Skip to main content

Cognitive System

  • Reference work entry
  • First Online:
Computer Vision

Synonyms

Cognitive agent

Related Concepts

Cognitive Vision

Definition

A cognitive system is an autonomous system that can perceive its environment, learn from experience, anticipate the outcome of events, act to pursue goals, and adapt to changing circumstances.

Background

There are several scientific perspectives on the nature of cognition and on how it should be modeled. All fall under the general umbrella of cognitive science which embraces the disciplines of neuroscience, artificial intelligence, cognitive psychology, linguistics, and epistemology. Among these differing perspectives, however, there are two broad classes: the cognitivist approach based on symbolic information processing representational systems, and the emergent systems approach, encompassing connectionist systems, dynamical systems, and enactive systems, all based to a lesser or greater extent on principles of self-organization [3160,3161,3162,4]. A third class – hybrid systems– attempts to combine something from...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Varela FJ (1992) Whence perceptual meaning? A cartography of current ideas. In: Varela FJ, Dupuy JP (eds) Understanding origins – contemporary views on the origin of life, mind and society. Boston studies in the philosophy of science. Kluwer, Dordrecht, pp 235–263

    Google Scholar 

  2. Clark A (2001) Mindware – an introduction to the philosophy of cognitive science. Oxford University Press, New York

    Google Scholar 

  3. Freeman WJ, Núñez R (1999) Restoring to cognition the forgotten primacy of action, intention and emotion. J Conscious Stud 6(11–12):ix–xix

    Google Scholar 

  4. Winograd T, Flores F (1986) Understanding computers and cognition – a new foundation for design. Addison-Wesley, Reading

    MATH  Google Scholar 

  5. Ross Ashby W (1957) An introduction to cybernetics. Chapman and Hall, London

    MATH  Google Scholar 

  6. McCulloch WS, Pitts W (1943) A logical calculus of ideas immanent in nervous activity. Bull Math Biophys 5:115–133

    Article  MathSciNet  MATH  Google Scholar 

  7. Ross Ashby W (1954) Design for a brain. Chapman and Hall, London

    Google Scholar 

  8. Newell A, Simon HA (1976) Computer science as empirical inquiry: symbols and search. Commun Assoc Comput Mach 19:113–126. Tenth Turing award lecture, ACM, 1975

    MathSciNet  Google Scholar 

  9. Haugland J (ed) (1997) Mind design II: philosophy, psychology, artificial intelligence. MIT, Cambridge, MA

    Google Scholar 

  10. Kelso JAS (1995) Dynamic patterns – the self-organization of brain and behaviour, 3rd edn. MIT, Cambridge, MA

    Google Scholar 

  11. Maturana H, Varela F (1987) The tree of knowledge – the biological roots of human understanding. New Science Library, Boston/London

    Google Scholar 

  12. von Glaserfeld E (1995) Radical constructivism. Routledge Falmer, London

    Google Scholar 

  13. Stewart J, Gapenne O, Di Paolo EA (2011) Enaction: toward a new paradigm for cognitive science. MIT, Cambridge, MA

    Google Scholar 

  14. Christensen WD, Hooker CA (2000) An interactivist-constructivist approach to intelligence: self-directed anticipative learning. Philos Psychol 13(1):5–45

    Article  Google Scholar 

  15. Medler DA (1998) A brief history of connectionism. Neural Comput Surv 1:61–101

    Google Scholar 

  16. Smolensky P (1996) Computational, dynamical, and statistical perspectives on the processing and learning problems in neural network theory. In: Smolensky P, Mozer MC, Rumelhart DE (eds) Mathematical perspectives on neural networks. Erlbaum, Mahwah, pp 1–15

    Google Scholar 

  17. Reiter R (2001) Knowledge in action: logical foundations for specifying and implementing dynamical systems. MIT, Cambridge, MA

    Book  MATH  Google Scholar 

  18. Thelen E, Smith LB (1994) A dynamic systems approach to the development of cognition and action. MIT Press/Bradford books series in cognitive psychology. MIT, Cambridge, MA

    Google Scholar 

  19. Port RF, van Gelder T (1995) Mind as motion – explorations in the dynamics of cognition. Bradford Books, MIT, Cambridge, MA

    Google Scholar 

  20. McClelland JL, Vallabha G (2006) Connectionist models of development: mechanistic dynamical models with emergent dynamical properties. In: Spencer JP, Thomas MSC, McClelland JL (eds) Toward a new grand theory of development? Connectionism and dynamic systems theory re-considered. Oxford University Press, New York

    Google Scholar 

  21. Maturana HR, Varela FJ (1980) Autopoiesis and cognition – the realization of the living. Boston studies on the philosophy of science. D. Reidel Publishing Company, Dordrecht

    Google Scholar 

  22. Varela F, Thompson E, Rosch E (1991) The embodied mind. MIT, Cambridge, MA

    Book  Google Scholar 

  23. Vernon D (2010) Enaction as a conceptual framework for development in cognitive robotics. Paladyn J Behav Robot 1(2):89–98

    Google Scholar 

  24. Newell A (1990) Unified theories of cognition. Harvard University Press, Cambridge, MA

    Google Scholar 

  25. Newell A (1982) The knowledge level. Artif Intell 18(1):87–127

    Article  MathSciNet  Google Scholar 

  26. Anderson J (1999) Cognitive architectures in rational analysis. In: van Lehn K (ed) Architectures for intelligence. Lawrence Erlbaum Associates, Hillsdale, pp 1–24

    Google Scholar 

  27. Vernon D, von Hofsten C, Fadiga L (2010) A roadmap for cognitive development in humanoid Robots. Volume 11 of cognitive systems monographs (COSMOS). Springer, Berlin

    Google Scholar 

  28. Vernon D, Furlong D (2007) Philosophical foundations of enactive AI. In: Lungarella M, Iida F, Bongard JC, Pfeifer R (eds) 50 years of AI. Volume LNAI 4850. Springer, Heidelberg, pp 53–62

    Google Scholar 

  29. Froese T, Ziemke T (2009) Enactive artificial intelligence: investigating the systemic organization of life and mind. Artif Intell 173:466–500

    Article  Google Scholar 

  30. Langley P, Laird JE, Rogers S (2009) Cognitive architectures: research issues and challenges. Cogn Syst Res 10(2):141–160

    Article  Google Scholar 

  31. Anderson JR, Bothell D, Byrne MD, Douglass S, Lebiere C, Qin Y (2004) An integrated theory of the mind. Psychol Rev 111(4):1036–1060

    Article  Google Scholar 

  32. Anderson ML (2003) Embodied cognition: a field guide. Artif Intell 149(1):91–130

    Article  Google Scholar 

  33. Steels L (2007) Fifty years of AI: from symbols to embodiment – and back. In: Lungarella M, Iida F, Bongard JC, Pfeifer R (eds) 50 years of AI. Volume LNAI 4850. Springer, Heidelberg, pp 18–28

    Google Scholar 

  34. Vernon D (2008) Cognitive vision: the case for embodied perception. Image Vis Comput 26(1):127–141

    Article  Google Scholar 

  35. Ziemke T (2003) What’s that thing called embodiment? In: Alterman R, Kirsh D (eds) Proceedings of the 25th annual conference of the cognitive science society. Lund university cognitive studies. Lawrence Erlbaum, Mahwah, pp 1134–1139

    Google Scholar 

  36. Weng J (2004) Developmental robotics: theory and experiments. Int J Humanoid Robot 1(2):199–236

    Article  Google Scholar 

  37. Sloman A, Chappell J (2005) The altricial-precocial spectrum for robots. In: IJCAI’05 – 19th international joint conference on artificial intelligence, Edinburgh

    Google Scholar 

  38. Varela F (1979) Principles of biological autonomy. Elsevier North Holland, New York

    Google Scholar 

  39. Bickhard MH (2000) Autonomy, function, and representation. Artif Intell Spec Issue Commun Cogn 17(3–4):111–131

    Google Scholar 

  40. Barsalou LW (2010) Grounded cognition: past, present, and future. Top Cogn Sci 2:716–724

    Article  Google Scholar 

  41. Harnad S (1990) The symbol grounding problem. Phys D 42:335–346

    Article  Google Scholar 

  42. Edelman GM (2006) Second nature: brain science and human knowledge. Yale University Press, New Haven/London

    Google Scholar 

  43. Brachman RJ (2002) Systems that know what they’re doing. IEEE Intell Syst 17(6):67–71

    Article  Google Scholar 

  44. Gibson JJ (1979) The ecological approach to visual perception. Houghton Mifflin, Boston

    Google Scholar 

  45. Stock A, Stock C (2004) A short history of ideo-motor action. Psychol Res 68(2–3):176–188

    Article  Google Scholar 

  46. Crutchfield JP (1998) Dynamical embodiment of computation in cognitive processes. Behav Brain Sci 21(5):635–637

    Article  Google Scholar 

  47. Christensen WD, Hooker CA (2004) Representation and the meaning of life. In: Clapin H, Staines P, Slezak P (eds) Representation in mind: new approaches to mental representation. Elsevier, Oxford, pp 41–70

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Vernon, D. (2021). Cognitive System. In: Ikeuchi, K. (eds) Computer Vision. Springer, Cham. https://doi.org/10.1007/978-3-030-63416-2_82

Download citation

Publish with us

Policies and ethics