Skip to main content

Artificial Intelligence in Medicine Using Quantum Computing in the Future of Healthcare

  • Reference work entry
  • First Online:
Artificial Intelligence in Medicine

Abstract

The concept of quantum computing has evolved over nearly a century to a point now where it is no longer science-fiction. However, conceptual extensions of quantum computation and many body systems to quantum clinical medicine and quantum surgery are completely original areas that are yet to be realized in terms of their development and full potential. Novel formalisms and approaches will have to evolve to enable these areas to fully materialize and mature into safe clinical applications that will benefit mankind.

Nevertheless, factors paving the way for this exciting area of medical and future surgical science include the exponential advances in computational power gained through newly evolved mathematical formalisms for algorithmic design such as quantum mechanics, category theory, quantum algebraic geometry and others, coupled with advances in precision nanoengineering.

This chapter offers a cursory non-exhaustive primer to the topic of quantum machine learning for medicine, surgery and healthcare, highlighting some of the areas where the authors theorise that quantum computing will help augment medicine, surgery and healthcare to usher in next-level precision medical diagnostics and therapeutics. In the not-too-distant future, quantum medicine and surgery will offer the ability to re-calibrate the continuous state of flux that occurs in conditions like cancer and neurological diseases to a manageably consistent curative state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Braibant S, Giacomelli G, Spurio M. Particles and fundamental interactions: an introduction to particle physics. 2nd ed. Springer; 2012.

    Book  Google Scholar 

  2. Phillips R. In retrospect: the Feynman lectures on physics. Nature. 2013;504(7478):30–1.

    Article  CAS  Google Scholar 

  3. Albrecht A, et al. Self-assembling hybrid diamond–biological quantum devices. New J Phys. 2014;169:093002.

    Article  Google Scholar 

  4. Calafell A, et al. Quantum computing with graphene plasmons. npj Quantum Inf. 2019;5:37. https://doi.org/10.1038/s41534-019-0150-2.

    Article  Google Scholar 

  5. Chawla P, Chandrashekar CM. Quantum walks in polycyclic aromatic hydrocarbons. arXiv:201214463v1 [quant-ph]. 2020.

    Google Scholar 

  6. Shim J, et al. Robust dynamical decoupling for arbitrary quantum statesof a single NV center in diamond. EPL. 2012;99:40004. https://doi.org/10.1209/0295-5075/99/40004.

    Article  CAS  Google Scholar 

  7. McKie R. Carbon Capture Vodka, toothpaste, yoga mats … the new technology making items out of thin air. Guardian Newspaper, 2021.

    Google Scholar 

  8. Simon C. Natural entanglement in Bose-Einstein condensates. Phys Rev A. 2002; 665.

    Google Scholar 

  9. Watson JD, Crick F. A structure for deoxyribose nucleic acid. Nature. 1953;171:737–8.

    Article  CAS  Google Scholar 

  10. Deaton R. DNA and quantum computers. GECCO’01: Proceedings of the 3rd annual conference on genetic and evolutionary computation July 2001. 2001. p. 989–96.

    Google Scholar 

  11. Mohamed K. Neuromorphic computing and beyond: parallel, approximation, near memory, and quantum. Springer Nature; 2020.

    Book  Google Scholar 

  12. Xin H, Sim WJ, Namgung B, Choi Y, Li B, Lee LP. Quantum biological tunnel junction for electron transfer imaging in live cells. Nat Commun. 2019;10(1):3245.

    Article  Google Scholar 

  13. Zhang Y, Wang F, Chao J, et al. DNA origami cryptography for secure communication. Nat Commun. 2019;10:5469. https://doi.org/10.1038/s41467-019-13517-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Panda D, Molla KA, Baig MJ, Swain A, Behera D, Dash M. DNA as a digital information storage device: hope or hype? 3 Biotech. 2018;8(5):239. https://doi.org/10.1007/s13205-018-1246-7. PMC 5935598

    Article  PubMed  PubMed Central  Google Scholar 

  15. Shannon CE. A mathematical theory of communication. Bell Syst Tech J. 1948;27(3):379–423. https://doi.org/10.1002/j1538-7305.1948.tb01338.x. hdl:10338dmlcz/101429

    Article  Google Scholar 

  16. Chiribella G, Kristjánsson H. Quantum Shannon theory with superpositions of trajectories. Proc R Soc A. 2018. https://doi.org/10.1098/rspa.2018.0903.

  17. Collier B, MacLachlan J. Charles Babbage: and the engines of perfection. Oxford University Press; 2000. p. 29–30. ISBN 978-0-19-514287-7.

    Google Scholar 

  18. Hegade N, et al. Experimental demonstration of quantum tunneling in IBM quantum computer. arXiv:171207326v4:1-42. 2019.

    Google Scholar 

  19. Conover E. The new light-based quantum computer Jiuzhang has achieved quantum supremacy. Science News. 2020. Retrieved December 07, 2020.

    Google Scholar 

  20. Arute F, Arya K, Babbush R, et al. Quantum supremacy using a programmable superconducting processor. Nature. 2019;574:505–10. https://doi.org/10.1038/s41586-019-1666-5.

    Article  CAS  PubMed  Google Scholar 

  21. Rosser J. An informal exposition of proofs of Godel’s theorem and Church’s theorem. J Symb Log. 1939;4(2):53–60. https://doi.org/10.2307/2269059. JSTOR 2269059.

    Article  Google Scholar 

  22. Deutsch D. Quantum theory, the Church-Turing principle and the universal quantum computer. Proc R Soc A. 1985;400(1818):97–117.

    Google Scholar 

  23. Benioff P. Quantum mechanical hamiltonian models of turing machines. J Stat Phys. 1982;29(3):515–46.

    Article  Google Scholar 

  24. Fallek S, Herold CD, McMahon BJ, Maller KM, Brown KR, Amini JM. Transport implementation of the Bernstein–Vazirani algorithm with ion qubits. New J Phys. 2016; 18. https://doi.org/10.1088/1367-2630/aab341.

  25. Bernstein E, Vazirani U. Quantum complexity theory. SIAM J Comput. 1997;26(5):1411–73. https://doi.org/10.1137/S0097539796300921.

    Article  Google Scholar 

  26. Ball P. Physicists in China challenge Google’s ‘quantum advantage’. Nature. 2020;588(7838):380.

    Article  CAS  Google Scholar 

  27. Steane A. The ion trap quantum information processor. Appl Phys B Lasers Opt. 1997;64:623–42.

    Article  CAS  Google Scholar 

  28. Kadowaki T, Nishimori H. Quantum annealing in the transverse Ising model. Phys Rev E. 1998;58:5355.

    Article  CAS  Google Scholar 

  29. Farhi E, et al. A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science. 2001;292:472–5.

    Article  CAS  Google Scholar 

  30. Li RY, Di Felice R, Rohs R, et al. Quantum annealing versus classical machine learning applied to a simplified computational biology problem. npj Quantum Inf. 2018;4:14. https://doi.org/10.1038/s41534-018-0060-8.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ivády V, Davidsson J, Delegan N, et al. Stabilization of point-defect spin qubits by quantum wells. Nat Commun. 2019;10:5607. https://doi.org/10.1038/s41467-019-13495-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Saffman M. Quantum computing with neutral atoms. Natl Sci Rev. 2019;6(1):24–5.

    Article  CAS  Google Scholar 

  33. Lahtinen V, Pachos J. A short introduction to topological quantum computation. arXiv: Mesoscale and Nanoscale Physics. 2017.

    Google Scholar 

  34. Tan S-H, Rohde PP. The resurgence of the linear optics quantum interferometer – recent advances & applications. Rev Phys. 2019;4:100030.

    Article  Google Scholar 

  35. Watson T, Philips S, Kawakami E, et al. A programmable two-qubit quantum processor in silicon. Nature. 2018;555:633–7. https://doi.org/10.1038/nature25766.

    Article  CAS  PubMed  Google Scholar 

  36. Ramamoorthya A. Switching characteristics of coupled quantum wires with tunable coupling strength. Appl Phys Lett. 2006;89:013118. https://doi.org/10.1063/1.2219085.

    Article  CAS  Google Scholar 

  37. Qiu X, Zou J, Qi X, et al. Precise programmable quantum simulations with optical lattices. npj Quantum Inf. 2020;6:87. https://doi.org/10.1038/s41534-020-00315-9.

    Article  Google Scholar 

  38. Ansaloni F, Chatterjee A, Bohuslavskyi H, Bertrand B, Hutin L, Vinet M, et al. Single-electron operations in a foundry-fabricated array of quantum dots. Nat Commun. 2020. https://doi.org/10.1038/s41467-020-20280-3.

  39. Cory D, Fahmy A, Havel T. Ensemble quantum computing by NMR spectroscopy. Proc Natl Acad Sci. 1997;94(5):1634–9. https://doi.org/10.1073/pnas.94.5.1634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kane BE. A silicon-based nuclear spin quantum computer. Nature. 1998;393:133.

    Article  CAS  Google Scholar 

  41. Badrutdinov A, et al. Nonlinear transport of the inhomogeneous Wigner solid in a channel geometry. Phys Rev B. 2016. https://doi.org/10.1103/PhysRevB.94.195311.

  42. Ohlsson N, Krishna Mohan R, Kröll S. Quantum computer hardware based on rare-earth-ion-doped inorganic crystals. Opt Commun. 2002;201(1):71–7.

    Article  CAS  Google Scholar 

  43. Blais A, Girvin SM, Oliver WD. Quantum information processing and quantum optics with circuit quantum electrodynamics. Nat Phys. 2020;16:247–56. https://doi.org/10.1038/s41567-020-0806-z.

    Article  CAS  Google Scholar 

  44. Náfrádi B, Choucair M, Dinse KP, et al. Room temperature manipulation of long lifetime spins in metallic-like carbon nanospheres. Nat Commun. 2016;7:12232. https://doi.org/10.1038/ncomms12232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ju C, Suter D, Du J. An endohedral fullerene-based nuclear spin quantum computer. Phys Lett A. 2011;375(12):1441–4.

    Article  CAS  Google Scholar 

  46. Bradley CE, Randall J, Abobeih MH, Berrevoets RC, Degen MJ, Bakker MA, et al. A ten-qubit solid-state spin register with quantum memory up to one minute. Phys Rev X. 2019;9(3):031045.

    CAS  Google Scholar 

  47. Andrianov SN, Moiseev SA. Magnon qubit and quantum computing on magnon Bose-Einstein condensates. Phys Rev A. 2014;90(4):042303.

    Article  Google Scholar 

  48. Microsoft. Introduction to Azure Quantum Online: Microsoft; 2020. Available from: https://docs.microsoft.com/en-us/azure/quantum/overview-azure-quantum

  49. AtomComputing. Atom Computing: Atom Computing. Available from: https://www.atom-computing.com/

  50. XanaduQuantum. Xanadu Quantum Cloud. 2021. Available from: https://www.xanadu.ai/

  51. IBM. IBM Quantum Experience. 2021. Available from: https://quantum-computing.ibm.com/

  52. ColdQuanta. Cold Quanta Quantum Computing. 2021. Available from: https://coldquanta.com/

  53. DWave. D-Wave Quantum Computing. Dwave; 2021. Available from: https://www.dwavesys.com/quantum-computing

  54. StrangeWorks. Strange Works Quantum Computing. 2021. Available from: https://strangeworks.com/

  55. Hou S-y, et al. SpinQ Gemini: a desktop quantum computer for education and research. arXiv:210110017v2 [quant-ph]. 2021.

    Google Scholar 

  56. Drexler KE. Reframing superintelligence: comprehensive AI services as general intelligence. Technical Report #2019-1. Future of Humanity Institute, Universityof Oxford; 2019. https://www.fhi.ox.ac.uk/wp-content/uploads/Reframing_Superintelligence_FHI-TR-2019-1.1-1.pdf

  57. Sandberg A, Bostrom N. Whole brain emulation: a roadmap. Technical Report #2008-3. Future of Humanity Institute, Oxford University; 2008. www.fhi.ox.ac.uk/reports/2008-3.pdf

  58. Scherer W. Mathematics of quantum computing. Springer Nature Switzerland AG; 2019.

    Book  Google Scholar 

  59. Ambainis A. What can we do with a quantum computer? How quantum information could lead to a better understanding of the principles of all quantum systems. Institute of Advanced Study; 2014. Available from: https://www.ias.edu/ideas/2014/ambainis-quantum-computing

  60. Sen D. The uncertainty relations in quantum mechanics. Curr Sci. 2014;107(2):203–18.

    Google Scholar 

  61. Nimtz G. Tunneling violates special relativity. arXiv:10033944. 2010.

    Google Scholar 

  62. Ciaglia FM, Ibort A, Marmo G. Schwinger’s picture of quantum mechanics I: groupoids. Int J Geom Meth Mod Phys. 2019;1608:1950119.

    Article  Google Scholar 

  63. Styer D, et al. Nine formulations of quantum mechanics. Am J Phys. 2002;70:288–97. https://doi.org/10.1119/1.1445404.

    Article  Google Scholar 

  64. Solenov D, et al. The potential of quantum computing and machine learning to advance clinical research and change the practice of medicine. Mo Med. 2018;115(5):463–7.

    PubMed  PubMed Central  Google Scholar 

  65. Musk E, Neuralink. An integrated brain-machine interface platform with thousands of channels. J Med Internet Res. 2019;21(10):e16194. https://doi.org/10.2196/16194. PMID: 31642810 PMCID: 6914248.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Spielmann C, Szipocs R, Stingl A, Krausz F. Tunneling of optical pulses through photonic band gaps. Phys Rev Lett. 1994;73:2308–11.

    Article  CAS  Google Scholar 

  67. Steinberg A, Kwiat PG, Chiao RY. Measurement of the single-photon tunneling time. Phys Rev Lett. 1993;71:708–11.

    Article  CAS  Google Scholar 

  68. Sekatskii S, Letokhov V. Electron tunneling time measurement by field-emission microscopy. Phys Rev B. 2001;64:233311, 1–4.

    Article  Google Scholar 

  69. Eckle P, Pfeiffer A, Cirelli C, Staudte A, Dörner R, Muller H, et al. Attosecond ionization and tunneling delay time measurements in helium. Science. 2008;322:1525–9.

    Article  CAS  Google Scholar 

  70. Yang S, Page J, Liu Z, Cowan M, Chan C, Sheng P. Ultrasound tunneling through 3D phononic crystals. Phys Rev Lett. 2002;88:104301, 1–4.

    Article  Google Scholar 

  71. Robertson W, Ash J, McGaugh J. Breaking the sound barrier: tunneling of acoustic waves through the forbidden transmission region of a one-dimensional acoustic band gap array. Am J Phys. 2002;70:689–93.

    Article  Google Scholar 

  72. Lee J, Kang DY, Kim SU, Yea CH, Oh BK, Choi JW. Electrical detection of beta-amyloid (1–40) using scanning tunneling microscopy. Ultramicroscopy. 2009;109(8):923–8. https://doi.org/10.1016/j.ultramic.2009.03.009. Epub 2009 Mar 19.

    Article  CAS  PubMed  Google Scholar 

  73. Sarma S, Deng DL, Duan L-M. Machine learning meets quantum physics. Phys Today. 2019:48–54.

    Google Scholar 

  74. Brilliant.org. Quantum Entanglement. 2021. Retrieved 16:54, April 29, 2021, from https://brilliant.org/wiki/quantum-entanglement/

  75. Holland E. Glioblastoma multiforme: the terminator. Proc Natl Acad Sci U S A. 2000;97(12):6242–4. https://doi.org/10.1073/pnas.97.12.6242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Coppersmith D. An approximate Fourier transform useful in quantum factoring. Technical Report RC19642, IBM. 1994.

    Google Scholar 

  77. Shor PW. Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th annual symposium on foundations of computer science. IEEE Comput Soc Press; 1994. p. 124–34. https://doi.org/10.1109/sfcs1994365700. ISBN 0818665807.

    Chapter  Google Scholar 

  78. Grover LK. A fast quantum mechanical algorithm for database search. In: Proceedings of the twenty-eighth annual ACM symposium on Theory of Computing STOC ‘96 Philadelphia, Pennsylvania, USA. Association for Computing Machinery; 1996. p. 212–9. https://doi.org/10.1145/237814.237866. ISBN 978-0-89791-785-8.

    Chapter  Google Scholar 

  79. Aïmeur E, Brassard G, Gambs S. Quantum clustering algorithms. In: Proceedings of the 24th international conference on Machine learning; Corvalis, Oregon, USA. Association for Computing Machinery; 2007. p. 1–8.

    Google Scholar 

  80. Deutsch D, Jozsa R. Rapid solutions of problems by quantum computation. Proc R Soc Lond A. 1992;439(1907):553–8.

    Article  Google Scholar 

  81. Clark LA, et al. Hidden quantum Markov models and open quantum systems with instantaneous feedback. In: Emergence, complexity and computation. 2015. p. 143–51. 2014.

    Google Scholar 

  82. Cholewa M, et al. Quantum hidden Markov models based on transition operation matrices. Quantum Inf Process. 2017;16:1–19.

    Article  Google Scholar 

  83. Lorenz R, et al. QNLP in practice: running compositional models of meaning on a quantum computer. ArXiv abs/210212846. 2021.

    Google Scholar 

  84. Gupta S, Zia R. Quantum neural networks. J Comput Syst Sci. 2001;63(3):355–83.

    Article  Google Scholar 

  85. Crawford D, Levit A, Ghadermarzy N, Oberoi J, Ronagh P. Reinforcement learning using quantum Boltzmann machines. arXiv:161205695 [quant-ph]. 2018.

    Google Scholar 

  86. Li J, Esteban-Fernandex de Avila B, Gao W, Zhang L, Wang J. Micro/nanorobots for biomedicine: delivery, surgery, sensing and detoxification. Sci Robot. 2017; 2(4). https://doi.org/10.1126/scirobotics.aam6431.

  87. Srivastava R. The role of proton transfer on mutations. Front Chem. 2019;7(536).

    Google Scholar 

  88. Pusuluk O, Farrow T, Deliduman C, Burnett K, Vedral V. Proton tunnelling in hydrogen bonds and its implications in an induced-fit model of enzyme catalysis. Proc R Soc A: Math Phys Eng Sci. 2018;474(2218):20180037.

    Article  Google Scholar 

  89. Kotev M, Sarrat L, Gonzalez CD. User-friendly quantum mechanics: applications for drug discovery. Methods Mol Biol. 2020;2114:231–55. https://doi.org/10.1007/978-1-0716-0282-9_15.

    Article  CAS  PubMed  Google Scholar 

  90. Lodola A, De Vivo M. The increasing role of QM/MM in drug discovery. Adv Protein Chem Struct Biol. 2012;87:337–62. https://doi.org/10.1016/B978-0-12-398312-1.00011-1.

    Article  CAS  PubMed  Google Scholar 

  91. Bryce R. What next for quantum mechanics in structure-based drug discovery? Methods Mol Biol. 2020;2114:339–53. https://doi.org/10.1007/978-1-0716-0282-9_20.

    Article  CAS  PubMed  Google Scholar 

  92. Thomford N, Senthebane D, Rowe A, Munro D, Seele P, Maroyi A, et al. Natural products for drug discovery in the 21st century: innovations for novel drug discovery. Int J Mol Sci. 2018;19(6):1578. https://doi.org/10.3390/ijms19061578. PMID: 29799486; PMCID: PMC6032166.

    Article  CAS  PubMed Central  Google Scholar 

  93. Ashrafian H. How many simulations do we exist in? A practical mathematical solution to the simulation argument. arXiv: Pop Phys. 2020.

    Google Scholar 

  94. Naresh V, Nasralla MM, Reddi S, García-Magariño I. Quantum Diffie-Hellman extended to dynamic quantum group key agreement for e-healthcare multi-agent systems in smart cities. Sensors (Basel). 2020;20(14):3940. https://doi.org/10.3390/s20143940. PMID: 32679823; PMCID: PMC7412309.

    Article  Google Scholar 

  95. Abd-El-Atty B, Iliyasu AM, Alaskar H, Abd El-Latif AA. A robust quasi-quantum walks-based steganography protocol for secure transmission of images on cloud-based E-healthcare platforms. Sensors (Basel). 2020;20(11):3108.

    Article  Google Scholar 

  96. Schreier J, et al. Suppressing charge noise decoherence in superconducting charge qubits. Phys Rev B. 2008;77:180502. https://doi.org/10.1103/PhysRevB77180502, arXiv:07123581.

    Article  Google Scholar 

  97. O’Neil C. Weapons of math destruction: how big data increases inequality and threatens democracy. Crown Publishing Group; 2016.

    Google Scholar 

  98. Caruso F, Crespi A, Ciriolo A, et al. Fast escape of a quantum walker from an integrated photonic maze. Nat Commun. 2016;7:11682. https://doi.org/10.1038/ncomms11682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Davids .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Davids, J., Lidströmer, N., Ashrafian, H. (2022). Artificial Intelligence in Medicine Using Quantum Computing in the Future of Healthcare. In: Lidströmer, N., Ashrafian, H. (eds) Artificial Intelligence in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-64573-1_338

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64573-1_338

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64572-4

  • Online ISBN: 978-3-030-64573-1

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics