Skip to main content

Basic and General Optics for Laser Processing

  • Reference work entry
  • First Online:
Handbook of Laser Micro- and Nano-Engineering
  • 4235 Accesses

Abstract

This chapter describes the basic setup of optical systems for laser microprocessing, including basic optics and components for beam guiding, and for pulse energy and pulse repetition rate control. In the introduction, a brief history on the evolution of optical devices for laser processing is presented. The basic setup of optical systems for laser processing is categorized in four types based on their usage: (1) system with stationary single focused beam; (2) system with beam scanners; (3) projection system with masks or spatial light modulators (SLMs); and (4) system using interference patterning.

On the basic optics and components for beam guiding devices, this chapter explains laser-induced damage and polarizers. References are given for Gaussian optics, lenses, mirrors, and associated elements. On the basic optics and components for pulse energy and pulse repetition rate control, polarizer-based tunable attenuators, acousto-optic modulators (AOMs), and electro-optic modulators (EOMs) are explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,199.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen PC (2002) Laser scanning for semiconductor mask pattern. Proc IEEE 90:1653

    Article  Google Scholar 

  • Araki T (2011) Development of f-theta lens for printed wiring board processing. SEI Tech Rev 72:43(April)

    Google Scholar 

  • Araki T, Hirai T, Kyotani T (2009) Development of f-theta lens for UV lasers. SEI Tech Rev 69:59(October)

    Google Scholar 

  • Auyeung RCY, Kim H, Mathews S, Piqué A (2015) Spatially modulated laser pulses for printing electronics. Appl Opt 54:F70

    Article  Google Scholar 

  • Barthels T, Reininghaus M (2018) High precision ultrashort pulsed laser drilling of thin metal foils by means of multibeam processing. Proc SPIE 10744:107440B

    Google Scholar 

  • Bechtold P, Bauer D, Schmidt M (2012) Beam profile deformation of fs-laser pulses during electro-optic scanning with KTN crystal. Phys Procedia 39:683

    Article  ADS  Google Scholar 

  • Bechtold P, Hohenstein R, Schmidt M (2013) Evaluation of disparate laser beam deflection technologies by means of number and rate of resolvable spots. Opt Lett 38:2934

    Article  ADS  Google Scholar 

  • Beiser L (2005) Key notes to the advancement of optical scanning. Proc SPIE 5873:1

    Article  ADS  Google Scholar 

  • Belforte DA (2018) 2017 was a great year— for industrial lasers. Ind Laser Solut 33:11 (Jan/Feb)

    Google Scholar 

  • Bennett JM (1995) Chapter 3 polarizers. In: Handbook of optics, vol II, Bass M, Editors in Chief. McGraw-Hill, Inc., New York

    Google Scholar 

  • Bovatsek J, Patel R, von Witzendorf P, Bordina A, Suttmann O, Overmeyer L (2016) Pulse tailoring with UV laser source improves throughput and quality for high-density packaging glass interposer drilling. Proc LPM, May 23–27, 2017, Xi’an, China

    Google Scholar 

  • Brenner A, Bornschlegel B, Finger J (2018) Increasing productivity of ultrashort vpulsed laser ablation for commercialization of micro structuring. Proc SPIE 10730:107300H

    Google Scholar 

  • Brosens PJ, Grenda EP (1974) Applications of galvanometers to laser scanning. Proc SPIE 53:54

    Article  ADS  Google Scholar 

  • Bruening S, Jarczynski M, Du K, Gillner A (2018) Large scale ultrafast laser micro texturing with multi-beams. J Laser Micro/Nanoeng 13:254

    Google Scholar 

  • Cao M, Cao J, Liu M, Sun Y, Wu M, Guo S, Gao S (2018) Wavelength dependence of nanosecond laser induced surface damage in fused silica from 260 to 1550 nm. J Appl Phys 123:135105

    Article  ADS  Google Scholar 

  • Cereno DI, Wickramanayaka S (2017) Stealth dicing challenges for MEMS wafer applications. Proceedings of the IEEE 67th electronic components and technology conference, p 358

    Google Scholar 

  • Chang IC (1995) Chapter 12, Acousto-optic devices and applications. In: Handbook of optics II, devices, measurements and properties/sponsored by Optical Society of America, Bass M, Editors in Chief, 2nd edn. McGraw-Hill, Inc, New York

    Google Scholar 

  • Charipar KM, Díaz-Rivera RE, Charipar NA, Piqué A (2018) Laser-induced forward transfer (LIFT) of 3D microstructures. Proc SPIE 10523:105230R

    Google Scholar 

  • Charschan SS (1975) Lasers as production tools. IEEE Trans Ind Electron Control Instrum 22:3

    Article  Google Scholar 

  • Chen T-H, Fardel R, Arnold CB (2018a) Ultrafast z-scanning for high-efficiency laser micro-machining. Light Sci Appl 7:17181

    Article  Google Scholar 

  • Chen H-MP, Yang J-P, Yen H-T, Hsu Z-N, Huang Y, Wu S-T (2018b) Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices. Appl Sci 8:2323

    Article  Google Scholar 

  • Chipman RA, Lam W-ST, Young G (2019) Polarized light and optical systems. CRC Press, New York

    Google Scholar 

  • Cohen MI, Unger BA, Milkowsky JF (1968) Bell System Tech. Cohen MI, Epperson JP, Advan. Electron. Electron Phys. (to be published). J., 47 385

    Google Scholar 

  • Cohen MG, Kaplan RA, Arthurs EG (1982) Micro-materials processing. Proc IEEE 70:545

    Article  ADS  Google Scholar 

  • Comina G, Suska S, Filippini D (2017) 3D printed disposable optics and lab-on-a-chip devices for chemical sensing with cell phones. Proc SPIE 10061:100610E

    Article  Google Scholar 

  • Coté RE (1981) The effect of high speed laser trimming on accuracy and stability of thick film resistors. Electrocompon Sci Technol 8:181

    Article  Google Scholar 

  • Dauderstädt U, Askebjer P, Björnängen P, Dürr P, Friedrichs M, List M, Rudloff D, Schmidt J-U, Müller M, Wagner M (2009) Advances in SLM development for microlithography. Proc SPIE 7208:720804

    Article  Google Scholar 

  • De Loor R (2013) Polygon scanner system for ultra short pulsed laser micro-machining applications. Phys Procedia 41:544

    Article  ADS  Google Scholar 

  • de Vries O, Saule T, Plötner M, Lücking F, Eidam T, Hoffman A, Klenke A, Hädrich S, Limpert J, Holzberger S, Schreiber T, Eberhardt R, Pupeza I, Tünnermann A (2015) Acousto-optic pulse picking scheme with carrier-frequency-to-pulse-repetition-rate synchronization. Opt Express 23:19586

    Article  ADS  Google Scholar 

  • Delmdahl R, Paetzel R (2014) Laser drilling of high-density through glass vias (TGVs) for 2.5D and 3D packaging. J Microelectron Packag Soc 21:53

    Google Scholar 

  • Delmdahl R, Fricke M, Fechner B (2014) Laser lift-off systems for flexible-display production. J Inf Disp 15:1

    Article  Google Scholar 

  • Diez S (2016) The next generation of maskless lithography. Proc SPIE 9761:976102

    Article  Google Scholar 

  • DLP3000 DLP® 0.3WVGA series 220 DMD, Brochure of Texas Instruments (2015)

    Google Scholar 

  • Douti D-B, Gallais L, Commandré M (2014) Laser-induced damage of optical thin films submitted to 343, 515, and 1030 nm multiple subpicosecond pulses. Opt Eng 53:122509

    Article  ADS  Google Scholar 

  • Eckhardt S, Siebold M, Lasagni AF (2016) Laser microstructured metal thin films as promising alternative for indium based transparent electronics. Opt Express 24:A553

    Article  ADS  Google Scholar 

  • Fischer J, Mueller JB, Kaschke J, Wolf TJA, Unterreiner A-N, Wegener M (2013) Three-dimmensional multi-photon direct laser writing with variable repetition rate. Opt Express 21:26244

    Article  ADS  Google Scholar 

  • Fong JT, Winter TW, Jacobs SJ (2010) Advances in DMD-based UV application reliablility below 320 nm. Proc SPIE 7637:763718

    Article  Google Scholar 

  • For example, see datasheet. of X-LDM-AE Series from ZABER Technologies Inc. https://www.zaber.com/products/linear-stages/X-LDM-AE/details/X-LDM210C-AE54

  • Gafner M, Remund S, Neuenschwander B, Maehne T (2018) Optimized strategies for galvo scanning in fully synchronized mode leading to massive improvement in machining time. Proceedings of ICALEO 2018, M601, Orlando, FL, USA

    Google Scholar 

  • Gallais L, Commandré M (2014) Laser-induced damage thresholds of bulk and coating optical materials at 1030 nm, 500 fs. Appl Opt 53:A186

    Article  ADS  Google Scholar 

  • Gum SJ (1986) Specification of scan lenses. Proc SPIE 607:151

    Article  ADS  Google Scholar 

  • Hansotte EJ, Carignan EC, Meisburger WD (2011) High speed maskless lithography of printed circuit boards using digital micromirrors. Proc SPIE 7932:793207

    Article  Google Scholar 

  • Heath DJ, Rana TH, Bapty RA, Grant-Jacob JA, Xie Y, Eason RW, Mills B (2018) Ultrafast multi-layer subtractive patterning. Opt Express 26:11928

    Article  ADS  Google Scholar 

  • Heberle J, Bechtold P, Strauß J, Schmidt M (2016) Electro-optic and acousto-optic laser beam scanners. Proc SPIE 9736:97360L

    Article  ADS  Google Scholar 

  • Hichri H, Arendt M (2017) Excimer laser ablation for microvia and fine RDL routings for advanced packaging. Chip Scale Review 21(5):11–14

    Google Scholar 

  • Hill KO, Meltz G (1997) Fiber Bragg grating technology fundamentals and overview. J Lightwave Technol 15:1263

    Article  ADS  Google Scholar 

  • Hill KO, Malo B, Bilodeau F, Johnson DC, Albert J (1993) Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask. Appl Phys Lett 62:1035

    Article  ADS  Google Scholar 

  • Hinton R (July 2019) Beam propagation and quality factors: A primer. Laser Focus World 55:47

    Google Scholar 

  • Hokanson JL, Unger BA (1969) Laser-machining thin-film electrode arrays on quartz crystal substrates. J Appl Phys 40:3157

    Article  ADS  Google Scholar 

  • Hopkins RE, Buzawa MJ (1976) Optics for laser scanning. Opt Eng 15:90

    Article  Google Scholar 

  • “ISO 11145:2018, Optics and photonics - Lasers and laser-related equipment - Vocaburary and symbols” was published by ISO (International Standard Organization) in November 2018. Detailed information on this standard is available at https://www.iso.org/standard/72944.html

  • Jaeggi B, Neuenschwander B, Remund S, Kramer T (2017) Influence of the pulse dulation and the experimental approach onto the specific removal rate for ultra-short-pulses. Proc SPIE 10091:100910J

    Article  Google Scholar 

  • Kaden L, Matthäus G, Ullsperger T, Tünnermann A, Nolte S (2017) Selective laser melting of copper using ultrashort laser pulses. Proc Lasers Manuf

    Google Scholar 

  • Kaiser N, Pulker HK (eds) (2003) Optical interference coatings. Springer, Berlin. ISBN 3-540-00364-9

    Google Scholar 

  • Kashyap R (1999) Fiber Bragg gratings. Academic, San Diego. ISBN 0-12-400560-8

    Google Scholar 

  • Knorr F, Uyttendaele A, Stauch J, Schechtel F, Reg Y, Zimmermann M (2016) Large-angle programmable direct laser interference patterning with ultrafast laser using spatial light modulator. Phys Procedia 83:1170

    Article  ADS  Google Scholar 

  • Koechner W (1975) Optical design problems in industrial solid state lasers. Proc SPIE 69:148

    Article  ADS  Google Scholar 

  • Koechner W (2006) Solid-state laser engineering, Sixth revised and updated edition. Springer Science+Business Media, Inc., New York, NY, USA. p 215. ISBN-978-0-387-29094-2

    Google Scholar 

  • Kogelnik H, Li T (1966) Laser beams and resonators. Appl Opt 5:1550

    Article  ADS  Google Scholar 

  • Kozlov AA, Lambropoulos JC, Oliver JB, Hoffman BN, Demos SG (2019) Mechanisms of picosecond laser-induced damage in common multilayer dielectric coatings. Sci Rep 9:607. https://doi.org/10.1038/s41598-018-37223-0

    Article  ADS  Google Scholar 

  • Kunze T, Zwahr C, Krupop B, Alamri S, Rößler F, Lasagni AF (2017) Development of a scanner-based Direct Laser Interference Patterning optical head – new manufacturing opportunities. Proc SPIE 10092:1009214

    Article  Google Scholar 

  • Laser Processing of Micro-LED, White paper of Coherent, Inc. http://www.coherent.com

  • Laser Scanning Lens Theory, in the special optics catalogue of Special Optics®. A Navitar Company, Denville, p 27

    Google Scholar 

  • Lee SH, Park SY, Lee KJ (2012) Laser-lift-off of GaN thin film and its application to the flexible light emitting diodes. Proc SPIE 8460:846011

    Article  Google Scholar 

  • Lei W, Davignon J (2005) Solid state UV laser technology for electronic packaging applications. Proc SPIE 5629:314

    Article  ADS  Google Scholar 

  • Lopez J, Mincuzzi G, Mishchik K, Audouard E, Mottay E, Kling R (2018) Correlation between ablation efficiency, surface morphology, and multipass capability using a 100-W 10-MHz ultrafast laser. Proc SPIE 10519:1051909

    Google Scholar 

  • Maldonado TA (1995) Chapter 13 electro-optic modulators. In: Handbook of optics II, devices, measurements and properties/sponsored by Optical Society of America, Bass M, Editors in Chief, 2nd edn. McGraw-Hill, Inc, New York

    Google Scholar 

  • Mallender IH (1976) Resolution, intensity and power in diffraction limited laser systems. Proc SPIE 84:132

    Article  ADS  Google Scholar 

  • Mangote B, Gallais L, Commandré M, Mende M, Jensen L, Ehlers H, Jupé M, Ristau D, Melninkaitis A, Mirauskas J, Sirutkaitis V, Kičas S, Tolenis T, Drazdys R (2012) Femtosecond laser damage resistance of oxide and mixture oxide optical coatings. Opt Lett 37:1478

    Article  ADS  Google Scholar 

  • Marczak J (2015) Micromachining and patterning in micro/nano scale on macroscopic areas. Arch Metall Mater 60:2221

    Article  Google Scholar 

  • Matsumoto H, Unrath M, Zhang H, Hainsey B (2013) Laser direct ablation for patterning printed wiring boards using ultrafast lasers and high speed beam delivery archtectures. J Laser Micro/Nanoeng 8:315

    Article  Google Scholar 

  • Maydan D (1970) Acoustooptical pulse modulators. IEEE J Quantum Electron QE-6:15

    Article  ADS  Google Scholar 

  • Mero M, Liu J, Rudolph W, Ristau D, Starke K (2005) Scaling laws of femtosecond laser pulse induced breakdown in oxide films. Phys Rev B 71:115109

    Article  ADS  Google Scholar 

  • Myles DTE, Ziyenge M, Shephard JD, Milne DC (2015) Scanned mask imaging solid state laser tool for cost effective flip chip – chip scale package manufacturer. J Laser Micro/Nanoeng 10:106

    Article  Google Scholar 

  • Obata K, Nakajima Y, Hohnholz A, Koch J, Terakawa M, Suttmann O, Overmeyer L (2017) Additive manufacturing by UV laser direct writing of UV-curable PDMS. Proc Lasers Manuf

    Google Scholar 

  • Pfleging W (2018) A review of laser electrode processing for development and manufacturing of lithium-ion batteries. Nanophotonics 7:549

    Article  Google Scholar 

  • Phase spatial light. modulators LCOS-SLM, White paper of Hamamatsu Photonics K.K. https://www.hamamatsu.com/resources/pdf/ssd/e12_handbook_lcos_slm.pdf

  • Phillips KC, Gandhi H, Mazur E, Sundaram SK (2015) Ultrafast laser processing of materials: a review. Adv Opt Photon 7:684

    Article  Google Scholar 

  • Polygon Scanner Systems, Brochure of Next Scan technology (2018) Next Scan Technology BVBA, Noorwegenstraat 29, B9940 Evergem, Belgium. info@nextscantechnology.com; www.nextscantechnology.com Tel: +32 9244 7520

  • Raamot J, Zaleckas VJ (1974) Laser pattern generation using X-Y beam deflection. Appl Opt 13:1179

    Article  ADS  Google Scholar 

  • Rahim K, Mian A (2017) A review on laser processing in electronic and MEMS packaging. J Electron Packag 139:030801

    Article  Google Scholar 

  • Ready JF (Editor in Chief), Farson DF (Associate Editor) (2001a) LIA handbook of laser materials processing, Orland, FL, USA, Chapter 3, p 91. ISBN 0-912035-15-3

    Google Scholar 

  • Ready JF (Editor in Chief), Farson DF (Associate Editor) (2001b) LIA handbook of laser materials processing, Orland, FL, USA, Chapter 4, p 109. ISBN 0-912035-15-3

    Google Scholar 

  • Ristau D (ed) (2016) Laser-induced damage in optical materials. CRC Press, Boca Raton. ISBN 9781138199569

    Google Scholar 

  • Ristau D, Balasa I, Jensen L (2018) Standardization in optics characterization. Proc SPIE 10805:108050A

    Google Scholar 

  • Schenk H, Wagner M, Grahmann J, Merten A (2018) Advances in MOEMS technologies for high quality imaging systems. Proc SPIE 10587:1058703

    Google Scholar 

  • Schmidt J-U, Dauderstaedt UA, Duerr P, Friedrichs M, Hughes T, Ludewig T, Rudloff D, Schwaten T, Trenkler D, Wagner M, Wullinger I, Bergstrom A, Bjornangen P, Jonsson F, Karlin T, Ronnholm P, Sandstrom T (2014) High-speed one-dimensional spatial light modulator for Laser Direct Imaging and other patterning applications. Proc SPIE 8977:89770O

    Article  Google Scholar 

  • Steen WM (2003) Laser material processing, 3rd edn. Springer, London. ISBN-1-85233-698-6

    Book  Google Scholar 

  • Steger M, Gillner A (2016) Analysis and evaluation of boundary cinditions for direct surface structuring by Multi-Beam Interference. J Laser Micro/Nanoeng 11:296

    Article  Google Scholar 

  • Stolz CJ, Negres RA (2018) Ten-year summary of the Boulder Damage Symposium annual thin film laser damage competition. Optim Eng 57:121910

    ADS  Google Scholar 

  • Sudheer K, Pillai VPM, Nayar VU, Pothiawala Y, Kothwala D, Kotadia D, Microlith J (2006) Micromachining of 316LVM stainless steel tubes using periodic acousto-optic modulation of pulsed Nd:YAG lasers for cardiovascular stent applicfations. Microfab Microsyst 5:023010

    Google Scholar 

  • Sugioka K, Cheng Y (2012) A tutorial on optics for ultrafast laser materials processing: basic microprocessing system to beam shaping and advanced focusing methods. Adv Opt Technol 1:353

    ADS  Google Scholar 

  • Sugioka K, Cheng Y (2014) Ultrafast lasers – reliable tools for advanced materials processing. Light Sci Appl 3:e149

    Article  ADS  Google Scholar 

  • Suzuki Y, Sundaram V, Tummala R, Chen Y, Lee KS, Wei F, Hichri H, Seongkuk L, Arendt M, Dimov O, Arora D, Malik S (2017) Embedded Trench Redistribution Layers (RDL) by excimer laser ablation and surface planar processes. Proceedings of the IEEE 67th electronic components technology conference, p 884. https://doi.org/10.1109/ECTC.2017.15

  • Suzuki N, Ohba T, Kondo Y, Sakamoto T, Uchiyama N, Atsumi K (2018) High throughput and improved edge straighness for memory applications using stealth dicing. Proceedings of the IEEE 68th electronic components and technology conference, p 2180

    Google Scholar 

  • Technical Guide, Gaussian Beam Optics (2014), Optics & Laser Catalog, Vol. 1, IDEX Optics & Photonics Marketplace, Headquarters, Albuquerque, NM, USA (Out of Print)

    Google Scholar 

  • Technical Guide, Fundamental Optics (2014), Optics & Laser Catalog, Vol. 1, ibid

    Google Scholar 

  • Technical Guide, Materials Properties (2014), Optics & Laser Catalog, Vol. 1, ibid

    Google Scholar 

  • Tropf MJ, Thomas ME, Harris TJ (1995) Chapter 33, properties of crystals and grasses, part 4, optical and physical properties of materials. In: Handbook of optics, vol II. McGraw-Hill, Inc, New York

    Google Scholar 

  • Turtaev S, Leite IT, Mitchell KJ, Padgett MJ, Phillips DB, Čižmar T (2017) Comparison of nematic liquid-crystal and DMD based spatial light modulattion in complex photonics. Opt Express 25:29874

    Article  ADS  Google Scholar 

  • Unger BA, Cohen MI (1968) Electronics Components Conference, Washington, D. C., p. 304

    Google Scholar 

  • Urey H (2004) Spot size, depth-of-focus, and diffraction ring intensity formulas for truncated Gaussian beams. Appl Opt 43:620

    Article  ADS  Google Scholar 

  • Wang Y, Wu MC (2017) Micromirror based optical phased array for wide-angle beamsteering. Proceedings of MEMS 2017, Las Vegas, NV, USA, p 897

    Google Scholar 

  • Wang L, Hodgson C, Erdogan T (2010) A new class of polarization filters for laser applications. Proc SPIE 7598:75980T

    Article  ADS  Google Scholar 

  • Wlodarczyk KL, Brunton A, Rumsby R, Hand DP (2016) Picosecond laser cutting and drilling of thin flex glass. Opt Lasers Eng 78:64

    Article  Google Scholar 

  • Woodbury EJ (1967) 7.3 – Five kilohertz repetition-rate pulsed YAG:Nd laser. IEEE J Quantum Electron QE-3:509

    Article  ADS  Google Scholar 

  • Young DH Jr, Yao S-K (1981) Design considerations for acousto-optic devices. Proc IEEE 69:54

    Article  ADS  Google Scholar 

  • Zhang D, Gökce B, Barcikowski S (2017) Laser synthesis and processing of colloids: Fundamentals and applications. Chem Rev 117:3990

    Article  Google Scholar 

  • Zhu L, Wang J (2014) Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators. Sci Rep 4:7441. https://doi.org/10.1038/srep07441

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunihiko Washio .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Washio, K. (2021). Basic and General Optics for Laser Processing. In: Sugioka, K. (eds) Handbook of Laser Micro- and Nano-Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-63647-0_1

Download citation

Publish with us

Policies and ethics