Skip to main content

Analytical Methods Used in Biotransformation Studies of Organophosphonates

  • Living reference work entry
  • First Online:
Handbook of Bioanalytics

Abstract

Among diverse organophosphorus compounds, whose residues are determined in various ecosystems, phosphonates possess special meaning. Regarding their biological activity, capability to chelating metal cations, and stability of direct carbon to phosphorus bond under physiological conditions, phosphonic compounds found many various applications. These compounds are commonly used as pesticides, drugs, anticorrosive agents, and additives to surfactants. Common use of these substances results in an increase in their concentration in various ecosystems which may cause considerable ecological problems. Because xenobiotics in the environment are exposed to the action of biotic and abiotic factors that usually leads to their structural changes, it is important to track their fate there. Phosphonic derivatives may be determined (qualitatively and quantitatively) using various specific analytical methods, particularly spectrometry and chromatography; however, analyzing these compounds in environmental samples is still a challenge, which we try to express in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Chin, J. P., McGrath, J. W., & Quinn, J. P. (2016). Microbial transformations in phosphonate biosynthesis and catabolism, and their importance in nutrient cycling. Current Opinion in Chemical Biology, 31, 50–57.

    Article  CAS  PubMed  Google Scholar 

  2. McGrath, J. W., Chin, J. P., & Quinn, J. P. (2013). Organophosphonates revealed: New insights into the microbial metabolism of ancient molecules. Nature Reviews. Microbiology, 11, 412.

    Article  CAS  PubMed  Google Scholar 

  3. Kolowith, L. C., Ingall, E. D., Benner, R., & Carolina, S. (2001). Composition and cycling of marine organic phosphorus. Limnology and Oceanography, 46, 309–320.

    Article  CAS  Google Scholar 

  4. Young, C. L., & Ingall, E. D. (2010). Marine dissolved organic phosphorus composition: Insights from samples recovered using combined electrodialysis/reverse osmosis. Aquatic Geochemistry, 16, 563–574.

    Article  CAS  Google Scholar 

  5. Ternan, N. G., McGrath, J. W., Mullan, G. M., & Quinn, J. P. (1998). Organophosphonates: Occurrence, synthesis and biodegradation by microorganisms. World Journal of Microbiology and Biotechnology, 14(1962), 635–647.

    Article  CAS  Google Scholar 

  6. Forlani, G., Lejczak, B., & Kafarski, P. (1999). The herbicidally active compound N-2-(6-methyl-pyridyl)aminomethylene bisphosphonic acid inhibits in vivo aromatic biosynthesis. Plant Growth Regulation, 18, 73–79.

    Article  CAS  Google Scholar 

  7. Dill, G. M., Sammons, D. R., Feng, P., Kohn, F., Kretzmer, K., Mehrsheikh, A., Bleeke, M., Honegger, J. L., Farmer, D., Wright, D., & Haupfear, E. A. (2010). Glyphosate: Discovery, development, applications, and properties. Glyphosate resistance in crops and weeds. John Wiley & Sons.

    Google Scholar 

  8. Coupe, R. H., Kalkhoff, S. J., Capel, P. D., & Gregoire, C. (2012). Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins. Pest Management Science, 68, 16–30.

    Article  CAS  PubMed  Google Scholar 

  9. Heap, I., & Duke, S. O. (2018). Overview of glyphosate-resistant weeds worldwide. Pest Management Science, 74, 1040–1049.

    Article  CAS  PubMed  Google Scholar 

  10. Kafarski, P., & Lejczak, B. (2001). Aminophosphonic acids of potential medical importance. Current Medicinal Chemistry – Anti-Cancer Agents, 1, 301–312.

    Article  CAS  PubMed  Google Scholar 

  11. Rott, E., Steinmetz, H., & Metzger, J. W. (2018). A review on environmental relevance, biodegradability and removal in wastewater treatment plants. Science of the Total Environment, 615, 1176–1191.

    Article  CAS  Google Scholar 

  12. Nowack, B. (2003). Environmental chemistry of phosphonates. Water Research, 11, 2533–2546.

    Article  Google Scholar 

  13. Jaworska, J., Van De Plassche, E., & Feijtel, T. (2002). Environmental risk assessment of phosphonates, used in domestic laundry and cleaning agents in the Netherlands. Chemosphere, 47, 655–665.

    Article  CAS  PubMed  Google Scholar 

  14. Pfeffer, M., & Fuerhacker, M. (2005). Photodegradation of phosphonates in water. Chemosphere, 59, 685–691.

    Article  PubMed  Google Scholar 

  15. Nowack, B., & Stone, A. T. (2000). Degradation of nitrilotris(methylenephosphonic acid) and related (amino)phosphonate chelating agents in the presence of manganese and molecular oxygen. Environmental Science & Technology, 34, 4759–4765.

    Article  CAS  Google Scholar 

  16. OECD guidelines for the testing of chemicals, section 3. (1992). Environmental Fate and Behaviour. Accessed 30 June 2019.

    Google Scholar 

  17. Kononova, S. V., & Nesmeyanova, M. A. (2002). Phosphonates and their degradation by microorganisms. Biochemistry (Moscow), 67, 184–195.

    Article  CAS  Google Scholar 

  18. Lipok, J., Owsiak, T., Młynarz, P., Forlani, G., & Kafarski, P. (2007). Phosphorus NMR as a tool to study mineralization of organophosphonates – The ability of Spirulina spp. to degrade glyphosate. Enzyme and Microbial Technology, 41, 286–291.

    Article  CAS  Google Scholar 

  19. Daughton, C. G., Cook, A. M., & Alexander, M. (1979). Bacterial conversion of alkylphosphonates to natural products via carbon-phosphorus bond cleavage. Journal of Agricultural and Food Chemistry, 27, 1375–1382.

    Article  CAS  Google Scholar 

  20. Ford, J. L., Kaakoush, N. O., & Mendz, G. L. (2010). Phosphonate metabolism in Helicobacter pylori. Antonie Van Leeuwenhoek, 97, 51–60.

    Article  CAS  PubMed  Google Scholar 

  21. Horsman, G. P., & Zechel, D. L. (2017). Phosphonate biochemistry. Chemical Reviews, 17, 5704–5783.

    Article  Google Scholar 

  22. McSorley, F. R., Wyatt, P. B., Martinez, A., DeLong, E. F., Hove-Jensen, B., & Zechel, D. L. (2012). PhnY and PhnZ comprise a new oxidative pathway for enzymatic cleavage of a carbon – phosphorus bond. Journal of the American Chemical Society, 134, 8364–8367.

    Article  CAS  PubMed  Google Scholar 

  23. Kamat, S., Williams, H. J., & Raushel, F. M. (2011). Intermediates in the transformation of phosphonates to phosphate by bacteria. Nature, 480, 570–573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Singh, B. K., & Walker, A. (2006). Microbial degradation of organophosphonic compounds. FEMS Microbiology Reviews, 30, 428–471.

    Article  CAS  PubMed  Google Scholar 

  25. Drzyzga, D., Forlani, G., Vermander, J., & Kafarski, P. (2017). Biodegradation of the aminopolyphosphonate DTPMP by the cyanobacterium Anabaena variabilis proceeds via a C-P lyase-independent pathway. Environmental Microbiology, 19, 1065–1076.

    Article  CAS  PubMed  Google Scholar 

  26. Studnik, H., Liebsch, S., Forlani, G., Wieczorek, D., Kafarski, P., & Lipok, J. (2015). Amino polyphosphonates – Chemical features and practical uses, environmental durability and biodegradation. New Biotechnology, 32, 1–6.

    Article  CAS  PubMed  Google Scholar 

  27. Forlani, G., Prearo, V., Wieczorek, D., Kafarski, P., & Lipok, J. (2011). Phosphonate degradation by Spirulina strains: cyanobacterial biofilters for the removal of anticorrosive polyphosphonates from wastewater. Enzyme and Microbial Technology, 48, 299–305.

    Article  CAS  PubMed  Google Scholar 

  28. Nowack, B. (2004). Environmental chemistry of phosphonic acids. In E. Valsami-Jones (Ed.), Phosphorus in environmental technology: Principles and applications (pp. 147–173). IWA.

    Google Scholar 

  29. Salmon-Monviola, J., Gascuel-Odoux, C., Garcia, F., Tortrat, F., Cordier, M., Masson, V., & Trépos, R. (2011). Simulating the effect of technical and environmental constraints on the spatio-temporal distribution of herbicide applications and stream losses. Agriculture, Ecosystems and Environment, 140, 382–394.

    Article  Google Scholar 

  30. Tsui, M. T., & Chu, L. M. (2008). Environmental fate and non-target impact of glyphosate-based herbicide (Roundup®) in a subtropical wetland. Chemosphere, 71, 439–446.

    Article  CAS  PubMed  Google Scholar 

  31. Gledhil, W. E., & Feijtel, T. C. (1992). Environmental properties and safety assessment of organic phosphonates used for detergent and water treatment applications. In The Handbook of Environmental Chemistry (Vol. 3, pp. 261–285). Springer-Verlag, Berlin Heidelberg GmbH.

    Google Scholar 

  32. Schowanek, D., McAvoy, D., Versteeg, D., & Hanstveit, A. (1996). Effects of nutrient trace metal speciation on algal growth in the presence of the chelator [S,S]-EDDS. Aquatic Toxicology, 36, 253–275.

    Article  CAS  Google Scholar 

  33. Project HERA, Phosphonates. (2004). Human & environmental risk assessment on ingredients of European household cleaning products.

    Google Scholar 

  34. Baldwin, D. S. (2013). Organic phosphorus in the aquatic environment. Environment and Chemistry, 10, 439–454.

    Article  CAS  Google Scholar 

  35. Smith, V. H. (2003). Eutrophication of freshwater and coastal marine ecosystems: A global problem. Environmental Science and Pollution Research, 10, 126–139.

    Article  CAS  PubMed  Google Scholar 

  36. O’Neil, J. M., Davis, T. W., Burford, M. A., & Gobler, C. J. (2012). The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae, 14, 313–334.

    Article  Google Scholar 

  37. Richard, S., Moslemi, S., Sipahutar, H., Benachour, N., & Seralini, G. E. (2005). Differential effects of glyphosate and roundup on human placental cells and aromatase. Environmental Health Perspectives, 113, 716–720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Connolly, A., Jones, K., Basinas, I., Galea, K. S., Kenny, L., McGowan, P., & Cogging, M. A. (2019). Exploring the half-life of glyphosate in human urine samples. International Journal of Hygiene and Environmental Health, 222, 205–210.

    Article  CAS  PubMed  Google Scholar 

  39. Gillezeau, C., Gerwen, M., Shaffer, R. M., Rana, I., Zhang, L., Sheppard, L., & Taioli, E. (2019). The evidence of human exposure to glyphosate: A review. Environmental Health, 18, 1–14.

    Article  Google Scholar 

  40. Annett, R., Habibi, H. R., & Hontela, A. (2014). Impact of glyphosate and glyphosate-based herbicides on the freshwater environment. Journal of Applied Toxicology, 34, 458–479.

    Article  CAS  PubMed  Google Scholar 

  41. Stalikas, C. D., & Konidari, C. N. (2001). Analytical methods to determine phosphonic and amino acid group-containing pesticides. Journal of Chromatography. A, 907, 1–19.

    Article  CAS  PubMed  Google Scholar 

  42. Arkan, T., & Molnar-Perl, I. (2015). The role of derivatization techniques in the analysis of glyphosate and aminomethylphosphonic acid by chromatography. Microchemical Journal, 121, 99–106.

    Article  CAS  Google Scholar 

  43. Ding, J., Guo, H., Liu, W., Zhang, W., & Wang, W. (2015). Current progress on the detection of glyphosate in environmental samples. Journal of Applied Biomedicine, 3, 88–95.

    Google Scholar 

  44. Alexa, E., Hafner, M., Negrea, M., & Lazureanu, A. (2008). HPLC and GC determination of glyphosate and aminomethylphosphonic acid (AMPA) in water samples. In 43rd Croatian and 3rd International Symposium on Agriculture.

    Google Scholar 

  45. Lundgren, L. (1986). A new method for the determination of glyphosate and (aminomethyl)phosphonic acid residues in soils. Journal of Agricultural and Food Chemistry, 34, 535–538.

    Article  CAS  Google Scholar 

  46. Drzyzga, D., & Lipok, J. (2017). Analytical insight into degradation processes of aminopolyphosphonates as potential factors that induce cyanobacterial blooms. Environmental Science and Pollution Research, 24, 24364–24375.

    Article  CAS  PubMed  Google Scholar 

  47. Nowack, B. (1997). Determination of phosphonates in natural waters by ion-pair HPLC. Journal of Chromatography. A, 773, 139–146.

    Article  CAS  PubMed  Google Scholar 

  48. Borjesson, E., & Torstensson, L. (2000). New methods for determination of glyphosate and (aminomethyl) phosphonic acid in water and soil. Journal of Chromatography. A, 886, 207–216.

    Article  CAS  PubMed  Google Scholar 

  49. Alferness, P. L., & Iwata, Y. (1994). Determination of glyphosate and (aminomethyl)phosphonic acid in soil, plant and animal matrices, and water by capillary gas chromatography with mass-selective detection. Journal of Agricultural and Food Chemistry, 42, 2751–2759.

    Article  CAS  Google Scholar 

  50. Ngim, K. K., Green, J., Cuzzi, J., Ocampo, M., & Gu, Z. (2011). Optimized derivatization procedure for characterizing (aminomethyl)phosphonic acid impurities by GC-MS. Journal of Chromatographic Science, 49, 8–14.

    Article  CAS  Google Scholar 

  51. Hori, Y., Fujisawa, M., Shimada, K., & Hirose, Y. (2003). Determination of the herbicide glyphosate and its metabolite in biological specimens by gas chromatography-mass spectrometry. A case of poisoning by roundup herbicide. Journal of Analytical Toxicology, 27, 162–166.

    Article  CAS  PubMed  Google Scholar 

  52. Schmidt, C. K., Raue, B., Brauch, H. J., & Sacher, F. (2014). Trace-level analysis of phosphonates in environmental waters by ion chromatography and inductively coupled plasma mass spectrometry. International Journal of Environmental Analytical Chemistry, 94(4), 385–398.

    Article  CAS  Google Scholar 

  53. Oromí-Farrús, M., Minguell, J. M., Oromi, N., & Canela-Garayoa, R. (2013). A reliable method for quantification of phosphonates and their impurities by 31P NMR. Analytical Letters, 46(12), 1910–1921.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Centre, Poland (NCN) grant number 2017/27/B/NZ4/00698.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Lipok .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wieczorek, D., Drzyzga, D., Lipok, J. (2022). Analytical Methods Used in Biotransformation Studies of Organophosphonates. In: Buszewski, B., Baranowska, I. (eds) Handbook of Bioanalytics. Springer, Cham. https://doi.org/10.1007/978-3-030-63957-0_44-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63957-0_44-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63957-0

  • Online ISBN: 978-3-030-63957-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics