Skip to main content

Electronic Structure: Metals and Insulators

  • Reference work entry
  • First Online:
Handbook of Magnetism and Magnetic Materials

Abstract

This chapter gives an overview on the various methods used to deal with the electronic properties of magnetic solids. This covers the treatment of noncollinear magnetism, structural and spin disorder, as well as relativistic and many-body effects. An introduction to the Stoner theory for itinerant or band magnetism is followed by a number of examples with an emphasis on transition metal-based systems. The direct connection of the total electronic energy in the ground state and its magnetic configuration is considered next. This includes mapping the dependence of the energy on the spin configuration on a simplified spin Hamiltonian as provided, for example, by the Heisenberg model. Another important issue in this context is magnetic anisotropy. As it is shown, considering excitations from a suitable reference state provides a powerful tool to search for stable phases, while calculating the wave vector- and frequency-dependent susceptibility gives a sound basis to understand the dynamical properties of magnetic solids. Finally, magnetism at finite temperature is dealt with starting from a pure classical treatment of the problem and ending with schemes that deal with quantum mechanics and statistics in a coherent way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mattis, D.C.: The Theory of Magnetism I, Statics and Dynamics. Springer, Berlin (1981)

    Book  Google Scholar 

  2. White, R.M.: Quantum Theory of Magnetism. Springer, Berlin (2007)

    Book  Google Scholar 

  3. Kübler, J.: Theory of Itinerant Electron Magnetism. International Series of Monographs on Physics. OUP, Oxford (2009)

    Google Scholar 

  4. Kakehashi, Y.: Modern Theory of Magnetism in Metals and Alloys. Springer, Berlin (2012)

    Google Scholar 

  5. Rose, M.E.: Relativistic Electron Theory. Wiley, New York (1961)

    MATH  Google Scholar 

  6. Blügel, S.: Magnetische Anisotropie und Magnetostriktion (Theorie). In: 30. Ferienkurs des Instituts für Festkörperforschung 1999 “Magnetische Schichtsysteme”, editor: Institut für Festkörperforschung, C1.1, Forschungszentrum Jülich GmbH, Jülich (1999)

    Google Scholar 

  7. Chikazumi, S.: Physics of Ferromagnetism. Oxford University Press, Oxford (2009)

    Google Scholar 

  8. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A.H., Ong, N.P.: Anomalous Hall effect. Rev. Mod. Phys. 82, 1539 (2010)

    Article  ADS  Google Scholar 

  9. Ebert, H.: Magneto-optical effects in transition metal systems. Rep. Prog. Phys. 59, 1665 (1996)

    Article  ADS  Google Scholar 

  10. Sinova, J., Valenzuela, S.O., Wunderlich, J., Back, C.H., Jungwirth, T.: Spin Hall effects. Rev. Mod. Phys. 87, 1213 (2015)

    Article  ADS  Google Scholar 

  11. Garello, K., Miron, I., Avci, C., Freimuth, F., Mokrousov, Y., Blügel, S., Auffret, S., Boulle, O., Gaudin, G., Gambardella, P.: Symmetry and magnitude of spin-orbit torques in ferromagnetic heterostructures. Nat. Nanotechnol. 8, 587 (2013)

    Article  ADS  Google Scholar 

  12. Heinze, S., von Bergmann, K., Menzel, M., Brede, J., Kubetzka, A., Wiesendanger, R., Bihlmayer, G., Blügel, S.: Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713 (2011)

    Article  Google Scholar 

  13. Bethe, H., Salpeter, E.: Quantum Mechanics of One- and Two-Electron Atoms. Springer, New York (1957)

    Book  MATH  Google Scholar 

  14. Jansen, H.J.F.: Magnetic anisotropy in density-functional theory. Phys. Rev. B 38, 8022 (1988)

    Article  ADS  Google Scholar 

  15. Engel, E., Dreizler, R.M.: Density Functional Theory – An Advanced Course. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  16. Lichtenstein, A.I., Katsnelson, M.I., Kotliar, G.: Finite-temperature magnetism of transition metals: an ab initio dynamical mean-field theory. Phys. Rev. Lett. 87, 067205 (2001)

    Article  ADS  Google Scholar 

  17. Shi, J., Vignale, G., Xiao, D., Niu, Q.: Quantum Theory of Orbital Magnetization and Its Generalization to Interacting Systems. Phys. Rev. Lett. 99, 197202 (2007)

    Article  ADS  Google Scholar 

  18. Udvardi, L., Szunyogh, L., Palotás, K., Weinberger, P.: First-principles relativistic study of spin waves in thin magnetic films. Phys. Rev. B 68, 104436 (2003)

    Article  ADS  Google Scholar 

  19. Brataas, A., Tserkovnyak, Y., Bauer, G.E.W.: Scattering theory of Gilbert damping. Phys. Rev. Lett. 101, 037207 (2008)

    Article  ADS  Google Scholar 

  20. Ashcroft, N., Mermin, N.: Solid State Physics. Saunders College Publishers, New York (1976)

    MATH  Google Scholar 

  21. Hohenberg, P., Kohn, W.: Inhomogenous electron gas. Phys. Rev. 136, B 864 (1964)

    Google Scholar 

  22. Sham, L.J., Kohn, W.: One-particle properties of an inhomogeneous interacting electron gas. Phys. Rev. 145, 561 (1966)

    Article  ADS  Google Scholar 

  23. von Barth, U., Hedin, L.: A local exchange-correlation potential for the spin polarized case. I. J. Phys. C: Solid State Phys. 5, 1629 (1972)

    Google Scholar 

  24. Rajagopal, A.K., Callaway, J.: Inhomogeneous electron gas. Phys. Rev. B 7, 1912 (1973)

    Article  ADS  Google Scholar 

  25. Ceperley, D.M., Alder, B.J.: Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566 (1980)

    Article  ADS  Google Scholar 

  26. Ebert, H., et al.: The Munich SPR-KKR package, version 7.7, https://www.ebert.cup.uni-muenchen.de/en/software-en/13-sprkkr (2017)

  27. Leung, T.C., Chan, C.T., Harmon, B.N.: Ground-state properties of Fe, Co, Ni, and their monoxides: results of the generalized gradient approximation. Phys. Rev. B 44, 2923 (1991)

    Article  ADS  Google Scholar 

  28. Aryasetiawan, F., Gunnarsson, O.: The GW method. Rep. Prog. Phys. 61, 237 (1998)

    Article  ADS  Google Scholar 

  29. Aryasetiawan, F.: Self-energy of ferromagnetic nickel in the GW approximation. Phys. Rev. B 46, 13051 (1992)

    Article  ADS  Google Scholar 

  30. Liebsch, A.: Effect of self-energy corrections on the valence-band photoemission spectra of Ni. Phys. Rev. Lett. 43, 1431 (1979)

    Article  ADS  Google Scholar 

  31. Anisimov, V.I., Zaanen, J., Andersen, O.K.: Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943 (1991)

    Article  ADS  Google Scholar 

  32. Kotliar, G., Savrasov, S.Y., Haule, K., Oudovenko, V.S., Parcollet, O., Marianetti, C.A.: Electronic structure calculations with dynamical mean-field theory. Rev. Mod. Phys. 78, 865 (2006)

    Article  ADS  Google Scholar 

  33. Held, K., Nekrasov, I.A., Keller, G., Eyert, V., Blümer, N., McMahan, A.K., Scalettar, R.T., Pruschke, T., Anisimov, V.I., Vollhardt, D.: Realistic investigations of correlated electron systems with LDA + DMFT. Phys. Stat. Sol. (B) 243, 2599 (2006)

    Google Scholar 

  34. http://psi-k.net/software/

  35. Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  36. Andersen, O.K.: Linear methods in band theory. Phys. Rev. B 12, 3060 (1975)

    Article  ADS  Google Scholar 

  37. Singh, D.: Plane Waves, Pseudopotentials and the LAPW Method. Kluwer Academic, Amsterdam (1994)

    Google Scholar 

  38. Ku, W., Berlijn, T.,Lee, C.-C.: Unfolding first-principles band structures. Phys. Rev. Lett. 104, 216401 (2010)

    Article  ADS  Google Scholar 

  39. Zunger, A., Wei, S.-H., Ferreira, L.G., Bernard, J.E.: Special quasirandom structures. Phys. Rev. Lett. 65, 353 (1990)

    Article  ADS  Google Scholar 

  40. Kováčik, R., Mavropoulos, P., Wortmann, D., Blügel, S.: Spin-caloric transport properties of cobalt nanostructures: spin disorder effects from first principles. Phys. Rev. B 89, 134417 (2014)

    Article  ADS  Google Scholar 

  41. Economou, E.N.: Green’s Functions in Quantum Physics. Springer Series in Solid-State Sciences, vol 7. Springer, Berlin (2006)

    Google Scholar 

  42. Ebert, H., Ködderitzsch, D., Minár, J.: Calculating condensed matter properties using the KKR-Green’s function method – recent developments and applications. Rep. Prog. Phys. 74, 096501 (2011)

    Article  ADS  Google Scholar 

  43. Soven, P.: Coherent-potential model of substitutional disordered alloys. Phys. Rev. 156, 809 (1967)

    Article  ADS  Google Scholar 

  44. Butler, W.H., Stocks, G.M.: Calculated electrical conductivity and thermopower of silver-palladium alloys. Phys. Rev. B 29, 4217 (1984)

    Article  ADS  Google Scholar 

  45. Staunton, J., Gyorffy, B.L., Pindor, A.J., Stocks, G.M., Winter, H.: The ‘disordered local moment’ picture of itinerant magnetism at finite temperatures. J. Magn. Magn. Mater. 45, 15 (1984)

    Article  ADS  Google Scholar 

  46. MacDonald, A.H., Vosko, S.H.: A relativistic density functional formalism. J. Phys. C: Solid State Phys. 12, 2977 (1979)

    Article  ADS  Google Scholar 

  47. Feder, R., Rosicky, F., Ackermann, B.: Relativistic multiple scattering theory of electrons by ferromagnets. Z. Physik B 52, 31 (1983)

    Article  ADS  Google Scholar 

  48. Ebert, H.: Two ways to perform spin-polarized relativistic linear muffin-tin-orbital calculations. Phys. Rev. B 38, 9390 (1988)

    Article  ADS  Google Scholar 

  49. Reiher, M., Wolf, A.: Relativistic Quantum Chemistry: The Fundamental Theory of Molecular Science. Wiley-VCH, New York (2009)

    Book  Google Scholar 

  50. Pyykkö, P.: Relativistic quantum chemistry. Adv. Quantum. Chem. 11, 353 (1978)

    Article  ADS  Google Scholar 

  51. Bruno, P.: Physical origins and theoretical models of magnetic anisotropy. In: Magnetismus von Festkörpern und Grenzflächen, editor: Forschungszentrum Jülich GmbH, Institut für Festkörperforschung, 24.1, Forschungszentrum Jülich GmbH, Jülich (1993)

    Google Scholar 

  52. Koelling, D.D., Harmon, B.N.: A technique for relativistic spin-polarised calculations J. Phys. C: Solid State Phys. 10, 3107 (1977)

    Article  ADS  Google Scholar 

  53. Ebert, H., Freyer, H., Vernes, A., Guo, G.-Y.: Manipulation of the spin-orbit coupling using the Dirac equation for spin-dependent potentials. Phys. Rev. B 53, 7721 (1996)

    Article  ADS  Google Scholar 

  54. Victora, R.H., MacLaren, J.M.: Predicted spin and orbital contributions to the magnetic structure of Co/2X superlattices. J. Appl. Phys. 70, 5880 (1991)

    Article  ADS  Google Scholar 

  55. Ebert, H., Freyer, H., Deng, M.: Manipulation of the spin-orbit coupling using the Dirac equation for spin-dependent potentials. Phys. Rev. B 56, 9454 (1997)

    Article  ADS  Google Scholar 

  56. Pickel, M., Schmidt, A.B., Giesen, F., Braun, J., Minár, J., Ebert, H., Donath, M., Weinelt, M.: Spin-orbit hybridization points in the face-centered-cubic cobalt band structure. Phys. Rev. Lett. 101, 066402 (2008)

    Article  ADS  Google Scholar 

  57. MacDonald, A.H., Daams, J.M., Vosko, S.H., Koelling, D.D.: Influence of relativistic contributions to the effective potential on the electronic structure of Pd and Pt. Phys. Rev. B 23, 6377 (1981)

    Article  ADS  Google Scholar 

  58. Ramana, M.V., Rajagopal, A.K.: Relativistic spin-polarised electron gas. J. Phys. C: Solid State Phys. 12, L845 (1979)

    Article  ADS  Google Scholar 

  59. Ebert, H., Battocletti, M., Gross, E.K.U.: Current density functional theory of spontaneously magnetised solids. Europhys. Lett. 40, 545 (1997)

    Article  ADS  Google Scholar 

  60. Diener, G.: Current-density-functional theory for a nonrelativistic electron gas in a strong magnetic field. J. Phys.: Cond. Mat. 3, 9417 (1991)

    ADS  Google Scholar 

  61. Ebert, H., Battocletti, M.: Spin and orbital polarized relativistic multiple scattering theory – with applications to Fe, Co, Ni and FexCo1−x. Solid State Commun. 98, 785 (1996)

    Article  ADS  Google Scholar 

  62. Chadov, S., Fecher, G.H., Felser, C., Minár, J., Braun, J., Ebert, H.: Electron correlations in Co2Mn1−xFexSi Heusler compounds. J. Phys. D: Appl. Phys. 42, 084002 (2009)

    Article  ADS  Google Scholar 

  63. Chadov, S., Minár, J., Katsnelson, M.I., Ebert, H., Ködderitzsch, D., Lichtenstein, A.I.: Orbital magnetism in transition metal systems: the role of local correlation effects. Europhys. Lett. 82, 37001 (2008)

    Article  ADS  Google Scholar 

  64. Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 392, 45 (1984)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  65. Chang, M.-C., Niu, Q.: Berry phase, hyperorbits, and the Hofstadter spectrum: semiclassical dynamics in magnetic Bloch bands. Phys. Rev. B 53, 7010 (1996)

    Article  ADS  Google Scholar 

  66. Wu, B., Liu, J., Niu, Q.: Geometric phase for adiabatic evolutions of general quantum states. Phys. Rev. Lett. 94, 140402 (2005)

    Article  ADS  Google Scholar 

  67. Xiao, D., Chang, M.-C., Niu, Q.: Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959 (2010)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  68. Sundaram, G., Niu, Q.: Wave-packet dynamics in slowly perturbed crystals: gradient corrections and Berry-phase effects. Phys. Rev. B 59, 14915 (1999)

    Article  ADS  Google Scholar 

  69. Bruno, P.: The Berry phase in magnetism and the anomalous Hall effect. In: Kronmüller, H., Parkin, S. (eds.) Handbook of Magnetism and Advanced Magnetic Materials, vol. 1, pp. 540–558. Wiley, Chichester (2007)

    Google Scholar 

  70. Yao, Y., Kleinman, L., MacDonald, A.H., Sinova, J., Jungwirth, T., Wang, D.-S., Wang, E., Niu, Q.: First principles calculation of anomalous Hall conductivity in ferromagnetic bcc Fe. Phys. Rev. Lett. 92, 037204 (2004)

    Article  ADS  Google Scholar 

  71. Zhang, Y., Sun, Y., Yang, H., Železný, J., Parkin, S.P.P., Felser, C., Yan, B.: Strong anisotropic anomalous Hall effect and spin Hall effect in the chiral antiferromagnetic compounds Mn3 X (X = Ge, Sn, Ga, Ir, Rh, and Pt). Phys. Rev. B 95, 075128 (2017)

    Google Scholar 

  72. Karplus, R., Luttinger, J.M.: Hall effect in ferromagnetics. Phys. Rev. 95, 1154 (1954)

    Article  MATH  ADS  Google Scholar 

  73. Jungwirth, T., Niu, Q., MacDonald, A.H.: Anomalous Hall effect in ferromagnetic semiconductors. Phys. Rev. Lett. 88, 207208 (2002)

    Article  ADS  Google Scholar 

  74. Berger, L.: Side-jump mechanism for the Hall effect of ferromagnets. Phys. Rev. B 2, 4559 (1970)

    Article  ADS  Google Scholar 

  75. Xiao, D., Yao, Y., Fang, Z., Niu, Q.: Berry-phase effect in anomalous thermoelectric transport. Phys. Rev. Lett. 97, 026603 (2006)

    Article  ADS  Google Scholar 

  76. Xiao, D., Shi, J., Niu, Q.: Berry phase correction to electron density of states in solids. Phys. Rev. Lett. 95, 137204 (2005)

    Article  ADS  Google Scholar 

  77. Thonhauser, T., Ceresoli, D., Vanderbilt, D., Resta, R.: Orbital magnetization in periodic insulators. Phys. Rev. Lett. 95, 137205 (2005)

    Article  ADS  Google Scholar 

  78. Šmejkal, L., Jungwirth, T., Sinova, J.: Route towards Dirac and Weyl antiferromagnetic spintronics. Phys. Status Solidi (RRL): Rapid Res. Lett. 11, 1700044 (2017)

    Google Scholar 

  79. Chen, H., Niu, Q., MacDonald, A.H.: Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014)

    Article  ADS  Google Scholar 

  80. Kübler, J., Felser, C.: Non-collinear antiferromagnets and the anomalous Hall effect. Europhys. Lett. 108, 67001 (2014)

    Article  ADS  Google Scholar 

  81. Šmejkal, L., Mokrousov, Y., Yan, B., MacDonald, A.H.: Topological antiferromagnetic spintronics. Nat. Phys. 14, 242 (2018)

    Article  Google Scholar 

  82. Stoner, E.C.: Collective electron specific heat and spin paramagnetism in metals. Proc. Roy. Soc. (Lond.) A 154, 656 (1936)

    Google Scholar 

  83. Moriya, T.: Spin Fluctuations in Itinerant Electron Magnetism. Springer Series in Surface Sciences, vol. 56. Springer, Berlin (1985)

    Google Scholar 

  84. Janak, J.F.: Uniform susceptibilities of metallic elements. Phys. Rev. B 16, 255 (1977)

    Article  ADS  Google Scholar 

  85. Matsumoto, M., Staunton, J.B., Strange, P.: A new formalism for the paramagnetic spin susceptibility of metals using relativistic spin-polarized multiple-scattering theory: a temperature-dependent anisotropy effect. J. Phys.: Cond. Mat. 2, 8365 (1990)

    ADS  Google Scholar 

  86. Mankovsky, S., Ebert, H.: Theoretical description of the high-field susceptibility of magnetically ordered transition metal systems with applications to Fe, Co, Ni, and Fe1−xCox. Phys. Rev. B 74, 54414 (2006)

    Article  ADS  Google Scholar 

  87. Buczek, P., Ernst, A., Bruno, P., Sandratskii, L.M.: Energies and lifetimes of magnons in complex ferromagnets: a first-principle study of heusler alloys. Phys. Rev. Lett. 102, 247206 (2009)

    Article  ADS  Google Scholar 

  88. Şaşıoğlu, E., Schindlmayr, A., Friedrich, C., Freimuth, F., Blügel, S.: Wannier-function approach to spin excitations in solids. Phys. Rev. B 81, 054434 (2010)

    Article  ADS  Google Scholar 

  89. Gunnarsson, O.: Band model for magnetism of transition metals in the spin-density-functional formalism. J. Phys. F: Met. Phys. 6, 587 (1976)

    Article  ADS  Google Scholar 

  90. Reddy, B.V., Khanna, S.N., Dunlap, B.I.: Giant magnetic moments in 4d clusters. Phys. Rev. Lett. 70, 3323 (1993)

    Article  ADS  Google Scholar 

  91. Cox, A.J., Louderback, J.G., Apsel, S.E., Bloomfield, L.A.: Magnetism in 4d-transition metal clusters. Phys. Rev. B 49, 12295 (1994)

    Article  ADS  Google Scholar 

  92. Vondráček, M., Cornils, L., Minár, J., Warmuth, J., Michiardi, M., Piamonteze, C., Barreto, L., Miwa, J.A., Bianchi, M., Hofmann, P., Zhou, L., Kamlapure, A., Khajetoorians, A.A., Wiesendanger, R., Mi, J.-L., Iversen, B.-B., Mankovsky, S., Borek, S., Ebert, H., Schüler, M., Wehling, T., Wiebe, J., Honolka, J.: Nickel: the time-reversal symmetry conserving partner of iron on a chalcogenide topological insulator. Phys. Rev. B 94, 161114 (2016)

    Article  ADS  Google Scholar 

  93. Dederichs, P.H., Zeller, R., Akai, H., Ebert, H.: Ab-initio calculations of the electronic structure of impurities and alloys of ferromagnetic transition metals. J. Magn. Magn. Mater. 100, 241 (1991)

    Article  ADS  Google Scholar 

  94. Hasegawa, H., Kanamori, J.: An application of the coherent potential approximation to ferromagnetic alloys. J. Phys. Soc. Jpn. 31, 382 (1971)

    Article  ADS  Google Scholar 

  95. Minár, J., Mankovsky, S., Šipr, O., Benea, D., Ebert, H.: Correlation effects in fcc-FexNi1x alloys investigated by means of the KKR-CPA. J. Phys.: Cond. Mat. 26, 274206 (2014)

    ADS  Google Scholar 

  96. Miura, Y., Nagao, K., Shirai, M.: Atomic disorder effects on half-metallicity of the full-Heusler alloys Co2(Cr1−xFex)Al: a first-principles study. Phys. Rev. B 69, 144413 (2004)

    Article  ADS  Google Scholar 

  97. Galanakis, I., Mavropoulos, P., Dederichs, P.H.: Electronic structure and Slater-Pauling behaviour in half-metallic Heusler alloys calculated from first principles. J. Phys. D: Appl. Phys. 39, 765 (2006)

    Article  ADS  Google Scholar 

  98. Galanakis, I.: Heusler Alloys. Properties, Growth, Applications. Springer Series in Material Science, vol. 222. Springer International Publishing, Cham (2016)

    Google Scholar 

  99. Jourdan, M., Minár, J., Braun, J., Kronenberg, A., Chadov, S., Balke, B., Gloskovskii, A., Kolbe, M., Elmers, H., Schönhense, G., Ebert, H., Felser, C., Kläui, M.: Direct observation of half-metallicity in the Heusler compound Co2MnSi. Nat. Commun. 5, 3974 (2014)

    Article  ADS  Google Scholar 

  100. Mavropoulos, P., Galanakis, I., Popescu, V., Dederichs, P.H.: The influence of spin-orbit coupling on the band gap of Heusler alloys. J. Phys.: Cond. Mat. 16, S5759 (2004)

    ADS  Google Scholar 

  101. Galanakis, I.: Surface properties of the half-and full-Heusler alloys. J. Phys.: Cond. Mat. 14, 6329 (2002)

    ADS  Google Scholar 

  102. Meservey, R., Tedrow, P.: Spin-polarized electron tunneling. Phys. Rep. 238, 173 (1994)

    Article  ADS  Google Scholar 

  103. Mazin, I.I.: How to define and calculate the degree of spin polarization in ferromagnets. Phys. Rev. Lett. 83, 1427 (1999)

    Article  ADS  Google Scholar 

  104. Nadgorny, B.E.: Handbook of Spin Transport and Magnetism. Taylor and Francis Group, Boca Raton (2012)

    Google Scholar 

  105. de Groot, R.A., Mueller, F.M., Engen, P.G.V., Buschow, K.H.J.: New class of materials: half-metallic ferromagnets. Phys. Rev. Lett. 50, 2024 (1983)

    Article  ADS  Google Scholar 

  106. Otto, M.J., van Woerden, R.A.M., van der Valk, P.J., Wijngaard, J., van Bruggen, C.F., Haas, C., Buschow, K.H.J.: Half-metallic ferromagnets. I. Structure and magnetic properties of NiMnSb and related inter-metallic compounds. J. Phys.: Cond. Mat. 1, 2341 (1989)

    Google Scholar 

  107. Galanakis, I., Dederichs, P.H., Papanikolaou, N.: Origin and properties of the gap in the half-ferromagnetic Heusler alloys. Phys. Rev. B 66, 134428 (2002)

    Article  ADS  Google Scholar 

  108. Braun, J., Ebert, H., Minár, J.: Correlation and chemical disorder in Heusler compounds: a spectroscopical study. In: Spintronics. Fundamentals and Theory, vol. 1, Springer (2013)

    Google Scholar 

  109. Ishida, S., Akazawa, S., Kubo, Y., Ishida, J.: Band theory of Co2MnSn, Co2TiSn and Co2TiAl. J. Phys. F: Met. Phys. 12, 1111 (1982)

    Article  ADS  Google Scholar 

  110. Fujii, S., Sugimura, S., Ishida, Asano, S.: Hyperfine fields and electronic structures of the Heusler alloys Co2MnX (X=Al, Ga, Si, Ge, Sn). J. Phys.: Cond. Mat. 2, 8583 (1990)

    Google Scholar 

  111. Galanakis, I., Dederichs, P.H., Papanikolaou, N.: Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys. Phys. Rev. B 66, 174429 (2002)

    Article  ADS  Google Scholar 

  112. Ozdogan, K., Galanakis, I.: First-principles electronic and magnetic properties of the half-metallic antiferromagnet. J. Magn. Magn. Mater. 321, L34 (2009)

    Article  ADS  Google Scholar 

  113. Schröter, M., Ebert, H., Akai, H., Entel, P., Hoffmann, E., Reddy, G.G.: First-principles investigations of atomic disorder effects on magnetic and structural instabilities in transition-metal alloys. Phys. Rev. B 52, 188 (1995)

    Article  ADS  Google Scholar 

  114. van Schilfgaarde, M., Abrikosov, I.A., Johansson, B.: Origin of the Invar effect in iron-nickel alloys. Nature 400, 46 (1999)

    Article  ADS  Google Scholar 

  115. Sandratskii, L.M.: Noncollinear magnetism in itinerant-electron systems: theory and applications. Adv. Phys. 47, 91 (1998)

    Article  ADS  Google Scholar 

  116. Seemann, M., Ködderitzsch, D., Wimmer, S., Ebert, H.: Symmetry-imposed shape of linear response tensors. Phys. Rev. B 92, 155138 (2015)

    Article  ADS  Google Scholar 

  117. Nakatsuji, S., Kiyohara, N., Higo, T.: Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212 (2015)

    Article  ADS  Google Scholar 

  118. Ikhlas, M., Tomita, T., Koretsune, T., Suzuki, M.-T., Nishio-Hamane, D., Arita, R., Otani, Y., Nakatsuji, S.: Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085 (2017)

    Article  Google Scholar 

  119. Zhang, W., Han, W., Yang, S.-H., Sun, Y., Zhang, Y., Yan, B., Parkin, S.S.P.: Giant facet-dependent spin-orbit torque and spin Hall conductivity in the triangular antiferromagnet IrMn3. Sci. Adv. 2, e1600759 (2016)

    Article  ADS  Google Scholar 

  120. Železný, J., Zhang, Y., Felser, C., Yan, B.: Spin-polarized current in noncollinear antiferromagnets. Phys. Rev. Lett. 119, 187204 (2017)

    Article  ADS  Google Scholar 

  121. Sandratskii, L.M., Kübler, J.: Magnetic structures of uranium compounds: effects of relativity and symmetry. Phys. Rev. Lett. 75, 946 (1995)

    Article  ADS  Google Scholar 

  122. Connolly, J.W.D., Williams, A.R.: Density-functional theory applied to phase transformations in transition-metal alloys. Phys. Rev. B 27, 5169 (1983)

    Article  ADS  Google Scholar 

  123. Drautz, R., Fähnle, M.: Spin-cluster expansion: parametrization of the general adiabatic magnetic energy surface with ab initio accuracy. Phys. Rev. B 69, 104404 (2004)

    Article  ADS  Google Scholar 

  124. Antal, A., Lazarovits, B., Udvardi, L., Szunyogh, L., Újfalussy, B., Weinberger, P.: First-principles calculations of spin interactions and the magnetic ground states of Cr trimers on Au(111). Phys. Rev. B 77, 174429 (2008)

    Article  ADS  Google Scholar 

  125. Oguchi, T., Terakura, K., Hamada, N.: Magnetism of iron above the Curie temperature. J. Phys. F: Met. Phys. 13, 145 (1983)

    Article  ADS  Google Scholar 

  126. Liechtenstein, A.I., Katsnelson, M.I., Antropov, V.P., Gubanov, V.A.: Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. J. Magn. Magn. Mater. 67, 65 (1987)

    Article  ADS  Google Scholar 

  127. Pajda, M., Kudrnovský, J., Turek, I., Drchal, V., Bruno, P.: Oscillatory Curie temperature of two-dimensional ferromagnets. Phys. Rev. Lett. 85, 5424 (2000)

    Article  ADS  Google Scholar 

  128. Polesya, S., Mankovsky, S., Šipr, O., Meindl, W., Strunk, C., Ebert, H.: Finite-temperature magnetism of FexPd1−x and CoxPt1−x alloys. Phys. Rev. B 82, 214409 (2010)

    Article  ADS  Google Scholar 

  129. Ležaić, M., Mavropoulos, P., Enkovaara, J., Bihlmayer, G., Blügel, S.: Thermal collapse of spin polarization in half-metallic ferromagnets. Phys. Rev. Lett. 97, 026404 (2006)

    Article  ADS  Google Scholar 

  130. Buchelnikov, V.D., Entel, P., Taskaev, S.V., Sokolovskiy, V.V., Hucht, A., Ogura, M., Akai, H., Gruner, M.E., Nayak, S.K.: Monte Carlo study of the influence of antiferromagnetic exchange interactions on the phase transitions of ferromagnetic Ni-Mn-X alloys (X=In,Sn,Sb). Phys. Rev. B 78, 184427 (2008)

    Google Scholar 

  131. Buchelnikov, V.D., Sokolovskiy, V.V., Herper, H.C., Ebert, H., Gruner, M.E., Taskaev, S.V., Khovaylo, V.V., Hucht, A., Dannenberg, A., Ogura, M., Akai, H., Acet, M., Entel, P.: First-principles and Monte Carlo study of magnetostructural transition and magnetocaloric properties of Ni2+xMn1−xGa. Phys. Rev. B 81, 094411 (2010)

    Article  ADS  Google Scholar 

  132. Sato, K., Dederichs, P.H., Katayama-Yoshida, H.: Curie temperatures of dilute magnetic semiconductors from LDA+U electronic structure calculations. Physica B 376–377, 639 (2006)

    Article  ADS  Google Scholar 

  133. Toyoda, M., Akai, H., Sato, K., Katayama-Yoshida, H.: Curie temperature of GaMnN and GaMnAs from LDA-SIC electronic structure calculations. Phys. Stat. Sol. (C) 3, 4155 (2006)

    Google Scholar 

  134. Nayak, S.K., Ogura, M., Hucht, A., Akai, H., Entel, P.: Monte Carlo simulations of diluted magnetic semiconductors using ab initio exchange parameters. J. Phys.: Cond. Mat. 21, 064238 (2009)

    ADS  Google Scholar 

  135. Bouzerar, G., Kudrnovský, J., Bergqvist, L., Bruno, P.: Ferromagnetism in diluted magnetic semiconductors: a comparison between ab initio mean-field, RPA, and Monte Carlo treatments. Phys. Rev. B 68, 081203 (2003)

    Google Scholar 

  136. Eriksson, O., Bergqvist, L., Sanyal, B., Kudrnovský, J., Drchal, V., Korzhavyi, P., Turek, I.: Electronic structure and magnetism of diluted magnetic semiconductors. J. Phys.: Cond. Mat. 16, S5481 (2004)

    ADS  Google Scholar 

  137. Sato, K., Bergqvist, L., Kudmovsky, J., Dederichs, P.H., Eriksson, O., Turek, I., Sanyal, B., Bouzerar, G., Katayama-Yoshida, H., Dinh, V.A., Fukushima, T., Kizaki, H., Zeller, R.: First-principles theory of dilute magnetic semiconductors. Rev. Mod. Phys. 82, 1633 (2010)

    Article  ADS  Google Scholar 

  138. Maccherozzi, F., Sperl, M., Panaccione, G., Minár, J., Polesya, S., Ebert, H., Wurstbauer, U., Hochstrasser, M., Rossi, G., Woltersdorf, G., Wegscheider, W., Back, C.H.: Evidence for a magnetic proximity effect up to room temperature at Fe∕(Ga, Mn)As interfaces. Phys. Rev. Lett. 101, 267201 (2008)

    Article  ADS  Google Scholar 

  139. Polesya, S., Šipr, O., Bornemann, S., Minár, J., Ebert, H.: Magnetic properties of free Fe clusters at finite temperatures from first principles. Europhys. Lett. 74, 1074 (2006)

    Article  ADS  Google Scholar 

  140. Šipr, O., Polesya, S., Minár, J., Ebert, H.: Influence of temperature on the systematics of magnetic moments of free Fe clusters. J. Phys.: Cond. Mat. 19, 446205 (2007)

    ADS  Google Scholar 

  141. Katsnelson, M.I., Lichtenstein, A.I.: First-principles calculations of magnetic interactions in correlated systems. Phys. Rev. B 61, 8906 (2000)

    Article  ADS  Google Scholar 

  142. Ebert, H., Mankovsky, S.: Anisotropic exchange coupling in diluted magnetic semiconductors: ab initio spin-density functional theory. Phys. Rev. B 79, 045209 (2009)

    Article  ADS  Google Scholar 

  143. Mankovsky, S., Bornemann, S., Minár, J., Polesya, S., Ebert, H., Staunton, J.B., Lichtenstein, A.I.: Effects of spin-orbit coupling on the spin structure of deposited transition-metal clusters. Phys. Rev. B 80, 014422 (2009)

    Article  ADS  Google Scholar 

  144. Antropov, V.P., Katsnelson, M.I., Harmon, B.N., van Schilfgaarde, M., Kusnezov, D.: Spin dynamics in magnets: equation of motion and finite temperature effects. Phys. Rev. B 54, 1019 (1996)

    Article  ADS  Google Scholar 

  145. Ebert, H.: Relativistic theory of indirect nuclear spin-spin coupling. Phil. Mag. 88, 2673 (2008)

    Article  ADS  Google Scholar 

  146. Sandratskii, L.M., Bruno, P.: Exchange interactions and Curie temperature in (Ga,Mn)As. Phys. Rev. B 66, 134435 (2002)

    Google Scholar 

  147. Uhl, M., Sandratskii, L.M., Kübler, J.: Spin fluctuations in γ-Fe and in Fe3Pt Invar from local-density-functional calculations. Phys. Rev. B 50, 291 (1994)

    Article  ADS  Google Scholar 

  148. Heide, M., Bihlmayer, G., Blügel, S.: Dzyaloshinskii-Moriya interaction accounting for the orientation of magnetic domains in ultrathin films: Fe/W(110). Phys. Rev. B 78, 140403 (2008)

    Article  ADS  Google Scholar 

  149. Solovyev, I.V., Kashin, I.V., Mazurenko, V.V.: Mechanisms and origins of half-metallic ferromagnetism in CrO2. Phys. Rev. B 92, 144407 (2015)

    Article  ADS  Google Scholar 

  150. Keshavarz, S., Kvashnin, Y.O., Rodrigues, D.C.M., Pereiro, M., Di Marco, I., Autieri, C., Nordström, L., Solovyev, I.V., Sanyal, B., Eriksson, O.: Exchange interactions of CaMnO3 in the bulk and at the surface. Phys. Rev. B 95, 115120 (2017)

    Article  ADS  Google Scholar 

  151. Logemann, R., Rudenko, A.N., Katsnelson, M.I., Kirilyuk, A.: Exchange interactions in transition metal oxides: the role of oxygen spin polarization. J. Phys.: Condens. Matter 29, 335801 (2017)

    Google Scholar 

  152. Katanin, A.A., Poteryaev, A.I., Efremov, A.V., Shorikov, A.O., Skornyakov, S.L., Korotin, M.A., Anisimov, V.I.: Orbital-selective formation of local moments in α-iron: first-principles route to an effective model. Phys. Rev. B 81, 045117 (2010)

    Article  ADS  Google Scholar 

  153. Kvashnin, Y.O., Cardias, R., Szilva, A., Di Marco, I., Katsnelson, M.I., Lichtenstein, A.I., Nordström, L., Klautau, A.B., Eriksson, O.: Microscopic origin of Heisenberg and Non-Heisenberg exchange interactions in ferromagnetic bcc Fe. Phys. Rev. Lett. 116, 217202 (2016)

    Article  ADS  Google Scholar 

  154. Szilva, A., Thonig, D., Bessarab, P.F., Kvashnin, Y.O., Rodrigues, D.C.M., Cardias, R., Pereiro, M., Nordström, L., Bergman, A., Klautau, A.B., Eriksson, O.: Theory of noncollinear interactions beyond Heisenberg exchange: applications to bcc Fe. Phys. Rev. B 96, 144413 (2017)

    Article  ADS  Google Scholar 

  155. Szunyogh, L., Újfalussy, B., Weinberger, P.: Magnetic anisotropy of iron multilayers on Au(001): first-principles calculations in terms of the fully relativistic spin-polarized screened KKR method. Phys. Rev. B 51, 9552 (1995)

    Article  ADS  Google Scholar 

  156. Razee, S.S.A., Staunton, J.B., Pinski, F.J.: First-principles theory of magnetocrystalline anisotropy of disordered alloys: application to cobalt platinum. Phys. Rev. B 56, 8082 (1997)

    Article  ADS  Google Scholar 

  157. Újfalussy, B., Szunyogh, L., Weinberger, P.: Magnetic anisotropy in Fe/Cu(001) overlayers and interlayers: the high-moment ferromagnetic phase. Phys. Rev. B 54, 9883 (1996)

    Article  ADS  Google Scholar 

  158. Solovyev, I.V., Dederichs, P.H., Mertig, I.: Origin of orbital magnetization and magnetocrystalline anisotropy in TX ordered alloys (where T =Fe,Co and X =Pd,Pt). Phys. Rev. B 52, 13419 (1995)

    Google Scholar 

  159. Bruno, P.: Tight-binding approach to the orbital magnetic moment and magnetocrystalline anisotropy of transition-metal monolayers. Phys. Rev. B 39, 865 (1989)

    Article  ADS  Google Scholar 

  160. van der Laan, G.: Determination of the element-specific magnetic anisotropy in thin films and surfaces. J. Phys.: Cond. Mat. 13, 11149 (2001)

    ADS  Google Scholar 

  161. Wang, X., Wu, R., Wang, D.-S., Freeman, A.J.: Torque method for the theoretical determination of magnetocrystalline anisotropy. Phys. Rev. B 54, 61 (1996)

    Article  ADS  Google Scholar 

  162. Staunton, J.B., Szunyogh, L., Buruzs, A., Gyorffy, B.L., Ostanin, S., Udvardi, L.: Temperature dependence of magnetic anisotropy: an ab initio approach. Phys. Rev. B 74, 144411 (2006)

    Article  ADS  Google Scholar 

  163. Daalderop, G.H.O., Kelly, P.J., Schuurmans, M.F.H.: First-principles calculation of the magnetic anisotropy energy of (Co)n/(X)m multilayers. Phys. Rev. B 42, 7270 (1990)

    Article  ADS  Google Scholar 

  164. Weinberger, P.: Magnetic Anisotropies in Nanostructured Matter. Condensed Matter Physics. Chapman and Hall/CRC Press, Boca Raton (2008)

    Book  Google Scholar 

  165. Stiles, M.D., Halilov, S.V., Hyman, R.A., Zangwill, A.: Spin-other-orbit interaction and magnetocrystalline anisotropy. Phys. Rev. B 64, 104430 (2001)

    Article  ADS  Google Scholar 

  166. Bornemann, S., Minár, J., Braun, J., Ködderitzsch, D., Ebert, H.: Ab-initio description of the magnetic shape anisotropy due to the Breit interaction. Solid State Commun. 152, 85 (2012)

    Article  ADS  Google Scholar 

  167. Buschow, K., van Diepen, A., de Wijn, H.: Crystal-field anisotropy of Sm3+ in SmCo5. Solid State Commun. 15, 903 (1974)

    Article  ADS  Google Scholar 

  168. Yamada, M., Kato, H., Yamamoto, H., Nakagawa, Y.: Crystal-field analysis of the magnetization process in a series of Nd2Fe14B-type compounds. Phys. Rev. B 38, 620 (1988)

    Article  ADS  Google Scholar 

  169. Herbst, J.F.: R2Fe14B materials: intrinsic properties and technological aspects. Rev. Mod. Phys. 63, 819 (1991)

    Article  ADS  Google Scholar 

  170. Hummler, K., Fähnle, M.: Full-potential linear-muffin-tin-orbital calculations of the magnetic properties of rare-earth transition-metal intermetallics. I. Description of the formalism and application to the series R Co5 (R =rare-earth atom). Phys. Rev. B 53, 3272 (1996)

    Google Scholar 

  171. Hummler, K., Fähnle, M.: Ab initio calculation of local magnetic moments and the crystal field in R2Fe14B (R =Gd, Tb, Dy, Ho, and Er). Phys. Rev. B 45, 3161 (1992)

    Article  ADS  Google Scholar 

  172. Coehoorn, R.: Supermagnets, Hard Magnetic Materials. Nato ASI Series, Series C, chapter 8, vol. 331, p. 133. Kluwer Academic Publishers, Dardrecht (1991)

    Google Scholar 

  173. Richter, M., Oppeneer, P.M., Eschrig, H., Johansson, B.: Calculated crystal-field parameters of SmCo5. Phys. Rev. B 46, 13919 (1992)

    Article  ADS  Google Scholar 

  174. Hummler, K., Fähnle, M.: Full-potential linear-muffin-tin-orbital calculations of the magnetic properties of rare-earth transition-metal intermetallics. II. Nd2Fe14B. Phys. Rev. B 53, 3290 (1996)

    Google Scholar 

  175. Moriya, H., Tsuchiura, H., Sakuma, A.: First principles calculation of crystal field parameter near surfaces of Nd2Fe14B. J. Appl. Phys. 105, 07A740 (2009)

    Google Scholar 

  176. Tanaka, S., Moriya, H., Tsuchiura, H., Sakuma, A., Diviš, M., Novák, P.: First principles study on the local magnetic anisotropy near surfaces of Dy2Fe14B and Nd2Fe14B magnets. J. Appl. Phys. 109, 07A702 (2011)

    Google Scholar 

  177. Novák, P., Knížek, K., Kuneš, J.: Crystal field parameters with Wannier functions: application to rare-earth aluminates. Phys. Rev. B 87, 205139 (2013)

    Article  ADS  Google Scholar 

  178. Novák, P., Kuneš, J., Knížek, K.: Crystal field of rare earth impurities in LaF3. Opt. Mater. 37, 414 (2014)

    Article  ADS  Google Scholar 

  179. Patrick, C.E., Kumar, S., Balakrishnan, G., Edwards, R.S., Lees, M.R., Petit, L., Staunton, J.B.: Calculating the magnetic anisotropy of rare-earth–transition-metal ferrimagnets. Phys. Rev. Lett. 120, 097202 (2018)

    Article  ADS  Google Scholar 

  180. Halilov, S.V., Eschrig, H., Perlov, A.Y., Oppeneer, P.M.: Adiabatic spin dynamics from spin-density-functional theory: application to Fe, Co, and Ni. Phys. Rev. B 58, 293 (1998)

    Article  ADS  Google Scholar 

  181. Grotheer, O., Ederer, C., Fähnle, M.: Fast ab initio methods for the calculation of adiabatic spin wave spectra in complex systems. Phys. Rev. B 63, 100401 (2001)

    Article  ADS  Google Scholar 

  182. Pajda, M., Kudrnovský, J., Turek, I., Drchal, V., Bruno, P.: Ab initio calculations of exchange interactions, spin-wave stiffness constants, and Curie temperatures of Fe, Co, and Ni. Phys. Rev. B 64, 174402 (2001)

    Article  ADS  Google Scholar 

  183. Turek, I., Kudrnovský, J., Drchal, V., Bruno, P.: Exchange interactions, spin waves, and transition temperatures in itinerant magnets. Phil. Mag. 86, 1713 (2006)

    Article  ADS  Google Scholar 

  184. Brinkman, W.F., Elliot, R.J.: Theory of spin-space groups. Proc. R. Soc. (Lond.) A 294, 343 (1966)

    Google Scholar 

  185. Brinkman, W.F., Elliot, R.J.: Space group theory for spin waves. J. Appl. Phys. 37, 1457 (1966)

    Article  ADS  Google Scholar 

  186. Herring, C.: Magnetism: exchange interactions among itinerant electrons In: Rado, G., Suhl, H. (eds.) Magnetism, vol. IV, p. 191. Academic Press, New York (1966)

    Google Scholar 

  187. Sandratskii, L.M.: Symmetry analysis of electronic states for crystals with spiral magnetic order. I. General properties. J. Phys.: Cond. Mat. 3, 8565 (1991)

    Google Scholar 

  188. Uhl, M., Sandratskii, L., Kübler, J.: Electronic and magnetic states of γ-Fe. J. Magn. Magn. Mater. 103, 314 (1992)

    Article  ADS  Google Scholar 

  189. Kurz, P., Förster, F., Nordström, L., Bihlmayer, G., Blügel, S.: Ab initio treatment of noncollinear magnets with the full-potential linearized augmented plane wave method. Phys. Rev. B 69, 024415 (2004)

    Article  ADS  Google Scholar 

  190. Mankovsky, S., Fecher, G.H., Ebert, H.: Electronic structure calculations in ordered and disordered solids with spiral magnetic order. Phys. Rev. B 83, 144401 (2011)

    Article  ADS  Google Scholar 

  191. Kübler,J.: Ab initio estimates of the Curie temperature for magnetic compounds. J. Phys.: Condens. Matter 18, 9795 (2006)

    ADS  Google Scholar 

  192. Galanakis, I., Sasioglu, E.: Ab-initio calculation of effective exchange interactions, spin waves, and Curie temperature in L21- and L12-type local moment ferromagnets. J. Mater. Sci. 47, 7678 (2012)

    Article  ADS  Google Scholar 

  193. Şaşıoğlu, E., Sandratskii, L.M., Bruno, P., Galanakis, I.: Exchange interactions and temperature dependence of magnetization in half-metallic Heusler alloys. Phys. Rev. B 72, 184415 (2005)

    Article  ADS  Google Scholar 

  194. Edwards, D.M., Katsnelson, M.I.: High-temperature ferromagnetism of sp electrons in narrow impurity bands: application to CaB6. J. Phys.: Condens. Matter 18, 7209 (2006)

    ADS  Google Scholar 

  195. Buczek, P., Ernst, A., Sandratskii, L.M.: Spin dynamics of half-metallic Co2MnSi. J. Phys.: Conf. Ser. 200, 042006 (2010)

    Google Scholar 

  196. Savrasov, S.Y.: Linear response calculations of spin fluctuations. Phys. Rev. Lett. 81, 2570 (1998)

    Article  ADS  Google Scholar 

  197. Qian, Z., Vignale, G.: Spin dynamics from time-dependent spin-density-functional theory. Phys. Rev. Lett. 88, 056404 (2002)

    Article  ADS  Google Scholar 

  198. Lounis, S., dos Santos Dias, M., Schweflinghaus, B.: Transverse dynamical magnetic susceptibilities from regular static density functional theory: evaluation of damping and g shifts of spin excitations. Phys. Rev. B 91, 104420 (2015)

    Article  ADS  Google Scholar 

  199. Bruno, P.: Exchange interaction parameters and adiabatic spin-wave spectra of ferromagnets: a “renormalized magnetic force theorem”. Phys. Rev. Lett. 90, 087205 (2003)

    Article  ADS  Google Scholar 

  200. Katsnelson, M.I., Lichtenstein, A.I.: Magnetic susceptibility, exchange interactions and spin-wave spectra in the local spin density approximation. J. Phys.: Condens. Matter 16, 7439 (2004)

    ADS  Google Scholar 

  201. Buczek, P., Ernst, A., Sandratskii, L.M.: Interface electronic complexes and landau damping of magnons in ultrathin magnets. Phys. Rev. Lett. 106, 157204 (2011)

    Article  ADS  Google Scholar 

  202. Tajima, K., Ishikawa, Y., Webster, P.J., Stringfellow, M.W., Tocchetti, D., Zeabeck, K.R.A.: Spin waves in a heusler alloy Cu2MnAl. J. Phys. Soc. Jpn. 43, 483 (1977)

    Article  ADS  Google Scholar 

  203. Buczek, P., Ernst, A., Sandratskii, L.M.: Different dimensionality trends in the Landau damping of magnons in iron, cobalt, and nickel: time-dependent density functional study. Phys. Rev. B 84, 174418 (2011)

    Article  ADS  Google Scholar 

  204. Müller, M.C.T.D., Friedrich, C., Blügel, S.: Acoustic magnons in the long-wavelength limit: investigating the Goldstone violation in many-body perturbation theory. Phys. Rev. B 94, 064433 (2016)

    Article  ADS  Google Scholar 

  205. Staunton, J.B., Poulter, J., Ginatempo, B., Bruno, E., Johnson, D.D.: Incommensurate and commensurate antiferromagnetic spin fluctuations in Cr and Cr alloys from ab initio dynamical spin susceptibility calculations. Phys. Rev. Lett. 82, 3340 (1999)

    Article  ADS  Google Scholar 

  206. Staunton, J.B., Poulter, J., Ginatempo, B., Bruno, E., Johnson, D.D.: Spin fluctuations in nearly magnetic metals from ab initio dynamical spin susceptibility calculations: application to Pd and Cr95V5. Phys. Rev. B 62, 1075 (2000)

    Article  ADS  Google Scholar 

  207. Schindlmayr, A., Friedrich, C., Sasioglu, E., Blügel, S.: First-principles calculation of electronic excitations in solids with SPEX. Z. Phys. Chem. 224, 357 (2010)

    Article  Google Scholar 

  208. Tyablokov, S.V.: Methods of Quantum Theory of Magnetism. Plenum Press, New York (1967)

    Book  Google Scholar 

  209. Callen, H.B.: Green function theory of ferromagnetism. Phys. Rev. 130, 890 (1963)

    Article  MATH  ADS  Google Scholar 

  210. Bose, S.K., Kudrnovský, J.,Drchal, V., Turek, I.: Magnetism of mixed quaternary Heusler alloys: (Ni, T)2 MnSn (T = Cu, Pd) as a case study. Phys. Rev. B 82, 174402 (2010)

    Google Scholar 

  211. Rusz, J., Turek, I., Diviš, M.: Random-phase approximation for critical temperatures of collinear magnets with multiple sublattices: GdX compounds (X = Mg, Rh, Ni, Pd). Phys. Rev. B 71, 174408 (2005)

    Google Scholar 

  212. Sandratskii, L.M., Singer, R., Şaşıoğlu, E.: Heisenberg Hamiltonian description of multiple-sublattice itinerant-electron systems: general considerations and applications to NiMnSb and MnAs. Phys. Rev. B 76, 184406 (2007)

    Article  ADS  Google Scholar 

  213. Mermin, n.d., Wagner, H.: Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133 (1966)

    Google Scholar 

  214. Bruno, P.: Magnetization and Curie temperature of ferromagnetic ultrathin films: the influence of magnetic anisotropy and dipolar interactions (invited). Mater. Res. Soc. Symp. Proc. 231, 299 (1991)

    Article  Google Scholar 

  215. Bouzerar, G., Bruno, P.: RPA-CPA theory for magnetism in disordered Heisenberg binary systems with long-range exchange integrals. Phys. Rev. B 66, 014410 (2002)

    Article  ADS  Google Scholar 

  216. Kübler, J., Fecher, G.H., Felser, C.: Understanding the trend in the Curie temperatures of Co2-based Heusler compounds: ab initio calculations. Phys. Rev. B 76, 024414 (2007)

    Article  ADS  Google Scholar 

  217. Rosengaard, N.M., Johansson, B.: Finite-temperature study of itinerant ferromagnetism in Fe, Co, and Ni. Phys. Rev. B 55, 14975 (1997)

    Article  ADS  Google Scholar 

  218. Jakobsson, A., Şaşıoğlu, E., Mavropoulos, P., Ležaić, M., Sanyal, B., Bihlmayer, G., Blügel, S.: Tuning the Curie temperature of FeCo compounds by tetragonal distortion. Appl. Phys. Lett. 103, 102404 (2013)

    Article  ADS  Google Scholar 

  219. Bergqvist, L., Korzhavyi, P.A., Sanyal, B., Mirbt, S., Abrikosov, I.A., Nordström, L., Smirnova, E.A., Mohn, P., Svedlindh, P., Eriksson, O.: Magnetic and electronic structure of (Ga1−xMnx)As. Phys. Rev. B 67, 205201 (2003)

    Article  ADS  Google Scholar 

  220. Bergqvist, L., Eriksson, O., Kudrnovský, J., Drchal, V., Korzhavyi, P., Turek, I.: Magnetic percolation in diluted magnetic semiconductors. Phys. Rev. Lett. 93, 137202 (2004)

    Article  ADS  Google Scholar 

  221. Ležaić, M., Mavropoulos, P., Bihlmayer, G., Blügel, S.: Exchange interactions and local-moment fluctuation corrections in ferromagnets at finite temperatures based on noncollinear density-functional calculations. Phys. Rev. B 88, 134403 (2013)

    Article  ADS  Google Scholar 

  222. Uhl, M., Kübler, J.: Exchange-coupled spin-fluctuation theory: application to Fe, Co, and Ni. Phys. Rev. Lett. 77, 334 (1996)

    Article  ADS  Google Scholar 

  223. Ruban, A.V., Khmelevskyi, S., Mohn, P., Johansson, B.: Temperature-induced longitudinal spin fluctuations in Fe and Ni. Phys. Rev. B 75, 054402 (2007)

    Article  ADS  Google Scholar 

  224. Williams, A.R., Zeller, R., Moruzzi, V.L., Gelatt, C.D., Kubler, J.: Covalent magnetism: an alternative to the Stoner model. J. Appl. Phys. 52, 2067 (1981)

    Article  ADS  Google Scholar 

  225. Mohn, P., Schwarz, K.: Supercell calculations for transition metal impurities in palladium. J. Phys.: Cond. Mat. 5, 5099 (1993)

    ADS  Google Scholar 

  226. Mryasov, O.N., Nowak, U., Guslienko, K.Y., Chantrell, R.W.: Temperature-dependent magnetic properties of FePt: effective spin Hamiltonian model. Europhys. Lett. 69, 805 (2005)

    Article  ADS  Google Scholar 

  227. Mryasov, O.N.: Magnetic interactions and phase transformations in FeM, M = (Pt,Rh) ordered alloys. Phase Transit. 78, 197 (2005)

    Google Scholar 

  228. Kudrnovský, J., Drchal, V., Bruno, P.: Magnetic properties of fcc Ni-based transition metal alloys. Phys. Rev. B 77, 224422 (2008)

    Article  ADS  Google Scholar 

  229. Polesya, S., Mankovsky, S., Ködderitzsch, D., Minár, J., Ebert, H.: Finite-temperature magnetism of FeRh compounds. Phys. Rev. B 93, 024423 (2016)

    Article  ADS  Google Scholar 

  230. Gyorffy, B.L., Pindor, A.J., Staunton, J., Stocks, G.M., Winter, H.: A first-principles theory of ferromagnetic phase transitions in metals. J. Phys. F: Met. Phys. 15, 1337 (1985)

    Article  ADS  Google Scholar 

  231. Feynman, R.P.: Slow electrons in a polar crystal. Phys. Rev. 97, 660 (1955)

    Article  MATH  ADS  Google Scholar 

  232. Staunton, J.B., Ostanin, S., Razee, S.S.A., Gyorffy, B.L., Szunyogh, L., Ginatempo, B., Bruno, E.: Temperature dependent magnetic anisotropy in metallic magnets from an ab initio electronic structure theory: L10-ordered FePt. Phys. Rev. Lett. 93, 257204 (2004)

    Article  ADS  Google Scholar 

  233. Buruzs, A., Weinberger, P., Szunyogh, L., Udvardi, L., Chleboun, P.I., Fischer, A.M., Staunton, J.B.: Ab initio theory of temperature dependence of magnetic anisotropy in layered systems: applications to thin Co films on Cu(100). Phys. Rev. B 76, 064417 (2007)

    Article  ADS  Google Scholar 

  234. Zhuravlev, I.A., Antropov, V.P., Belashchenko, K.D.: Spin-fluctuation mechanism of anomalous temperature dependence of magnetocrystalline anisotropy in itinerant magnets. Phys. Rev. Lett. 115, 217201 (2015)

    Article  ADS  Google Scholar 

  235. Hubbard, J.: Calculation of partition functions. Phys. Rev. Lett. 3, 77 (1959)

    Article  ADS  Google Scholar 

  236. Kakehashi, Y.: Monte Carlo approach to the dynamical coherent-potential approximation in metallic magnetism. Phys. Rev. B 45, 7196 (1992)

    Article  ADS  Google Scholar 

  237. Kakehashi, Y., Shimabukuro, T., Tamashiro, T., Nakamura, T.: Dynamical coherent-potential approximation and tight-binding linear muffintin orbital approach to correlated electron system. J. Phys. Soc. Jpn. 77, 094706 (2008)

    Article  ADS  Google Scholar 

  238. Kakehashi, Y.: Many-body coherent potential approximation, dynamical coherent potential approximation, and dynamical mean-field theory. Phys. Rev. B 66, 104428 (2002)

    Article  ADS  Google Scholar 

  239. Poteryaev, A.I., Skorikov, N.A., Anisimov, V.I., Korotin, M.A.: Magnetic properties of Fe1−xNix alloy from CPA+DMFT perspectives. Phys. Rev. B 93, 205135 (2016)

    Article  ADS  Google Scholar 

  240. Patrick, C.E., Staunton, J.B.: Rare-earth/transition-metal magnets at finite temperature: self-interaction-corrected relativistic density functional theory in the disordered local moment picture Phys. Rev. B 97, 224415 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support by the DFG through the SFB 689 and 1277 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubert Ebert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ebert, H., Mankovsky, S., Wimmer, S. (2021). Electronic Structure: Metals and Insulators. In: Coey, J.M.D., Parkin, S.S. (eds) Handbook of Magnetism and Magnetic Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-63210-6_4

Download citation

Publish with us

Policies and ethics