Skip to main content

Laser-Induced Non-thermal Processes

  • Reference work entry
  • First Online:
Handbook of Laser Micro- and Nano-Engineering

Abstract

This chapter focuses on the processes after the laser excitation and before the heat dissipation from the excited electron gas to the lattice by electron-phonon coupling. During this time period, rapid thermalization among electrons takes place, but the electronic system remains out of equilibrium with atomic vibrations (phonons) for some picoseconds. In this state, processes such as hot electron emission, Coulomb explosion, non-thermal melting, and non-thermal expansion due to hot electron pressure can occur until the electron-phonon equilibrium has been reached.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,199.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aeschlimann M, Bauer M, Bayer D, Brixner T, Cunovic S, Dimler F, Fischer A, Pfeiffer W, Rohmer M, Schneider C, Steeb F, Strüber C, Voronine DV (2010) Spatiotemporal control of nanooptical excitations. PNAS 107:5329–5333

    Article  ADS  Google Scholar 

  • Anisimov SI, Kapeliovich BL, Perelman TL (1974) Electron emission from metal surfaces exposed to ultrashort laser pulses. Sov Phys JETP 39:375–377

    ADS  Google Scholar 

  • Apostolova T, Perlado JM, Rivera A (2015) Femtosecond laser irradiation induced-high electronic excitation in band gap materials: a quantum-kinetic model based on Boltzmann equation. Nucl Instrum Methods Phys Res, Sect B 352:167–170

    Article  ADS  Google Scholar 

  • Armbruster O, Naghilou A, Kautek W (2018) The role of defects in laser-matter interaction. In: Dinescu M, Geohegan DB, Miotello A, Ossi PM (eds) Advances in the application of lasers in materials science. Springer Series in Materials Science, vol 274. Springer, Cham

    Google Scholar 

  • Balasubramani T, Jeong SH (2007) Simulation of the thermionic emission during ultrashort pulse laser ablation of metals. J Phys Conf Ser 59:595–599

    Article  ADS  Google Scholar 

  • Bäuerle D (2010) Laser chemical processing: an overview to the 30th anniversary. Appl Phys A Mater Sci Process 101:447–459

    Article  ADS  Google Scholar 

  • Bäuerle D (2011) Laser processing and chemistry. Springer, Heidelberg

    Book  Google Scholar 

  • Benderskii VA, Benderskii AV (1995) Laser electrochemistry of intermediates. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Besteiro LV, Yu P, Wang Z, Holleitner AW, Hartland GV, Wiederrecht GP, Govorov AO (2019) The fast and the furious: ultrafast hot electrons in plasmonic metastructures. Size and structure matter. Nano Today 27:120–145

    Article  Google Scholar 

  • Bonn M, Denzler DN, Funk S, Wolf M, Wellershoff S-S, Hohlfeld J (2000) Ultrafast electron dynamics at metal surfaces: competition between electron-phonon coupling and hot-electron transport. Phys Rev B 61:1101–1105

    Article  ADS  Google Scholar 

  • Brodsky A, Pleskov Y (1972) Electron photoemission at a metal-electrolyte solution interface. Prog Surf Sci 2:1–73

    Article  ADS  Google Scholar 

  • Bulgakova NM, Stoian R, Rosenfeld A, Hertel IV, Campbell EEB (2004) Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials. Phys Rev B 69:054102

    Article  ADS  Google Scholar 

  • Bulgakova NM, Stoian R, Rosenfeld A, Hertel IV, Marine W, Campbell EEB (2005) A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: the problem of coulomb explosion. Appl Phys A Mater Sci Process 81:345–356

    Article  ADS  Google Scholar 

  • Buzzi M, Först M, Mankowsky R, Cavalleri A (2018) Probing dynamics in quantum materials with femtosecond X-rays. Nat Rev Mater 3:299–311

    Article  ADS  Google Scholar 

  • Carpene E (2006) Ultrafast laser irradiation of metals: beyond the two-temperature model. Phys Rev B 74:024301

    Article  ADS  Google Scholar 

  • Castillejo M, Ossi P, Zhigilei L (2014) Lasers in materials science. Springer Series in Materials Science, vol 191. Springer, Cham

    Google Scholar 

  • Costache F, Reif J (2004) Femtosecond laser induced coulomb explosion from calcium fluoride. Thin Solid Films 453–454:334–339

    Article  Google Scholar 

  • Costache F, Henyk M, Reif J (2003) Surface patterning on insulators upon femtosecond laser ablation. Appl Surf Sci 208–209:486–491

    Article  ADS  Google Scholar 

  • Dushman S (1930) Thermionic emission. Rev Mod Phys 2:381–476

    Article  ADS  Google Scholar 

  • Ellison W, Lamkaouchi K, Moreau J-M (1996) Water: a dielectric reference. J Mol Liq 68:171–279

    Article  Google Scholar 

  • Fourkal E, Bychenkov VY, Rozmus W, Sydora R, Kirkby C, Capjack CE, Glenzer SH, Baldis HA (2001) Electron distribution function in laser heated plasmas. Phys Plasmas 8:550–556

    Article  ADS  Google Scholar 

  • Fritz DM, Reis DA, Adams B, Akre RA, Arthur J, Blome C, Bucksbaum PH, Cavalieri AL, Engemann S, Fahy S, Falcone RW, Fuoss PH, Gaffney KJ, George MJ, Hajdu J, Hertlein MP, Hillyard PB, Horn-von Hoegen M, Kammler M, Kaspar J, Kienberger R, Krejcik P, Lee SH, Lindenberg AM, McFarland B, Meyer D, Montagne T, Murray ÉD, Nelson AJ, Nicoul M, Pahl R, Rudati J, Schlarb H, Siddons DP, Sokolowski-Tinten K, Tschentscher T, von der Linde D, Hastings JB (2007) Ultrafast bond softening in bismuth: mapping a solid’s interatomic potential with X-rays. Science 315:633–636

    Article  ADS  Google Scholar 

  • Geoffroy G, Duchateau G, Fedorov N, Martin P, Guizard S (2014) Influence of electron coulomb explosion on photoelectron spectra of dielectrics irradiated by femtosecond laser pulses. Laser Phys 24:086101

    Article  ADS  Google Scholar 

  • Gerischer H, Mehl W (1955) Zum Mechanismus der kathodischen Wasserstoffabscheidung an Quecksilber, Silber und Kupfer. Z Elektrochem Ber Bunsenges Phys Chem 59:1049–1059

    Google Scholar 

  • Giri A, Hopkins PE (2015) Transient thermal and nonthermal electron and phonon relaxation after short-pulsed laser heating of metals. J Appl Phys 118:215101

    Article  ADS  Google Scholar 

  • Gloskovskii A, Valdaitsev DA, Cinchetti M, Nepijko SA, Lange J, Aeschlimann M, Bauer M, Klimenkov M, Viduta LV, Tomchuk PM, Schönhense G (2008) Electron emission from films of ag and au nanoparticles excited by a femtosecond pump-probe laser. Phys Rev B 77:195427

    Article  ADS  Google Scholar 

  • Goldman JR, Prybyla JA (1994) Ultrafast dynamics of laser-excited electron distributions in silicon. Phys Rev Lett 72:1364–1367

    Article  ADS  Google Scholar 

  • Groeneveld RHM, Sprik R, Lagendijk A (1995) Femtosecond spectroscopy of electron-electron and electron-phonon energy relaxation in Ag and Au. Phys Rev B 51:11433–11445

    Article  ADS  Google Scholar 

  • Hamann CH, Vielstich W (2005) Elektrochemie. Wiley-VCH, Weinheim

    Google Scholar 

  • Hase M, Fons P, Mitrofanov K, Kolobov AV, Tominaga J (2015) Femtosecond structural transformation of phase-change materials far from equilibrium monitored by coherent phonons. Nat Commun 6:8367

    Article  ADS  Google Scholar 

  • Henyk M, Mitzner R, Wolfframm D, Reif J (2000) Laser-induced ion emission from dielectrics. Appl Surf Sci 154-155:249–255

    Article  ADS  Google Scholar 

  • Higuchi T, Maisenbacher L, Liehl A, Dombi P, Hommelhoff P (2015) A nanoscale vacuum-tube diode triggered by few-cycle laser pulses. Appl Phys Lett 106:051109

    Article  ADS  Google Scholar 

  • Hillyard PB, Reis DA, Gaffney KJ (2008) Carrier-induced disordering dynamics in InSb studied with density functional perturbation theory. Phys Rev B 77:195213

    Article  ADS  Google Scholar 

  • Itsukashi M, Nakashima N, Yatsuhashi T (2018) Coulomb explosion of a series of α, ω-diiodoalkanes in intense laser fields. J Photochem Photobiol A Chem 364:116–123

    Article  Google Scholar 

  • Jeschke HO, Garcia ME, Lenzner M, Bonse J, Krüger J, Kautek W (2002) Laser ablation thresholds of silicon for different pulse durations: theory and experiment. Appl Surf Sci 197-198:839–844

    Article  ADS  Google Scholar 

  • Kabeer FC, Zijlstra ES, Garcia ME (2014) Road of warm dense noble metals to the plasma state: ab initio theory of the ultrafast structural dynamics in warm dense matter. Phys Rev B 89:100301

    Article  ADS  Google Scholar 

  • Karnetzky C, Zimmermann P, Trummer C, Duque Sierra C, Wörle M, Kienberger R, Holleitner A (2018) Towards femtosecond on-chip electronics based on plasmonic hot electron nano-emitters. Nat Commun 9:2471

    Article  ADS  Google Scholar 

  • Kautek W, Armbruster O (2014) Non-thermal material response to laser energy deposition. In: Castillejo M, Ossi P, Zhigilei L (eds) Lasers in materials science. Springer Series in Materials Science, vol 191. Springer, Cham, pp 43–66

    Google Scholar 

  • Kautek W, Krüger J, Lenzner M, Sartania S, Spielmann C, Krausz F (1996) Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps. Appl Phys Lett 69:3146–3148

    Article  ADS  Google Scholar 

  • Kern J, Kullock R, Prangsma J, Emmerling M, Kamp M, Hecht B (2015) Electrically driven optical antennas. Nat Photonics 9:582

    Article  ADS  Google Scholar 

  • Kittel C (2004) Introduction to solid state physics, 8th edn. Wiley

    Google Scholar 

  • Krivenko AG, Krüger J, Kautek W, Benderskii VA (1995) Subpicosecond-pulse-laser-induced electron emission from mercury and silver into aqueous electrolytes. Ber Bunsenges Phys Chem 99:1489–1494

    Article  Google Scholar 

  • Krivenko AG, Kautek W, Krüger J, Benderskii VA (1997) Subpicosecond emission from mercury and silver into electrolyte solution: an experimental study. Russ J Electrochem 33:394–400

    Google Scholar 

  • Krivenko AG, Benderskii VA, Krüger J, Kautek W (1998) Gigantic hydrogen-ion discharge currents initiated by a subpicosecond laser. Russ J Electrochem 34:1068–1075

    Google Scholar 

  • Li S, Li S, Zhang F, Tian D, Li H, Liu D, Jiang Y, Chen A, Jin M (2015) Possible evidence of coulomb explosion in the femtosecond laser ablation of metal at low laser fluence. Appl Surf Sci 355:681–685

    Article  ADS  Google Scholar 

  • Li B, Yang C, Li H, Ji B, Lin J, Tomie T (2019) Thermionic emission in gold nanoparticles under femtosecond laser irradiation observed with photoemission electron microscopy. AIP Adv 9:025112

    Article  ADS  Google Scholar 

  • Lin Z, Zhigilei LV (2006) Time-resolved diffraction profiles and atomic dynamics in short-pulse laser-induced structural transformations: molecular dynamics study. Phys Rev B 73:184113

    Article  ADS  Google Scholar 

  • Lin Z, Zhigilei LV, Celli V (2008) Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys Rev B 77:075133

    Article  ADS  Google Scholar 

  • Medvedev N, Li Z, Ziaja B (2015) Thermal and nonthermal melting of silicon exposed to femtosecond pulses of x-ray irradiation. Proc. SPIE 9511, Damage to VUV, EUV, and X-ray Optics V, 95110I. https://doi.org/10.1117/12.2182765

  • Mueller BY, Rethfeld B (2013) Relaxation dynamics in laser-excited metals under nonequilibrium conditions. Phys Rev B 87:035139

    Article  ADS  Google Scholar 

  • Nie S, Wang X, Park H, Clinite R, Cao J (2006) Measurement of the electronic Gr\"uneisen constant using femtosecond electron diffraction. Phys Rev Lett 96:025901

    Google Scholar 

  • Pandit RR, Sentoku Y, Becker VR, Barrington K, Thurston J, Cheatham J, Ramunno L, Ackad E (2017) Effect of soft-core potentials on inverse bremsstrahlung heating during laser matter interactions. Phys Plasmas 24:073303

    Article  ADS  Google Scholar 

  • Perner M, Gresillon S, Marz J, von Plessen G, Feldmann J, Porstendorfer J, Berg KJ, Berg G (2000) Observation of hot-electron pressure in the vibration dynamics of metal nanoparticles. Phys Rev Lett 85:792–795

    Article  ADS  Google Scholar 

  • Recoules V, Clérouin J, Zérah G, Anglade PM, Mazevet S (2006) Effect of intense laser irradiation on the lattice stability of semiconductors and metals. Phys Rev Lett 96:055503

    Article  ADS  Google Scholar 

  • Reif J (1989) High power laser interaction with the surface of wide bandgap materials. Opt Eng 28:1122–1132

    Article  ADS  Google Scholar 

  • Rethfeld B, Kaiser A, Vicanek M, Simon G (2002) Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation. Phys Rev B 65:214303

    Article  ADS  Google Scholar 

  • Rethfeld B, Ivanov DS, Garcia ME, Anisimov SI (2017) Modelling ultrafast laser ablation. J Phys D Appl Phys 50:193001

    Article  ADS  Google Scholar 

  • Rousse A, Rischel C, Fourmaux S, Uschmann I, Sebban S, Grillon G, Balcou P, Förster E, Geindre JP, Audebert P, Gauthier JC, Hulin D (2001) Non-thermal melting in semiconductors measured at femtosecond resolution. Nature 410:65–68

    Article  ADS  Google Scholar 

  • Rybka T, Ludwig M, Schmalz MF, Knittel V, Brida D, Leitenstorfer A (2016) Sub-cycle optical phase control of nanotunnelling in the single-electron regime. Nat Photonics 10:667–670

    Article  ADS  Google Scholar 

  • Schiffrin A, Paasch-Colberg T, Karpowicz N, Apalkov V, Gerster D, Mühlbrandt S, Korbman M, Reichert J, Schultze M, Holzner S, Barth JV, Kienberger R, Ernstorfer R, Yakovlev VS, Stockman MI, Krausz F (2012) Optical-field-induced current in dielectrics. Nature 493:70

    Article  ADS  Google Scholar 

  • Shank CV, Yen R, Hirlimann C (1983) Time-resolved reflectivity measurements of femtosecond-optical-pulse-induced phase transitions in silicon. Phys Rev Lett 50:454–457

    Article  ADS  Google Scholar 

  • Shugaev MV, Wu C, Armbruster O, Naghilou A, Brouwer N, Ivanov DS, Derrien TJ-Y, Bulgakova NM, Kautek W, Rethfeld B, Zhigilei LV (2016) Fundamentals of ultrafast laser-material interaction. MRS Bull 42:960–968

    Article  ADS  Google Scholar 

  • Siders CW, Cavalleri A, Sokolowski-Tinten K, Tóth C, Guo T, Kammler M, von Hoegen MH, Wilson KR, von der Linde D, Barty CPJ (1999) Detection of nonthermal melting by ultrafast X-ray diffraction. Science 286:1340–1342

    Article  Google Scholar 

  • Silvestrelli PL, Parrinello M (1998) Ab initio molecular dynamics simulation of laser melting of graphite. J Appl Phys 83:2478–2483

    Article  ADS  Google Scholar 

  • Sokolowski-Tinten K, Schulz H, Bialkowski J, von der Linde D (1991) Two distinct transitions in ultrafast solid-liquid phase transformations of GaAs. Appl Phys A Mater Sci Process 53:227–234

    Article  ADS  Google Scholar 

  • Sokolowski-Tinten K, Bialkowski J, von der Linde D (1995) Ultrafast laser-induced order-disorder transitions in semiconductors. Phys Rev B 51:14186–14198

    Article  ADS  Google Scholar 

  • Sokolowski-Tinten K, Blome C, Dietrich C, Tarasevitch A, Horn Von Hoegen M, von der Linde D, Cavalleri A, Squier J, Kammler M (2001) Femtosecond X-ray measurement of ultrafast melting and large acoustic transients. Phys Rev Lett 87:225701

    Article  ADS  Google Scholar 

  • Stoian R, Varel H, Rosenfeld A, Ashkenasi D, Kelly R, Campbell EEB (2000) Ion time-of-flight analysis of ultrashort pulsed laser-induced processing of Al2O3. Appl Surf Sci 165:44–55

    Article  ADS  Google Scholar 

  • Stoian R, Rosenfeld A, Ashkenasi D, Hertel IV, Bulgakova NM, Campbell EEB (2002) Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation. Phys Rev Lett 88:097603

    Article  ADS  Google Scholar 

  • Stuart BC, Feit MD, Herman S, Rubenchik AM, Shore BW, Perry MD (1996) Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. Phys Rev B 53:1749–1761

    Article  ADS  Google Scholar 

  • Tanaka H, Nakashima N, Yatsuhashi T (2016) Anisotropic Coulomb Explosion of CO Ligands in Group 6 Metal Hexacarbonyls: Cr(CO)6, Mo(CO)6, W(CO)6. J Phys Chem A 120:6917–6928

    Article  Google Scholar 

  • Tangney P, Fahy S (2002) Density-functional theory approach to ultrafast laser excitation of semiconductors: application to the A1 phonon in tellurium. Phys Rev B 65:054302

    Article  ADS  Google Scholar 

  • The Nobel Prize in Physics 1928. NobelPrize.org. Nobel Media AB 2020. https://www.nobelprize.org/prizes/physics/1928/

  • van Driel HM (1987) Kinetics of high-density plasmas generated in Si by 1.06- and 0.53-μm picosecond laser pulses. Phys Rev B 35:8166–8176

    Article  ADS  Google Scholar 

  • Vogel A, Noack J, Hüttman G, Paltauf G (2005) Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl Phys B Lasers Opt 81:1015–1047

    Article  ADS  Google Scholar 

  • Wang J, Guo C (2007) Effect of electron heating on femtosecond laser-induced coherent acoustic phonons in noble metals. Phys Rev B 75:184304

    Article  ADS  Google Scholar 

  • Weber ST, Rethfeld B (2019) Phonon-induced long-lasting nonequilibrium in the electron system of a laser-excited solid. Phys Rev B 99:174314

    Article  ADS  Google Scholar 

  • Wellershoff SS, Güdde J, Hohlfeld J, Müller JG, Matthias E (1998) The role of electron-phonon coupling in femtosecond laser damage of metals. Proc SPIE 3343:378–387

    Article  ADS  Google Scholar 

  • Zijlstra ES, Huntemann N, Garcia ME (2008) Laser-induced solid–solid phase transition in as under pressure: a theoretical prediction. New J Phys 10:033010

    Article  Google Scholar 

  • Zilio P, Dipalo M, Tantussi F, Messina GC, de Angelis F (2017) Hot electrons in water: injection and ponderomotive acceleration by means of plasmonic nanoelectrodes. Light Sci Appl 6:e17002–e17002

    Article  Google Scholar 

  • Zink JC, Reif J, Matthias E (1992) Water adsorption on (111) surfaces of BaF2 and CaF2. Phys Rev Lett 68:3595–3598

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aida Naghilou or Wolfgang Kautek .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Naghilou, A., Armbruster, O., Kautek, W. (2021). Laser-Induced Non-thermal Processes. In: Sugioka, K. (eds) Handbook of Laser Micro- and Nano-Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-63647-0_63

Download citation

Publish with us

Policies and ethics