Skip to main content

Artificial Intelligence in Evidence-Based Medicine

On the Verge of Breakthrough

  • Reference work entry
  • First Online:
Artificial Intelligence in Medicine
  • 830 Accesses

Abstract

There are three pillars of evidence-based medicine (EBM): the evidence itself (e.g., data from clinical studies), clinical expertise, and patient values. EBM is therefore a systematic approach to decision-making that integrates these three inputs. It involves evidence production (design and conducting of clinical studies), synthesis (collecting, appraising, and combining data to answer clinical questions), implementation (e.g., through clinical practice guidelines based on these syntheses), and evaluation (monitoring the quality of care, including adherence to evidence-based recommendations).

EBM faces many challenges that artificial intelligence can help solve. It can help detect research gaps and avoid funding redundant studies. It can expedite the evidence synthesis process, which currently is slow and costly, leading to outdated and incomplete evidence being used in the decision-making processes. AI can help engage patients and elicit values (e.g., chatbot-based decision aids) as well as provide coordinated care for patients with multimorbidities.

However, improperly implementing AI can also exacerbate problems in EBM. For instance, if AI-enabled decision support systems fail to incorporate patient values, a return to a model of medicine characterized by low patient autonomy is possible – only this time with a computer in charge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haynes RB, Sackett DL, Richardson WS, Rosenberg W, Langley GR. Evidence-based medicine: how to practice & teach EBM. Can Med Assoc J. 1997;157(6):788.

    Google Scholar 

  2. Braithwaite J, Glasziou P, Westbrook J. The three numbers you need to know about healthcare: the 60-30-10 challenge. BMC Med. 2020;18(1):102.

    Article  Google Scholar 

  3. Cohen AM, Stavri PZ, Hersh WR. A categorization and analysis of the criticisms of evidence-based medicine. Int J Med Inf. 2004;73(1):35–43.

    Article  Google Scholar 

  4. Krauss A. Why all randomised controlled trials produce biased results. Ann Med. 2018;50(4):312–22.

    Article  Google Scholar 

  5. McDougall RJ. Computer knows best? The need for value-flexibility in medical AI. J Med Ethics. 2019;45(3):156–60.

    Article  Google Scholar 

  6. Shojania KG, Sampson M, Ansari MT, Ji J, Doucette S, Moher D. How quickly do systematic reviews go out of date? A Survival Analysis Ann Intern Med. 2007;147(4):224.

    Article  Google Scholar 

  7. Elliott JH, Synnot A, Turner T, Simmonds M, Akl EA, McDonald S, et al. Living systematic review: 1. Introduction – the why, what, when, and how. J Clin Epidemiol. 2017;91:23–30.

    Article  Google Scholar 

  8. Cohen AM, Hersh WR, Peterson K, Yen P-Y. Reducing workload in systematic review preparation using automated citation classification. J Am Med Inform Assoc JAMIA. 2005/12/15 ed. 2006;13(2):206–19.

    Article  CAS  Google Scholar 

  9. Tsafnat G, Glasziou P, Choong MK, Dunn A, Galgani F, Coiera E. Systematic review automation technologies. Syst Rev. 2014;3(1):74.

    Article  Google Scholar 

  10. O’Connor AM, Glasziou P, Taylor M, Thomas J, Spijker R, Wolfe MS. A focus on cross-purpose tools, automated recognition of study design in multiple disciplines, and evaluation of automation tools: a summary of significant discussions at the fourth meeting of the international collaboration for automation of systematic reviews (ICASR). Syst Rev. 2020;9(1):100.

    Article  Google Scholar 

  11. Clark J, Glasziou P, Del Mar C, Bannach-Brown A, Stehlik P, Scott AM. A full systematic review was completed in 2 weeks using automation tools: a case study. J Clin Epidemiol. 2020;121:81–90.

    Article  Google Scholar 

  12. Schünemann HJ, Moja L. Reviews: rapid! Rapid! Rapid! …and systematic. Syst Rev. 2015;4(1):4. 2046-4053-4–4

    Article  Google Scholar 

  13. Chu DK, Akl EA, Duda S, Solo K, Yaacoub S, Schünemann HJ, et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet. 2020;395(10242):1973–87.

    Article  CAS  Google Scholar 

  14. Systematic Review Toolbox [Internet]. [cited 2020 Dec 30]. Available from: http://systematicreviewtools.com/

  15. Grossman MR, Cormack GV. Technology-assisted review in e-discovery can be more effective and more efficient than exhaustive manual review. Rich JL Tech. 2010;17:1.

    Google Scholar 

  16. Marshall IJ, Wallace BC. Toward systematic review automation: a practical guide to using machine learning tools in research synthesis. Syst Rev. 2019;8(1):163. s13643-019-1074–9

    Article  Google Scholar 

  17. Cormack GV, Grossman MR. Scalability of continuous active learning for reliable high-recall text classification. In: Proceedings of the 25th ACM international on conference on information and knowledge management [Internet]. Indianapolis Indiana: ACM; 2016. [cited 2020 Dec 31]. p. 1039–48. https://doi.org/10.1145/2983323.2983776.

    Chapter  Google Scholar 

  18. Hamel C, Kelly SE, Thavorn K, Rice DB, Wells GA, Hutton B. An evaluation of DistillerSR’s machine learning-based prioritization tool for title/abstract screening – impact on reviewer-relevant outcomes. BMC Med Res Methodol. 2020;20(1):256.

    Article  CAS  Google Scholar 

  19. Gates A, Johnson C, Hartling L. Technology-assisted title and abstract screening for systematic reviews: a retrospective evaluation of the Abstrackr machine learning tool. Syst Rev. 2018;7(1):45.

    Article  Google Scholar 

  20. Jonnalagadda SR, Goyal P, Huffman MD. Automating data extraction in systematic reviews: a systematic review. Syst Rev. 2015;4(1):78.

    Article  Google Scholar 

  21. Schmitt C, Walker V, Williams A, Varghese A, Ahmad Y, Rooney A, et al. Overview of the TAC 2018 systematic review information extraction track. TAC; 2018.

    Google Scholar 

  22. Cohan A, Feldman S, Beltagy I, Downey D, Weld DS. SPECTER: document-level Representation Learning using Citation-informed Transformers. ArXiv200407180 Cs [Internet]. 2020 [cited 2020 Dec 31]; Available from: http://arxiv.org/abs/2004.07180

  23. Schmidt L, Olorisade BK, McGuinness LA, Thomas J, Higgins JPT. Data extraction methods for systematic review (semi)automation: a living review protocol. F1000Research. 2020;9:210.

    Article  Google Scholar 

  24. Wise J, de Barron AG, Splendiani A, Balali-Mood B, Vasant D, Little E, et al. Implementation and relevance of FAIR data principles in biopharmaceutical R&D. Drug Discov Today. 2019;24(4):933–8.

    Article  Google Scholar 

  25. Alper BS, Richardson JE, Lehmann HP, Subbian V. It is time for computable evidence synthesis: the COVID-19 knowledge accelerator initiative. J Am Med Inform Assoc. 2020;27(8):1338–9.

    Article  Google Scholar 

  26. Scott I, Cook D, Coiera E. Evidence-based medicine and machine learning: a partnership with a common purpose. BMJ Evid-Based Med. 2020;bmjebm-2020-111379.

    Google Scholar 

  27. Schünemann HJ. All evidence is real world evidence – The BMJ [Internet]. [cited 2021 Jan 3]. Available from: https://blogs.bmj.com/bmj/2019/03/29/holger-j-schunemann-all-evidence-is-real-world-evidence/

  28. Franklin JM, Patorno E, Desai RJ, Glynn RJ, Martin D, Quinto K, et al. Emulating randomized clinical trials with nonrandomized real-world evidence studies: first results from the RCT DUPLICATE initiative. Circulation. 2020; CIRCULATIONAHA.120.051718.

    Google Scholar 

  29. Bédard A, Basagaña X, Anto JM, Garcia-Aymerich J, Devillier P, Arnavielhe S, et al. Mobile technology offers novel insights into the control and treatment of allergic rhinitis: the MASK study. J Allergy Clin Immunol. 2019;144(1):135–143.e6.

    Article  Google Scholar 

  30. Robinson KA, Brunnhuber K, Ciliska D, Juhl CB, Christensen R, Lund H. What evidence-based research is and why is it important? J Clin Epidemiol. 2020;S0895435620310957

    Google Scholar 

  31. Alonso-Coello P, Schünemann HJ, Moberg J, Brignardello-Petersen R, Akl EA, Davoli M, et al. GRADE Evidence to Decision (EtD) frameworks: a systematic and transparent approach to making well informed healthcare choices. 1: Introduction. BMJ. 2016;353:i2016.

    Article  Google Scholar 

  32. Couët N, Desroches S, Robitaille H, Vaillancourt H, Leblanc A, Turcotte S, et al. Assessments of the extent to which health-care providers involve patients in decision making: a systematic review of studies using the OPTION instrument. Health Expect. 2015;18(4):542–61.

    Article  Google Scholar 

  33. Parimbelli E, Wilk S, Kingwell S, Andreev P, Michalowski W. Shared decision-making ontology for a healthcare team executing a workflow, an instantiation for metastatic spinal cord compression management. AMIA Annu Symp Proc AMIA Symp. 2018;2018:877–86.

    PubMed  Google Scholar 

  34. Yang J, Xiao L, Li K. Modelling clinical experience data as an evidence for patient-oriented decision support. BMC Med Inform Decis Mak. 2020;20(S3):138.

    Article  Google Scholar 

  35. Bilici E, Despotou G, Arvanitis TN. The use of computer-interpretable clinical guidelines to manage care complexities of patients with multimorbid conditions: a review. Digit Health. 2018;4:205520761880492.

    Article  Google Scholar 

  36. Čyras K, Oliveira T. Resolving conflicts in clinical guidelines using argumentation. ArXiv190207526 Cs [Internet]. 2019 [cited 2021 Jan 5]; Available from: http://arxiv.org/abs/1902.07526

  37. Etheredge LM. A rapid-learning health system: what would a rapid-learning health system look like, and how might we get there? Health Aff (Millwood). 2007;26(Suppl1):w107–18.

    Article  Google Scholar 

  38. Norgeot B, Glicksberg BS, Butte AJ. A call for deep-learning healthcare. Nat Med. 2019;25(1):14–5.

    Article  CAS  Google Scholar 

  39. Topol EJ. Deep medicine: how artificial intelligence can make healthcare human again. 1st ed. New York: Basic Books; 2019. 1 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur J. Nowak .

Editor information

Editors and Affiliations

Electronic Supplementary Martials

(MP4 214923 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nowak, A.J. (2022). Artificial Intelligence in Evidence-Based Medicine. In: Lidströmer, N., Ashrafian, H. (eds) Artificial Intelligence in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-64573-1_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64573-1_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64572-4

  • Online ISBN: 978-3-030-64573-1

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics