Skip to main content

Numerical Simulation of In-Flight Icing of Unmanned Aerial Vehicles

  • Living reference work entry
  • First Online:
Handbook of Numerical Simulation of In-Flight Icing

Abstract

Atmospheric in-flight icing imposes a significant hazard for the operation of unmanned aerial vehicles (UAVs). The objective of this chapter is to highlight the special challenges of icing computational fluid dynamics (CFD) modeling on UAVs compared to manned aircraft. For simulations, the largest difference is in the low Reynolds number regime that UAVs typically operate in. Furthermore, the chapter outlines the main differences in icing-related challenges between unmanned and manned aircraft. This is shown in a study highlighting the effects of chord length and air speed on ice shapes and aerodynamic icing penalties. The results show that UAVs, which are smaller and fly slower compared to manned aircraft, are more vulnerable to icing. Furthermore, this chapter includes examples and validation cases for three key aspects of icing CFD: ice shape prediction, aerodynamic icing penalties, and ice protection systems. The results overall suggest that icing CFD is well suited to be used for solving engineering tasks related to icing on UAVs. However, gaps still exist, especially concerning validation and the availability of experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Addy HE, Io J (2000) AIAA-2000-0096 a numerical evaluation of icing effects on a natural laminar flow airfoil, James J. Chung, Institute for computational mechanics in propulsion and 38th aerospace sciences meeting & exhibit a numerical evaluation of icing effects on a natural. https://doi.org/10.2514/6.2000-96

    Book  Google Scholar 

  • Airfoil S, Numbers R, Hann R, Hearst RJ, Sætran LR, Bracchi T (2020) Experimental and numerical icing penalties of an S826 airfoil at low Reynolds numbers. Aerospace 7(4):46

    Article  Google Scholar 

  • ANSYS (2017) ANSYS FENSAP-ICE user manual 18.2

    Google Scholar 

  • Arnal D, Casalis G (2000) Laminar-turbulent transition prediction in three-dimensional flows. Prog Aerosp Sci 36:173–191. https://doi.org/10.1016/S0376-0421(00)00002-6

    Article  Google Scholar 

  • Baars WJ, Stearman RO, Tinney CE (2010) A Review on the Impact of Icing on aircraft stability and control. J Aeroelasticity Struct Dyn 2:35–52

    Google Scholar 

  • Bartl J, Sagmo KF, Bracchi T, Sætran L (2019) Performance of the NREL S826 airfoil at low to moderate Reynolds numbers – a reference experiment for CFD models. Eur J Mech B/Fluids 75:180–192. https://doi.org/10.1016/j.euromechflu.2018.10.002

    Article  MathSciNet  Google Scholar 

  • Bernstein BC, Le Bot C (2009) An inferred climatology of icing conditions aloft, including supercooled large drops. Part II: Europe, Asia, and the globe. J Appl Meteorol Climatol 48:1503–1526. https://doi.org/10.1175/2009JAMC2073.1

    Article  Google Scholar 

  • Bernstein BC, Ratvasky TP, Miller DR, McDonough F (2000) Freezing rain as an in-flight icing Hazard. NASA/TM-2000-210058

    Google Scholar 

  • Bernstein BC, Wolff CA, McDonough F (2007) An inferred climatology of icing conditions aloft, including supercooled large drops. Part I. J Appl Meteorol Climatol 46(Jan):1857–1878

    Article  Google Scholar 

  • Blazek J (2015) Computational fluid dynamics: principles and applications. Butterworth-Heinemann

    MATH  Google Scholar 

  • Bragg MB, Broeren AP, Blumenthal LA (2005) Iced-airfoil aerodynamics. Prog Aerosp Sci 41:323–362. https://doi.org/10.1016/j.paerosci.2005.07.001

    Article  Google Scholar 

  • Broeren AP, Bragg MB, Addy HE (2004) Effect of intercycle ice accretions on airfoil performance. J Aircr 41. https://doi.org/10.2514/6.2002-240

  • Campbell SE, Clark DA, Evans JE (2017) Preliminary UAS weather information gap analysis for UAV operations, Report ATC-437, Liconln Laboratory, Massachusetts Insitute of Technology

    Google Scholar 

  • Cao Y, Tan W, Wu Z (2018) Aircraft icing: an ongoing threat to aviation safety. Aerosp Sci Technol 75:353–385. https://doi.org/10.1016/j.ast.2017.12.028

    Article  Google Scholar 

  • Cheung M, Hann R, Johansen TA (2022) UAV icing: a unified icing severity index derived from performance degradation. In: AIAA AVIATION 2022 forum, Chicago. https://doi.org/10.2514/6.2022-3906

  • Croce G, De Candido E, Habashi WG, Munzar J, Aubé MS, Baruzzi GS, Aliaga C (2010) FENSAP-ICE: analytical model for spatial and temporal evolution of in-flight icing roughness. J Aircr 47:1283–1289. https://doi.org/10.2514/1.47143

    Article  Google Scholar 

  • Drela M (1989) XFOIL: an analysis and design system for low reynolds number airfoils. In: Mueller TJ (ed) Low Reynolds number aerodynamics. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 1–12

    Google Scholar 

  • Fajt N, Hann R, Lutz T (2019) The influence of meteorological conditions on the icing performance penalties on a UAV airfoil. In: 8th European Conference for Aeronautics and Space Sciences (EUCASS), Madrid

    Google Scholar 

  • Federal Aviation Administration (2002) 14 CFR parts 25 and 29, appendix C, Icing design envelopes, DOT/FAA/AR-00/30

    Google Scholar 

  • Gent NPD, Cansdale JT (2000) Aircraft icing. Philos Trans R Soc A 358:2873–2911

    Google Scholar 

  • Goyal R (2018) Urban air mobility (UAM) market study, NASA report HQ-E-DAA-TN65181,

    Google Scholar 

  • Habashi WG, Aubé M, Baruzzi GS, Morency F, Tran P, Narramore JC (2004) FENSAP-ICE : a fully-3D in-flight icing simulation system for aircraft, rotorcraft and UAVs. In: 24th international congress of the aeronautical sciences. ICAS

    Google Scholar 

  • Han Y, Palacios J (2017) Surface roughness and heat transfer improved predictions for aircraft ice-accretion modeling. AIAA J 55:1318–1331. https://doi.org/10.2514/1.J055217

    Article  Google Scholar 

  • Hann R (2019) UAV icing: ice accretion experiments and validation. SAE Tech Pap:1–10. https://doi.org/10.4271/2019-01-2037

  • Hann R (2020) Atmospheric ice accretions, aerodynamic icing penalties, and ice protection systems on unmanned aerial vehicles, PhD Thesis NTNU2020:200. Norwegian University of Science and Technology

    Google Scholar 

  • Hann R (2022) UAV icing: challenges for computational fluid dynamic (CFD) tools. In: International conference on computational fluid dynamics (ICCFD11), Maui

    Google Scholar 

  • Hann R, Johansen T (2020) Unsettled topics in UAV icing, SAE international, SAE EDGE research report EPR2020008

    Google Scholar 

  • Hann R, Johansen TA (2021) UAV icing: the influence of airspeed and chord length on performance degradation. Aircr Eng Aerosp Technol 93(5):832–841. https://doi.org/10.1108/AEAT-06-2020-0127

  • Hann R, Müller N (2020) Icing Validation Database. DataverseNO, Version 1. https://doi.org/10.18710/5XYALW

  • Hann R, Wallisch J (2020) UAV Specification Database. DataverseNO, Version 1. https://doi.org/10.18710/L41IGQ

  • Hann R, Enache A, Nielsen MC, Stovner BN, Beeck J Van, Johansen TA, Borup KT (2021) Experimental heat loads for electrothermal anti-icing and de-icing on UAVs

    Book  Google Scholar 

  • Hansman RJ, Breuer KS, Reehorst A, Vargas M (1993) Close-up analysis of aircraft ice accretion. In: 31st aerospace sciences meeting and exhibit, Reno: AIAA-93-0029. https://doi.org/AIAA-93-0029

    Google Scholar 

  • Hovenburg AR, Andrade FAA, Hann R, Rodin CD, Johansen TA, Storvold R (2020) Long Range Path Planning Using an Aircraft Performance Model for Battery Powered sUAS Equipped with Icing Protection System. IEEE Journal on Miniaturization for Air and Space Systems

    Google Scholar 

  • Ignatowicz K, Morency F, Beaugendre H (2021) Sensitivity study of ice accretion simulation to roughness thermal correction model. Aerospace 8. https://doi.org/10.3390/aerospace8030084

  • Jeck RK (2001) A history and interpretation of aircraft icing intensity definitions and FAA rules for operating in icing conditions. Report. DOT/FAA/AR-01/91. FEDERAL AVIATION ADMINISTRATION 2001

    Google Scholar 

  • Kays WM, Crawford ME, Weigand B (2005) Convective heat and mass transfer. McGraw-Hill, New York

    Google Scholar 

  • Krøgenes J, Brandrud L (2017) Aerodynamic performance of the NREL S826 Airfoil in icing conditions, NTNU MSc Thesis. https://doi.org/10.5194/wes-2017-39

    Book  Google Scholar 

  • Laurendeau E, Bourgault-Côté S, Ozcer IA, Hann R, Radenac E, Pueyo A (2022) Summary from the 1st AIAA ice prediction workshop. In: AIAA AVIATION 2022 forum, Chicago. https://doi.org/10.2514/6.2022-3398

  • Leary WM (2002) We freeze to please: a history of NASA’s icing research tunnel and the quest for flight safety. National Aeronautics and Space Administration (NASA)

    Google Scholar 

  • Liu Y, Hu H (n.d.) An experimental investigation on the convective heat transfer process over an ice roughened airfoil. In: 54th AIAA aerospace sciences meeting. https://doi.org/10.2514/6.2016-1978

  • Lynch FT, Khodadoust A (2001) Effects of ice accretions on aircraft aerodynamics. Prog Aerosp Sci 37:669–767. https://doi.org/10.1016/S0376-0421(01)00018-5

    Article  Google Scholar 

  • Mason JG, Strapp JW, Chow P (2006) The ice particle threat to engines in flight. In: 44th AIAA aerospace sciences meeting, pp 2445–2465. https://doi.org/10.2514/6.2006-206

    Chapter  Google Scholar 

  • McClain ST, Vargas MM, Tsao J-C, Broeren AP (2021) A model for ice accretion roughness evolution and spatial variations. In: AIAA aviation 2021 forum, Virtual event. https://doi.org/10.2514/6.2021-2641

  • Menter FR (1992) Improved two-equation k-omega turbulence models for aerodynamic flows

    Google Scholar 

  • Morency F, Beaugendre H, Baruzzi G, Habashi W (2001) FENSAP-ICE – a comprehensive 3D simulation system for in-flight icing. In: 15th AIAA computational fluid dynamics conference, Anaheim. https://doi.org/10.2514/6.2001-2566

  • Müller NC, Hann R (2022) UAV icing: a performance model for a UAV propeller in icing conditions. In: AIAA AVIATION 2022 forum, Chicago. https://doi.org/10.2514/6.2022-3903

  • Ning Z, Hu H (2017) An experimental study on the aerodynamic and aeroacoustic performances of a bio-inspired UAV propeller. In: 35th AIAA applied aerodynamics conference, Denver. https://doi.org/10.2514/6.2017-3747

  • O’Meara MM, Mueller TJ (1987) Laminar separation bubble characteristics on an airfoil at low Reynolds Numbers. AIAA J 25:1033–1041

    Article  Google Scholar 

  • Oo NL, Kay NJ, Brenkley AJ, Sharma RN (2018) Investigation into the behaviour of an iced low Reynolds number aerofoil. In: 10th international micro-air vehicles conference, Melbourne

    Google Scholar 

  • Oo NL, Richards PJ, Sharma RN (2020) Ice-induced separation bubble on RG-15 airfoil at low Reynolds number. AIAA J 58. https://doi.org/10.2514/1.J059257

  • Ozcer IA, Baruzzi GS, Reid T, Habashi WG, Fossati M, Croce G (2011) FENSAP-ICE: numerical prediction of ICE roughness evolution, and its effects on ice shapes, SAE technical papers. https://doi.org/10.4271/2011-38-0024

    Book  Google Scholar 

  • Ozcer I, Switchenko D, Baruzzi GS, Chen J (2019) Multi-shot icing simulations with automatic re-meshing. In: International conference on icing of aircraft, engines, and structures. SAE International, Atlanta. https://doi.org/10.4271/2019-01-1956

  • Reid T, Baruzzi GS, Ozcer IA, Habashi WG (2011) FENSAP-ICE: 3D simulation, and validation, of de-icing with inter-cycle ICE accretion. https://doi.org/10.4271/2011-38-0102

    Book  Google Scholar 

  • Shahab H (2019) Urban air mobility (UAM) market study, NASA report HQ-E-DAA-TN70296. https://doi.org/10.4324/9781351212991-4

    Book  Google Scholar 

  • Shakhatreh H, Sawalmeh AH, Al-Fuqaha A, Dou Z, Almaita E, Khalil I, Othman NS, Khreishah A, Guizani M (2019) Unmanned aerial vehicles (UAVs): a survey on civil applications and key research challenges. IEEE Access 7:48572–48634. https://doi.org/10.1109/ACCESS.2019.2909530

    Article  Google Scholar 

  • Shin J, Bond TH (1992a) Experimental and computational ice shapes and resulting drag increase for a NACA 0012 airfoil. NASA Tech Memo 105743

    Google Scholar 

  • Shin J, Bond TH (1992b) Experimental and computational ice shapes and resulting drag increase for a NACA 0012 airfoil. In: 5th symposium on numerical and physical aspects of aerodynamic flows, pp 0–11

    Google Scholar 

  • Siquig A (1990) Impact of icing on unmanned aerial vehicle (UAV) operations, Naval environmental prediction research facility report

    Google Scholar 

  • Somers DM (2005) The S825 and S826 airfoils, NREL/SR-500-36344

    Google Scholar 

  • Sørensen KL, Borup KT, Hann R, Bernstein B, Hansbø M (2021) UAV atmospheric icing limitations: climate report for Norway and surrounding regions

    Google Scholar 

  • Spalart P, Allmaras S (1994) A one-equation turbulence model for aerodynamic flows. In: 30th aerospace sciences meeting and exhibit. https://doi.org/10.2514/6.1992-439

  • Steinbrenner JP (2015) Construction of prism and hex layers from anisotropic tetrahedra. In: 22nd AIAA computational fluid dynamics conference, Dallas. https://doi.org/10.2514/6.2015-2296

  • Szilder K, McIlwain S (2011) In-flight icing of UAVs – The influence of Reynolds number on the ice accretion process, SAE technical paper 2011-01-2572. https://doi.org/10.4271/2011-01-2572

    Book  Google Scholar 

  • Szilder K, Yuan W (2017) In-flight icing on unmanned aerial vehicle and its aerodynamic penalties. Prog Flight Phys 9:173–188. https://doi.org/10.1051/eucass/201709173

    Article  Google Scholar 

  • Thomas SK, Cassoni RP, MacArthur CD (1996) Aircraft anti-icing and de-icing techniques and modeling. J Aircr 33:841–854. https://doi.org/10.2514/3.47027

    Article  Google Scholar 

  • Tiihonen M, Jokela T, Makkonen L, Bluemink G (2016) VTT icing wind tunnel 2.0. In: Winterwind conference

    Google Scholar 

  • Tran P, Baruzzi G, Tremblay F, Benquet P, Habashi WG, Petersen PB, Liggett MW, Fiorucci S (2004) FENSAP-ICE applications to unmanned aerial vehicles (UAV). In: 42nd AIAA aerospace sciences meeting and exhibit, pp 390–402

    Google Scholar 

  • Vargas M, Broughton H, Levy P, Sims JJ, Bleeze B, Gaines V (2007) Local and total density measurements in ice shapes. J Aircr 44(3):780–789

    Google Scholar 

  • Vinnes MK, Li L, Hearst RJ (2019) PIV of the flow over a NREL S826 airfoil subjected to different ice accretions. In Progress in Turbulence VIII: Proceedings of the iTi Conference in Turbulence 2018. Springer International Publishing, Cham, pp 331–336

    Google Scholar 

  • Wallisch J, Hann R (2022) UAV icing: experimental investigation of ice shedding times with an electrothermal de-icing system. In: AIAA AVIATION 2022 forum, Chicago. https://doi.org/10.2514/6.2022-3905

  • Wang C, Chang S, Su X (2011) Simulation of ice accretion on three dimensional wing. https://doi.org/10.4271/2011-38-0043

    Book  Google Scholar 

  • Whalen EA, Broeren AP, Bragg M (2007) Characteristics of runback ice accretions and their aerodynamic effects. Illinois University, Urbana

    Google Scholar 

  • Wright W (2008) User’s manual for LEWICE version 3.2, NASA/CR—2008-214255., https://doi.org/20080048307

    Google Scholar 

  • Wright W, Rutkowski A (1999) Validation results for LEWICE 2.0, NASA technical report NASA/CR—1999-208690. https://doi.org/10.2514/6.2005-1243

    Book  Google Scholar 

  • Yugulis K, Chase D, McCrink M (2020) Ice accretion analysis for the development of the heatcoat electrothermal ice protection system. In: AIAA AVIATION 2020 forum, Virtual. https://doi.org/10.2514/6.2020-2834

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Hann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hann, R. (2023). Numerical Simulation of In-Flight Icing of Unmanned Aerial Vehicles. In: Habashi, W.G. (eds) Handbook of Numerical Simulation of In-Flight Icing. Springer, Cham. https://doi.org/10.1007/978-3-030-64725-4_12-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64725-4_12-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64725-4

  • Online ISBN: 978-3-030-64725-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics