Shekher A, Yadav M, Soni R, Singh G (2022) Synthesis and characterization of silver nanoparticles using leaf extracts of medicinal plants and its impact on Anabaena doliolum. J Sci Res 66(1):208–223

    Google Scholar 

  • Zhang D, Ma X, Gu Y, Huang H, Zhang GW (2020) Green synthesis of metallic nanoparticles and their potential applications to treat cancer. Front Chem 8:1–18

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kaur, A., Gupta, H., Dhiman, S. (2023). Biogenic Metallic Nanoparticles: Synthesis and Applications Using Medicinal Plants. In: Shanker, U., Hussain, C.M., Rani, M. (eds) Handbook of Green and Sustainable Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-69023-6_101-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69023-6_101-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69023-6

  • Online ISBN: 978-3-030-69023-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics