Skip to main content

Impact of Amphetamine Exposure During Adolescence on Neurobehavioral Endpoints

  • Living reference work entry
  • First Online:
Handbook of Substance Misuse and Addictions
  • 61 Accesses

Abstract

The recognition of the adolescent period as a time of increased drug use and potential vulnerability to the neurobehavioral effects of repeated drug use has existed for many years. Although clinical uses of amphetamines exist for adolescents, most notably for Attention-Deficit/Hyperactivity Disorder, the repeated recreational or illicit use of amphetamines during this time period has implications for long-term brain and behavioral development. During the adolescent period, monoamine neurotransmitter systems (particularly dopamine, norepinephrine, and serotonin) undergo continued development, and evidence from experimental animal models suggests that repeated use of amphetamines during this time can impact behavioral processes that rely on monoamine systems throughout the lifespan. Cognitive flexibility, a measure of prefrontal function, can be probed through the use of behavioral procedures, such as reversal learning and extradimensional shifting. A number of studies implicate prefrontal cortex function following repeated use of amphetamines (and other psychomotor stimulants) during the adolescent period. Further, evidence suggests that adolescent amphetamine exposure alters monoamine signaling and increases sensitivity to drugs that act on dopamine, norepinephrine, and serotonin later in life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

5-HT:

serotonin

ADHD:

Attention-Deficit/Hyperactivity Disorder

d-AMP:

dextroamphetamine

DA:

dopamine

E:

epinephrine

mg/kg:

milligram of drug per kilogram of body weight

NE:

norepinephrine

PND:

postnatal day

References

  • Abourashed EA, El-Alfy AT, Khan IA, Walker L (2003) Ephedra in perspective – a current review. Phytother Res 17:703–712

    Article  CAS  Google Scholar 

  • Andersen SL, Rutstein M, Benzo JM, Hostetter JC, Teicher MH (1997) Sex differences in dopamine receptor overproduction and elimination. NeuroReport 8:1495–1498. https://doi.org/10.1097/00001756-199704140-00034

    Article  CAS  PubMed  Google Scholar 

  • Andersen SL, Thompson AT, Rutstein M, Hostetter JC, Teicher MH (2000) Dopamine receptor pruning in prefrontal cortex during the periadolescent period in rats. Synapse 37:167–169. https://doi.org/10.1002/1098-2396(200008)37:2167::AID-SYN113.0.CO;2-B

    Article  CAS  PubMed  Google Scholar 

  • Barkley RA (2015) History of ADHD. The Guilford Press

    Google Scholar 

  • Birrell JM, Brown VJ (2000) Medial frontal cortex mediates perceptual attentional set shifting in the rat. J Neurosci 20:4320–4324

    Article  CAS  Google Scholar 

  • Bissonette GB, Martins GJ, Franz TM, Harper ES, Schoenbaum G, Powell EM (2008) Double dissociation of the effects of medial and orbital prefrontal cortical lesions on attentional and affective shifts in mice. J Neurosci 28:11124–11130. https://doi.org/10.1523/JNEUROSCI.2820-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boomhower SR, Newland MC (2017) Effects of adolescent exposure to methylmercury and d-amphetamine on reversal learning and an extradimensional shift in male mice. Exp Clin Psychopharmacol 25(2):64

    Article  CAS  Google Scholar 

  • Boomhower SR, Newland MC (2019) d-Amphetamine and methylmercury exposure during adolescence alters sensitivity to monoamine uptake inhibitors in adult mice. NeuroToxicology 72:61–73

    Article  CAS  Google Scholar 

  • Chambers RA, Potenza MN (2003) Neurodevelopment, impulsivity, and adolescent gambling. J Gambl Stud 19:53–84

    Article  Google Scholar 

  • Chambers RA, Taylor JR, Potenza MN (2003) Developmental neurocircuitry of motivation in adolescence: a critical period of addiction vulnerability. Am J Psychiatr 160:1041–1052

    Article  Google Scholar 

  • Chudasama Y, Robbins TW (2003) Dissociable contributions of the orbitofrontal and infralimbic cortex to Pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex. J Neurosci 23:8771–8780

    Article  CAS  Google Scholar 

  • Dalley JW, Cardinal RN, Robbins TW (2004) Prefrontal executive and cognitive functions in rodents: Neural and neurochemical substrates. Neurosci Biobehav Rev 28:771–784. https://doi.org/10.1016/j.neubiorev.2004.09.006

    Article  CAS  PubMed  Google Scholar 

  • Dreiem A, Shan M, Okoniewski RJ, Sanchez-Morrissey S, Seegal RF (2009) Methylmercury inhibits dopaminergic function in rat pup synaptosomes in an age-dependent manner. Neurotoxicol Teratol 31:312–317. https://doi.org/10.1016/j.ntt.2009.05.001

    Article  CAS  PubMed  Google Scholar 

  • Eilam D, Szechtman H (2005) Psychostimulant-induced behavior as an animal model of obsessive-compulsive disorder: an ethological approach to the form of compulsive rituals. CNS Spectr 10:191–202. https://doi.org/10.1017/S109285290001004X

    Article  PubMed  Google Scholar 

  • Ersche KD, Roiser JP, Robbins TW, Sahakian BJ (2008) Chronic cocaine but not chronic amphetamine use is associated with perseverative responding in humans. Psychopharmacology 197(3):421–431

    Article  CAS  Google Scholar 

  • Fletcher PJ, Tenn CC, Rizos Z, Lovic V, Kapur S (2005) Sensitization to amphetamine, but not PCP, impairs attentional set shifting: reversal by a D 1 receptor agonist injected into the medial prefrontal cortex. Psychopharmacology 183(2):190–200

    Article  CAS  Google Scholar 

  • Galineau L, Kodas E, Guilloteau D, Vilar M-P, Chalon S (2004) Ontogeny of the dopamine and serotonin transporters in the rat brain: an autoradiographic study. Neurosci Lett 363:266–271. https://doi.org/10.1016/j.neulet.2004.04.007

    Article  CAS  PubMed  Google Scholar 

  • Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A et al (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2(10):861–863

    Article  CAS  Google Scholar 

  • Green L, Fry AF, Myerson J (1994) Discounting of delayed rewards: a life-span comparison. Psychol Sci 5:33–36. https://doi.org/10.1111/j.1467-9280.1994.tb00610.x

    Article  Google Scholar 

  • Guiard BP, El Mansari M, Merali Z, Blier P (2008) Functional interactions between dopamine, serotonin and norepinephrine neurons: an in-vivo electrophysiological study in rats with monoaminergic lesions. Int J Neuropsychopharmacol 11:625–639. https://doi.org/10.1017/S1461145707008383

    Article  CAS  PubMed  Google Scholar 

  • Hancock S, McKim WA (2017) Drugs and behavior: an introduction to behavioral pharmacology, 8th edn. Pearson

    Google Scholar 

  • Hankosky ER, Kofsky NM, Gulley JM (2013) Age of exposure-dependent effects of amphetamine on behavioral flexibility. Behav Brain Res 252:117–125

    Article  CAS  Google Scholar 

  • Johnson KR, Boomhower SR, Newland MC (2019) Behavioral effects of chronic WIN 55,212-2 administration during adolescence and adulthood in mice. Exp Clin Psychopharmacol 27(4):348

    Article  CAS  Google Scholar 

  • Johnston LD, O’Malley PM, Miech RA, Bachman JG, Schlenberg JG (2014) Monitoring the Future national survey results on adolescent drug use: 1975–2013: overview, key findings on adolescent drug use. Institute for Social Research, The University of Michigan, Ann Arbor

    Google Scholar 

  • Johnston LD, O’Malley PM, Bachman JG, Schulenberg JE, Miech RA (2015) Monitoring the future national survey results on drug use, 1975–2014: Volume 2, College students and adults ages 19–55. Institute for Social Research, The University of Michigan, Ann Arbor

    Google Scholar 

  • Kamińska K, Lenda T, Konieczny J, Czarnecka A, Lorenc-Koci E (2017) Depressive-like neurochemical and behavioral markers of Parkinson’s disease after 6-OHDA administered unilaterally to the rat medial forebrain bundle. Pharmacol Rep 69:985–994. https://doi.org/10.1016/j.pharep.2017.05.016

    Article  CAS  PubMed  Google Scholar 

  • Kantak KM, Barlow N, Tassin DH, Brisotti MF, Jordan CJ (2014) Performance on a strategy set shifting task in rats following adult or adolescent cocaine exposure. Psychopharmacology 231(23):4489–4501

    Article  CAS  Google Scholar 

  • Labonte B, McLaughlin RJ, Dominguez-Lopez S, Bambico FR, Lucchino I, Ochoa-Sanchez R, Leyton M, Gobbi G (2012) Adolescent amphetamine exposure elicits dose-specific effects on monoaminergic neurotransmission and behaviour in adulthood. Int J Neuropsychopharmacol 15:1319–1330. https://doi.org/10.1017/S1461145711001544

    Article  CAS  PubMed  Google Scholar 

  • Larsen B, Olafsson V, Calabro F, Laymon C, Tervo-Clemmens B, Campbell E, Minhas D, Montez D, Price J, Luna B (2020) Maturation of the human striatal dopamine system revealed by PET and quantitative MRI. Nat Commun 11(1):1–10

    Article  Google Scholar 

  • Laviola G, Macrì S, Morley-Fletcher S, Adriani W (2003) Risk taking behavior in adolescent mice: psychobiological determinants and early epigenetic influence. Neurosci Biobehav Rev 27(1–2):19–31. https://doi.org/10.1016/S0149-7634(03)00006-X

    Article  PubMed  Google Scholar 

  • Lenroot RK, Gogtay N, Greenstein DK, Wells EM, Wallace GL, Clasen LS et al (2007) Sexual dimorphism of brain developmental trajectories during childhood and adolescence. NeuroImage 36:1065–1073. https://doi.org/10.1016/j.neuroimage.2007.03.053

    Article  PubMed  Google Scholar 

  • McAlonan K, Brown VJ (2003) Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat. Behav Brain Res 146:97–103. https://doi.org/10.1016/j.bbr.2003.09.019

    Article  PubMed  Google Scholar 

  • Moll GH, Mehnert C, Wicker M, Bock N, Rothenberger A, Ruther E, Huether G (2000) Age-associated changes in the densities of presynaptic monoamine transporters in different regions of the rat brain from early juvenile life to late adulthood. Dev Brain Res 119:251–257. https://doi.org/10.1016/S0165-3806(99)00182-0

    Article  CAS  Google Scholar 

  • Newman LA, McGaughy J (2011) Adolescent rats show cognitive rigidity in a test of attentional set shifting. Dev Psychobiol 53:391–401. https://doi.org/10.1002/dev.20537

    Article  PubMed  Google Scholar 

  • Overman WH. Sex differences in early childhood, adolescence, and adulthood on cognitive tasks that rely on orbital prefrontal cortex. Brain and Cognition. 2004;55(1):134–147. https://doi.org/10.1016/S0278-2626(03)00279-3

  • Parsegian A, Glen WB Jr, Lavin A, See RE (2011) Methamphetamine self-administration produces attentional set-shifting deficits and alters prefrontal cortical neurophysiology in rats. Biol Psychiatry 69(3):253–259

    Article  CAS  Google Scholar 

  • Pinkston JW, Lamb RJ (2011) Delay discounting in C57BL/6J and DBA/2J mice: adolescent-limited and life-persistent patterns of impulsivity. Behav Neurosci 125:194–201. https://doi.org/10.1037/a0022919

    Article  PubMed  PubMed Central  Google Scholar 

  • Pope DA, Boomhower SR, Hutsell BA, Teixeira KM, Newland MC (2016) Chronic cocaine exposure in adolescence: effects on spatial discrimination reversal, delay discounting, and performance on fixed-ratio schedules in mice. Neurobiol Learn Mem 130:93–104

    Article  CAS  Google Scholar 

  • Sanders JD, Happe HK, Bylund DB, Murrin LC (2005) Development of the norepinephrine transporter in the rat CNS. Neuroscience 130:107–117. https://doi.org/10.1016/j.neuroscience.2004.09.014

    Article  CAS  PubMed  Google Scholar 

  • Schulenberg JE, Johnston LD, O’Malley PM, Bachman JG, Miech RA, Patrick ME (2020) Monitoring the Future national survey results on drug use, 1975–2019: Volume II, College students and adults ages 19–60. Institute for Social Research, The University of Michigan, Ann Arbor. Available at http://monitoringthefuture.org/pubs.html#monographs

    Google Scholar 

  • Soto PL, Wilcox KM, Zhou Y, Kumar A, Ator NA, Riddle MA, Wong DF, Weed MR (2013) Long-term exposure to oral methylphenidate or dl-amphetamine mixture in peri-adolescent rhesus monkeys: effects on physiology, behavior, and dopamine system development. Neuropsychopharmacology 37(12):2566–2579

    Article  Google Scholar 

  • Sowell ER, Thompson PM, Holmes CJ, Jernigan TL, Toga AW (1999) In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nat Neurosci 2(10):859–861. https://doi.org/10.1038/13154

    Article  CAS  PubMed  Google Scholar 

  • Spear LP (2000) The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev 24(4):417–463

    Article  CAS  Google Scholar 

  • Spear LP (2007a) Assessment of adolescent neurotoxicity: rationale and methodological considerations. Neurotoxicol Teratol 29(1):1–9

    Article  CAS  Google Scholar 

  • Spear LP (2007b) The developing brain and adolescent-typical behavior patterns: an evolutionary approach. In: Walker E, Bossert J, Romer D (eds) Adolescent psychopathology and the developing brain: integrating brain and prevention science. Oxford University Press, New York, pp 9–30

    Chapter  Google Scholar 

  • Sussman S, Pentz MA, Spruijt-Metz D, Miller T (2006) Misuse of “study drugs”: prevalence, consequences, and implications for policy. Subst Abuse Treat Prev Policy 1(1):1–7

    Article  Google Scholar 

  • Tarazi FI, Baldessarini RJ (2000) Comparative postnatal development of dopamine D(1), D(2) and D(4) receptors in rat forebrain. Int J Dev Neurosci 18:29–37. https://doi.org/10.1016/S0736-5748(99)00108-2

    Article  CAS  PubMed  Google Scholar 

  • Tarazi F, Tomasini EC, Baldessarini RJ (1998) Postnatal development of dopamine and serotonin transporters in rat caudate-putamen and nucleus accumbens septi. Neurosci Lett 254:21–24. https://doi.org/10.1016/S0304-3940(98)00644-2

    Article  CAS  PubMed  Google Scholar 

  • Teicher MH, Andersen SL, Hostetter JC Jr (1995) Evidence for dopamine receptor pruning between adolescence and adulthood in striatum but not nucleus accumbens. Brain Res Dev Brain Res 89:167–172. https://doi.org/10.1016/0165-3806(95)00109-Q

    Article  CAS  PubMed  Google Scholar 

  • Weber M, Talmon S, Schulze I, Boeddinghaus C, Gross G, Schoemaker H, Wicke KM (2009) Running wheel activity is sensitive to acute treatment with selective inhibitors for either serotonin or norepinephrine reuptake. Psychopharmacology 203:753–762. https://doi.org/10.1007/s00213-008-1420-4

    Article  CAS  PubMed  Google Scholar 

  • Westbrook SR, Carrica LK, Banks A, Gulley JM (2020) AMPed-up adolescents: the role of age in the abuse of amphetamines and its consequences on cognition and prefrontal cortex development. Pharmacol Biochem Behav:173016

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven R. Boomhower .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Boomhower, S.R. (2022). Impact of Amphetamine Exposure During Adolescence on Neurobehavioral Endpoints. In: Patel, V.B., Preedy, V.R. (eds) Handbook of Substance Misuse and Addictions. Springer, Cham. https://doi.org/10.1007/978-3-030-67928-6_107-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67928-6_107-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67928-6

  • Online ISBN: 978-3-030-67928-6

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics