Skip to main content

Material Preparation and Thin Film Growth

  • Reference work entry
  • First Online:
Book cover Handbook of Magnetism and Magnetic Materials

Abstract

The preparation of materials in thin film form not only is of technological importance for device applications but also grants access to study and understand the physical properties (magnetic, optical, electronic, acoustic) of materials approaching the two-dimensional limit. One interesting example thereof, which is relevant for this handbook, is the occurrence of long-range magnetic order in two dimensions, initially ruled out by theory (Hohenberg, Phys Rev 158:383–386, 1967; Mermin, Wagner, Phys Rev Lett 17:1133–1136, 1966) but later thoroughly revisited as the advances in thin film growth enabled the preparation of suitable experimental testbeds (Vaz, Bland, Lauhoff, Reports Prog Phys 71:056501, 2008). Now that even the growth of innately 2D materials has been recently achieved by ultrahigh vacuum methods (Chen et al, Science 366:983–987, 2019; Liu et al, npj 2D Mater Appl 1:1–6, 2017; Bedoya-Pinto et al, Intrinsic 2DXY ferromagnetism in a van der Waals monolayer. arXiv:2006.07605), the key mechanisms to stabilize magnetic order in two dimensions have been finally established. The current level of understanding in such a fundamental, long-debated topic would have been not possible without the successful growth and characterization of atomically thin films on a variety of surfaces, using the appropriate methods for a high-quality bottom-up material synthesis.

In this chapter, we will briefly describe the most important methods for thin film growth, such as molecular beam epitaxy (MBE), pulsed-laser deposition (PLD), as well as magnetron and ion-beam sputtering. We will start with an introductory section which is common to these vapor phase methods such as the growth modes, the importance of substrate preparation, and the role of buffer layers (Sect. “Thin Film Growth: General Concepts”.) and then describe the characteristic features of each deposition technique, highlighting practical aspects from the user point of view and including some representative examples of thin film compounds grown with these methods (Sects. “Molecular Beam Epitaxy”, “Pulsed Laser Deposition”, “Magnetron Sputtering Deposition”, and “Ion Beam Sputter Deposition”).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tsao, J.Y.: Materials Fundamentals of Molecular Beam Epitaxy, pp. 13–41. Academic Press, San Diego (1993)

    Google Scholar 

  2. Binh, V.T.: Surface Mobilities on Solid Materials, Fundamental Concepts and Applications NATO ASI Series, Series B, Physics, vol. 86. Plenum Press, New York (1981)

    Google Scholar 

  3. Lagally, M.G.: Kinetics of Ordering and Growth at Surfaces NATO ASI Series, Series B, Physics, vol. 239. Springer US, Boston (1990)

    Book  Google Scholar 

  4. Mai, D.D.: Ferromagnetismus bei Raumtemperatur in mehrphasigen (Ga,Mn)N Schichten und Heterostrukturen. p. 20, Dissertation, Georg-August Universität Göttingen (2009). https://ediss.uni-goettingen.de/handle/11858/00-1735-0000-0006-B499-0 under CC-BY-ND https://creativecommons.org/licenses/by-nd/2.0/de/

  5. Stoica, T., Meijers, R., Calarco, R., Richter, T., Lüth, H.: MBE growth optimization of InN nanowires. J. Cryst. Growth. 290, 241–247 (2006)

    Article  ADS  Google Scholar 

  6. Calarco, R., et al.: Nucleation and growth of GaN nanowires on Si(111) performed by molecular beam epitaxy. Nano Lett. 7, 2248–2251 (2007)

    Article  ADS  Google Scholar 

  7. Martin, P.M.: Handbook of Deposition Technologies for Films and Coatings, Science, Applications and Technology, 3rd edn, pp. 93–134. Elsevier, Oxford, UK (2010)

    Google Scholar 

  8. Karpiński, J., Porowski, S.: High pressure thermodynamics of GaN. J. Cryst. Growth. 66(1), 11–20 (1984)

    Article  ADS  Google Scholar 

  9. Miskys, C.R., Kelly, M.K., Ambacher, O., Stutzmann, M.: Freestanding GaN-substrates and devices. Phys. Status Solidi C. 0(6), 1627–1650 (2003)

    Article  Google Scholar 

  10. Gooth, J., et al.: Thermal and electrical signatures of a hydrodynamic electron fluid in tungsten diphosphide. Nat. Commun. 9, 1–8 (2018)

    Article  ADS  Google Scholar 

  11. Kumar, N., et al.: Extremely high magnetoresistance and conductivity in the type-II Weyl semimetals WP2 and MoP2. Nat. Commun. 8, 1–8 (2017)

    Article  ADS  Google Scholar 

  12. Shekhar, C., et al.: Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP. Nat. Phys. 11, 645–649 (2015)

    Article  Google Scholar 

  13. Bedoya-Pinto, A., Pandeya, A., Liu, D., Deniz, H., Chang, K., Tan, H., Han, H., Jena, J., Kostanovskiy, I., Parkin, S.S.P.: ACS Nano. 14, 4405–4413 (2020). https://pubs.acs.org/doi/10.1021/acsnano.9b09997

    Article  Google Scholar 

  14. Cho, A.Y., Arthur, J.R.: Molecular beam epitaxy. Prog. Solid-State Chem. 10, 157–191 (1975)

    Article  Google Scholar 

  15. Arthur, J.R.: Molecular beam epitaxy. Surf. Sci. 500, 189–217 (2002)

    Article  ADS  Google Scholar 

  16. Cho, A.Y.: How molecular beam epitaxy (MBE) began and its projection into the future. J. Cryst. Growth. 201/202, 1–7 (1999)

    Article  ADS  Google Scholar 

  17. Klitzing, K.v., Dorda, G., Pepper, M.: New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett. 45, 494–497 (1980)

    Article  ADS  Google Scholar 

  18. Tsui, D.C., Stormer, H.L., Gossard, A.C.: Two-dimensional Magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982)

    Article  ADS  Google Scholar 

  19. Esaki, L. – Nobel lecture. https://www.nobelprize.org/prizes/physics/1973/esaki/lecture/

  20. Alferov. Z.I. – Nobel lecture. https://www.nobelprize.org/prizes/physics/2000/alferov/lecture/

  21. Li, Y.-Y., Wang, G., Zhu, X.-G., Liu, M.-H., Ye, C., Chen, X., Wang, Y.-Y., He, K., Wang, L.-L., Ma, X.-C., Zhang, H.-J., Dai, X., Fang, Z., Xie, X.-C., Liu, Y., Qi, X.-L., Jia, J.-F., Zhang, S.-C., Xue, Q.-K.: Intrinsic topological insulator Bi2Te3 thin films on Si and their thickness limit. Adv. Mater. 22, 4002–4007 (2010)

    Article  Google Scholar 

  22. Zhang, Y., Chang, T.-R., Zhou, B., Cui, Y.-T., Yan, H., Liu, Z., Schmitt, F., Lee, J., Moore, R., Chen, Y., Lin, H., Jeng, H.-T., Mo, S.-K., Hussain, Z., Bansil, A., Shen, Z.-X.: Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotech. 9, 111–115 (2014)

    Article  ADS  Google Scholar 

  23. Henini, M. (ed.): Molecular Beam Epitaxy: from Research to Mass Production, p. 13. Elsevier Science, Waltham (2013)

    Google Scholar 

  24. Herman, M.A., Sitter, H.: Molecular Beam Epitaxy: Fundamentals and Current Status. Springer-Verlag, Berlin/Heidelberg (1989)

    Book  Google Scholar 

  25. Herman, M.A., Richter, W., Sitter, H.: Epitaxy: Physical Principles and Technical Implementation. Springer-Verlag, Berlin/Heidelberg (2004)

    Book  Google Scholar 

  26. Cheng, K.-Y.: Molecular beam epitaxy technology of III–V compound semiconductors for optoelectronic applications. Proc. IEEE. 85, 1694–1714 (1997)

    Article  Google Scholar 

  27. Huang, B., et al.: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature. 546, 270–273 (2017)

    Article  ADS  Google Scholar 

  28. Fei, Z., et al.: Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 17, 778–782 (2018)

    Article  ADS  Google Scholar 

  29. Chen, W., et al.: Direct observation of van der Waals stacking-dependent interlayer magnetism. Science. 366, 983–987 (2019)

    Article  ADS  Google Scholar 

  30. Bedoya-Pinto, A. et al.: Intrinsic 2DXY ferromagnetism in a van der Waals monolayer. arXiv:2006.07605

  31. Vaz, C.A.F., Bland, J.A.C., Lauhoff, G.: Magnetism in ultrathin film structures. Rep. Prog. Phys. 71, 056501 (2008)

    Article  ADS  Google Scholar 

  32. Liu, S., et al.: Wafer-scale two-dimensional ferromagnetic Fe3GeTe2 thin films grown by molecular beam epitaxy. npj 2D Mater. Appl. 1, 30 (2017)

    Article  ADS  Google Scholar 

  33. Hasan, M.Z., Kane, C.L.: Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010)

    Article  ADS  Google Scholar 

  34. Kane, C.L., Mele, E.J.: Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005)

    Article  ADS  Google Scholar 

  35. Bernevig, B.A., Zhang, S.-C.: Quantum spin Hall effect. Phys. Rev. Lett. 96, 106802 (2006)

    Article  ADS  Google Scholar 

  36. Bernevig, B.A., Hughes, T.L., Zhang, S.-C.: Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science. 314, 1757–1761 (2006)

    Article  ADS  Google Scholar 

  37. Zhang, H., Liu, C.-X., Qi, X.-L., Dai, X., Fang, Z., Zhang, S.-C.: Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5, 438–442 (2009)

    Article  Google Scholar 

  38. König, M., Wiedmann, S., Brüne, C., Roth, A., Buhmann, H., Molenkamp, L.W., Qi, X.-L., Zhang, S.-C.: Quantum spin Hall insulator state in HgTe quantum wells. Science. 318, 766–770 (2007)

    Article  ADS  Google Scholar 

  39. Becker, C.R., Brüne, C., Schäfer, M., Roth, A., Buhmann, H., Molenkamp, L.W.: The influence of interfaces and the modulation doping technique on the magneto-transport properties of HgTe based quantum wells. Phys. Status Solidi. 4, 3382–3389 (2007)

    Article  Google Scholar 

  40. Cheng, P., Song, C., Zhang, T., Zhang, Y., Wang, Y., Jia, J.-F., Wang, J., Wang, Y., Zhu, B.-F., Chen, X., Ma, X., He, K., Wang, L., Dai, X., Fang, Z., Xie, X., Qi, X.-L., Liu, C.-X., Zhang, S.-C., Xue, Q.-K.: Landau quantization of topological surface states in Bi2Se3. Phys. Rev. Lett. 105, 076801 (2010)

    Article  ADS  Google Scholar 

  41. Jiang, Y., Wang, Y., Chen, M., Li, Z., Song, C., He, K., Wang, L., Chen, X., Ma, X., Xue, Q.-K.: Landau quantization and the thickness limit of topological insulator thin films of Sb2Te3. Phys. Rev. Lett. 108, 016401 (2012)

    Article  ADS  Google Scholar 

  42. Elliott, S.R., Franz, M.: Colloquium: Majorana fermions in nuclear, particle, and solid-state physics. Rev. Mod. Phys. 87, 137–163 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  43. Wang, M.-X., Liu, C., Xu, J.-P., Yang, F., Miao, L., Yao, M.-Y., Gao, C.L., Shen, C., Ma, X., Chen, X., Xu, Z.-A., Liu, Y., Zhang, S.-C., Qian, D., Jia, J.-F., Xue, Q.-K.: The coexistence of superconductivity and topological order in the Bi2Se3 thin films. Science. 336, 52–55 (2012)

    Article  ADS  Google Scholar 

  44. Xu, J.-P., Liu, C., Wang, M.-X., Ge, J., Liu, Z.-L., Yang, X., Chen, Y., Liu, Y., Xu, Z.-A., Gao, C.-L., Qian, D., Zhang, F.-C., Jia, J.-F.: Artificial topological superconductor by the proximity effect. Phys. Rev. Lett. 112, 217001 (2014)

    Article  ADS  Google Scholar 

  45. Wang, E., Ding, H., Fedorov, A.V., Yao, W., Li, Z., Lv, Y.-F., Xhao, K., Zhang, L.-G., Xu, Z., Schneeloch, J., Zhong, R., Ji, S.-H., Wang, L., He, K., Ma, X., Gu, G., Yao, H., Xue, Q.-K., Chen, X., Zhou, S.: Fully gapped topological surface states in Bi2Se3 films induced by a d-wave high-temperature superconductor. Nat. Phys. 9, 621–625 (2013)

    Article  Google Scholar 

  46. Flötotto, D., Ota, Y., Bai, Y., Zhang, C., Okazaki, K., Tsuzuki, A., Hashimoto, T., Eckstein, J.N., Shin, S., Chiang, T.-C.: Superconducting pairing of topological surface states in bismuth selenide films on niobium. Sci. Adv. 4, eaar7214 (2018)

    Article  ADS  Google Scholar 

  47. Chang, C.-Z., Zhang, J., Feng, X., Shen, J., Zhang, Z., Guo, M., Li, K., Ou, Y., Wei, P., Wang, L.-L., Ji, Z.-Q., Feng, Y., Ji, S., Chen, X., Jia, J., Dai, X., Fang, Z., Zhang, S.-C., He, K., Wang, Y., Lu, L., Ma, X.-C., Xue, Q.-K.: Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science. 340, 167–170 (2013)

    Article  ADS  Google Scholar 

  48. He, Q.L., Pan, L., Stern, A.L., Burks, E.C., Che, X., Yin, G., Wang, J., Lian, B., Zhou, Q., Choi, E.S., Murata, K., Kou, X., Chen, Z., Nie, T., Shao, Q., Fan, Y., Zhang, S.-C., Liu, K., Xia, J., Wang, K.L.: Chiral Majorana fermion modes in a quantum anomalous Hall insulator-superconductor structure. Science. 357, 294–299 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Mellnik, A.R., Lee, J.S., Richardella, A., Grab, J.L., Mintun, P.J., Fischer, M.H., Vaezi, A., Manchon, A., Kim, E.-A., Samarth, N., Ralph, D.C.: Spin-transfer torque generated by a topological insulator. Nature. 511, 449–451 (2014)

    Article  ADS  Google Scholar 

  50. Khang, N.H.D., Ueda, Y., Hai, P.N.: A conductive topological insulator with large spin Hall effect for ultralow power spin–orbit torque switching. Nat. Mater.. online published. (2018). https://doi.org/10.1038/s41563-018-0137-y

  51. Fu, L.: Topological crystalline insulators. Phys. Rev. Lett. 106, 106802 (2011)

    Article  ADS  Google Scholar 

  52. Hsieh, T.H., Lin, H., Liu, J., Duan, W., Bansil, A., Fu, L.: Topological crystalline insulators in the SnTe material class. Nat. Commun. 3, 982 (2012)

    Article  ADS  Google Scholar 

  53. Yan, C., Liu, J., Zang, Y., Wang, J., Wang, Z., Wang, P., Zhang, Z.-D., Wang, L., Ma, X., Ji, S., He, K., Fu, L., Duan, W., Xue, Q.-K., Chen, X.: Experimental observation of Dirac-like surface states and topological phase transition in Pb1-xSnxTe(111) films. Phys. Rev. Lett. 112, 186801 (2014)

    Article  ADS  Google Scholar 

  54. Wang, Z., Wang, J., Zang, Y., Zhang, Q., Shi, J.-A., Jiang, T., Gong, Y., Song, C.-L., Ji, S.-H., Wang, L.-L., Gu, L., He, K., Duan, W., Ma, X., Chen, X., Xue, Q.-K.: Molecular beam epitaxy grown SnSe in the rock-salt structure: an artificial topological crystalline insulator material. Adv. Mater. 27, 4150–4154 (2015)

    Article  Google Scholar 

  55. Armitage, N.P., Mele, E.J., Vishwanath, A.: Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 15001 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  56. Wen, J., Guo, H., Yan, C.-H., Wang, Z.-Y., Chang, K., Deng, P., Zhang, T., Zhang, Z.-D., Ji, S.-H., Wang, L.-L., He, K., Ma, X.-C., Chen, X., Xue, Q.-K.: Synthesis of semimetal A3Bi (A = Na, K) thin films by molecular beam epitaxy. Appl. Surf. Sci. 327, 213–217 (2015)

    Article  ADS  Google Scholar 

  57. Hellerstedt, J., Edmonds, M., Ramakrishnan, N., Liu, C., Weber, B., Tadich, A., O’Donnell, K., Adam, S., Fuhrer, M.: Electronic properties of high-quality epitaxial topological Dirac semimetal thin films. Nano Lett. 16, 3210–3214 (2016)

    Article  ADS  Google Scholar 

  58. Schumann, T., Goyal, M., Kim, H., Stemmer, S.: Molecular beam epitaxy of Cd3As2 on a III-V substrate. APL Mater. 4, 126110 (2016)

    Article  ADS  Google Scholar 

  59. Bollinger, A.T., Bozovic, I.: Two-dimensional superconductivity in the cuprates revealed by atomic-layer-by-layer molecular beam epitaxy. Supercond. Sci. Technol. 29, 103001 (2016)

    Article  ADS  Google Scholar 

  60. Gozar, A., Logvenov, G., Kourkoutis, L.F., Bollinger, A.T., Giannuzzi, L.A., Muller, D.A., Bozovic, I.: High-temperature interface superconductivity between metallic and insulating copper oxides. Nature. 455, 782–785 (2008)

    Article  ADS  Google Scholar 

  61. Božović, I., He, X., Wu, J., Bollinger, A.T.: Dependence of the critical temperature in overdoped copper oxides on superfluid density. Nature. 536, 309–311 (2016)

    Article  ADS  Google Scholar 

  62. Song, C.-L., Wang, Y.-L., Cheng, P., Jiang, Y.-P., Li, W., Zhang, T., Li, Z., He, K., Wang, L., Jia, J.-F., Hung, H.-H., Wu, C., Ma, X., Chen, X., Xue, Q.-K.: Direct observation of nodes and twofold symmetry in FeSe superconductor. Science. 332, 1410–1413 (2011)

    Article  ADS  Google Scholar 

  63. Ueda, S., Yamagishi, T., Takeda, S., Agatsuma, S., Takano, S., Mitsuda, A., Naito, M.: MBE growth of Fe-based superconducting films. Physica C. 471, 1167–1173 (2011)

    Article  ADS  Google Scholar 

  64. Li, W., Ding, H., Deng, P., Chang, K., Song, C., He, K., Wang, L., Ma, X., Hu, J.-P., Chen, X., Xue, Q.-K.: Phase separation and magnetic order in K-doped iron selenide superconductor. Nat. Phys. 8, 126–130 (2012)

    Article  Google Scholar 

  65. Chang, K., Deng, P., Zhang, T., Lin, H.-C., Zhao, K., Ji, S.-H., Wang, L.-L., He, K., Ma, X.-C., Chen, X., Xue, Q.-K.: Molecular beam epitaxy growth of superconducting LiFeAs film on SrTiO3(001) substrate. Europhys. Lett. 109, 28003 (2015)

    Article  ADS  Google Scholar 

  66. Wang, Q.-Y., Li, Z., Zhang, W.-H., Zhang, Z.-C., Zhang, J.-S., Li, W., Ding, H., Ou, Y.-B., Deng, P., Chang, K., Wen, J., Song, C.-L., He, K., Jia, J.-F., Ji, S.-H., Wang, Y.-Y., Wang, L.-L., Chen, X., Ma, X.-C., Xue, Q.-K.: Interface-induced high-temperature superconductivity in single unit cell FeSe films on SrTiO3. Chin. Phys. Lett. 29, 037402 (2012)

    Article  ADS  Google Scholar 

  67. Ge, J.-F., Liu, Z.-L., Liu, C., Gao, C.-L., Qian, D., Xue, Q.-K., Liu, Y., Jia, J.-F.: Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3. Nat. Mater. 14, 285–289 (2015)

    Article  ADS  Google Scholar 

  68. Huang, D., Hoffman, J.E.: Monolayer FeSe on SrTiO3. Annu. Rev. Condens. Matter Phys. 8, 311–336 (2017)

    Article  ADS  Google Scholar 

  69. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science. 306, 666–669 (2004)

    Article  ADS  Google Scholar 

  70. Xiao, D., Liu, G.-B., Feng, W., Xu, X., Yao, W.: Coupled spin and valley physics in monolayers of MoS2 and other group-VI Dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012)

    Article  ADS  Google Scholar 

  71. Zhang, Y., Ugeda, M.M., Jin, C., Shi, S.-F., Bradley, A.J., Martín-Recio, A., Ryu, H., Kim, J., Tang, S., Kim, Y., Zhou, B., Hwang, C., Chen, Y., Wang, F., Crommie, M.F., Hussain, Z., Shen, Z.-X., Mo, S.-K.: Electronic structure, surface doping, and optical response in epitaxial WSe2 thin films. Nano Lett. 16, 2485–2491 (2016)

    Article  ADS  Google Scholar 

  72. Liu, H., Jiao, L., Yang, F., Cai, Y., Wu, X., Ho, W., Gao, C., Jia, J., Wang, N., Fan, H., Yao, W., Xie, M.: Dense network of one-dimensional midgap metallic modes in monolayer MoSe2 and their spatial undulations. Phys. Rev. Lett. 113, 066105 (2014)

    Article  ADS  Google Scholar 

  73. Barja, S., Wickenburg, S., Liu, Z.-F., Zhang, Y., Ryu, H., Ugeda, M.M., Hussain, Z., Shen, Z.-X., Mo, S.-K., Wong, E., Salmeron, M.B., Wang, F., Crommie, M.F., Frank Ogletree, D., Jeffrey, B., Neaton, A.: Weber-Bargioni. Charge density wave order in 1D mirror twin boundaries of single-layer MoSe2. Nat. Phys. 12, 751–756 (2016)

    Article  Google Scholar 

  74. Peng, J.-P., Guan, J.-Q., Zhang, H.-M., Song, C.-L., Wang, L., He, K., Xue, Q.-K., Ma, X.-C.: Molecular beam epitaxy growth and scanning tunneling microscopy study of TiSe2 ultrathin films. Phys. Rev. B 91, 121113(R) (2015)

    Article  ADS  Google Scholar 

  75. Ugeda, M.M., Bradley, A.J., Zhang, Y., Onishi, S., Chen, Y., Ruan, W., Ojeda-Aristizabal, C., Ryu, H., Edmonds, M.T., Tsai, H.-Z., Riss, A., Mo, S.-K., Lee, D., Zettl, A., Hussain, Z., Shen, Z.-X., Crommie, M.F.: Characterization of collective ground states in single-layer NbSe2. Nat. Phys. 12, 92–97 (2016)

    Article  Google Scholar 

  76. Ryu, H., Chen, Y., Kim, H., Tsai, H.-Z., Tang, S., Jiang, J., Liou, F., Kahn, S., Jia, C., Omrani, A.A., Shim, J.H., Hussain, Z., Shen, Z.-X., Kim, K., Min, B.I., Hwang, C., Crommie, M.F., Mo, S.-K.: Persistent charge-density-wave order in single-layer TaSe2. Nano Lett. 18, 689–694 (2018)

    Article  ADS  Google Scholar 

  77. Xi, X., Wang, Z., Zhao, W., Park, J.-H., Law, K.T., Berger, H., Forró, L., Shan, J., Mak, K.F.: Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 12, 139–143 (2016)

    Article  Google Scholar 

  78. Qian, X., Liu, J., Fu, L., Li, J.: Quantum spin Hall effect in two dimensional transition metal chalcogenides. Science. 346, 1344–1347 (2014)

    Article  ADS  Google Scholar 

  79. Tang, S., Zhang, C., Wong, D., Pedramrazi, Z., Tsai, H.-Z., Jia, C., Moritz, B., Claassen, M., Ryu, H., Kahn, S., Jiang, J., Yan, H., Hashimoto, M., Lu, D., Moore, R.G., Hwang, C.-C., Hwang, C., Hussain, Z., Chen, Y., Ugeda, M.M., Liu, Z., Xie, X., Devereaux, T.P., Crommie, M.F., Mo, S.-K., Shen, Z.-X.: Quantum spin Hall state in monolayer 1T’-WTe2. Nat. Phys. 13, 683–687 (2017)

    Article  Google Scholar 

  80. Chen, P., Pai, W.W., Chan, Y.-H., Sun, W.-L., Xu, C.-Z., Lin, D.-S., Chou, M.Y., Fedorov, A.-V., Chiang, T.-C.: Large quantum-spin-Hall gap in single-layer 1T’ WSe2. Nat. Commun. 9, 2003 (2018)

    Article  ADS  Google Scholar 

  81. Tang, S., Zhang, C., Jia, C., Ryu, H., Hwang, C., Hashimoto, M., Lu, D., Liu, Z., Devereaux, T.P., Shen, Z.-X., Mo, S.-K.: Electronic structure of monolayer 1T’-MoTe2 grown by molecular beam epitaxy. APL Materials. 6, 026601 (2018)

    Article  ADS  Google Scholar 

  82. Chang, K., Liu, J., Lin, H., Wang, N., Zhao, K., Jin, F., Zhong, Y., Hu, X., Duan, W., Zhang, Q., Fu, L., Xue, Q.-K., Chen, X., Ji, S.-H.: Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science. 353, 274–278 (2016)

    Article  ADS  Google Scholar 

  83. Palmstrøm, C.: Epitaxial Heusler alloys: new materials for semiconductor spintronics. MRS Bull. 28, 725–728 (2003)

    Article  Google Scholar 

  84. Hesjedal, T., Ploog, K.H.: Epitaxial Heusler alloys on III-V semiconductors. Handbook of magnetism and advanced magnetic materials. In: Kronmuller, H., Parkin, S. (eds.) Volume 3: Novel Techniques for Characterizing and Preparing Samples. Wiley, Hoboken (2007)

    Google Scholar 

  85. Li, M.-Y., Shi, Y., Cheng, C.-C., Lu, L.-S., Lin, Y.-C., Tang, H.-L., Tsai, M.-L., Chu, C.-W., Wei, K.-H., He, J.-H., Chang, W.-H., Suenaga, K., Li, L.-J.: Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science. 349, 524–528 (2015)

    Article  ADS  Google Scholar 

  86. Bednorz, J.G., Müller, K.A.: Possible highTc superconductivity in the Ba−La−Cu−O system. Z. Phys. B Condens Matter. 64(2), 189–193 (1986)

    Article  ADS  Google Scholar 

  87. Dijkkamp, D., Venkatesan, T., Wu, X.D., Shaheen, S.A., Jisrawi, N., Min-Lee, Y.H., McLean, W.L., Croft, M.: Preparation of Y‐Ba‐Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material. Appl. Phys. Lett. 51(8), 619–621 (1987)

    Article  ADS  Google Scholar 

  88. Singh, R.K., Narayan, J.: Pulsed-laser evaporation technique for deposition of thin films: physics and theoretical model. Phys. Rev. B. 41(13), 8843–8859 (1990)

    Article  ADS  Google Scholar 

  89. Amoruso, S., Berardi, V., Bruzzese, R., Spinelli, N., Wang, X.: Kinetic energy distribution of ions in the laser ablation of copper targets. Appl. Surf. Sci. 127–129, 953–958 (1998)

    Article  ADS  Google Scholar 

  90. Canulescu, S., Lippert, T., Wokaun, A.: Mass and kinetic energy distribution of the species generated by laser ablation of La0.6Ca0.4MnO3. Appl. Phys. A. 93(3), 771–778 (2008)

    Article  ADS  Google Scholar 

  91. Jeong, J., Aetukuri, N., Graf, T., Schladt, T.D., Samant, M.G., Parkin, S.S.P.: Suppression of metal-insulator transition in VO2 by electric field-induced oxygen vacancy formation. Science. 339(6126), 1402–1405 (2013)

    Article  ADS  Google Scholar 

  92. Jeong, J., Aetukuri, N., Passarello, D., Conradson, S.D., Samant, M.G., Parkin, S.S.P.: Giant reversible, facet-dependent, structural changes in a correlated-electron insulator induced by ionic liquid gating. PNAS. 112(4), 1013–1018 (2015)

    Article  ADS  Google Scholar 

  93. Martens, K., Aetukuri, N., Jeong, J., Samant, M.G., Parkin, S.S.P.: Improved metal-insulator-transition characteristics of ultrathin VO2 epitaxial films by optimized surface preparation of rutile TiO2 substrates. APL. 104, 081918 (2014)

    Google Scholar 

  94. Ohtomo, A., Hwang, H.Y.: A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature. 427, 423–426 (2004)

    Article  ADS  Google Scholar 

  95. Chapin, J.S.: Sputtering process and apparatus. Patent 4,166,018, 28 Aug 1979 (Submitted Jan 31, 1974)

    Google Scholar 

  96. Kelly, P.J., Arnell, R.D.: Magnetic sputtering: a review of recent developments and application. Vacuum. 56, 159–172 (2000)

    Article  ADS  Google Scholar 

  97. Brauer, G., et al.: Magnetic sputtering – milestones of 30 years. Vacuum. 84, 1354–1359 (2010)

    Article  ADS  Google Scholar 

  98. Window, B., Savvides, N.: Unbalanced DC magnetrons as sources of high ion fluxes. J. Vac. Sci. Techn. A. 4, 453–456 (1986)

    Article  ADS  Google Scholar 

  99. Musil, J., et al.: Reactive magnetron sputtering of thin films: present status and trends. Thin Solid Films. 475, 208–218 (2005)

    Article  ADS  Google Scholar 

  100. Kaufman, H.R., Robinson, R.S.: Operation of Broad-Beam Sources. Commonwealth Scientific Corporation, Alexandria (1987)

    Google Scholar 

  101. Child, C.D.: Discharge from hot CaO. Phys. Rev. Series I. 32, 492–511 (1911)

    ADS  Google Scholar 

  102. Parkin, S.S.P.: Giant magnetoresistance in magnetic nanostructures. Annu. Rev. Mater. Sci. 25, 357–388 (1995)

    Article  ADS  Google Scholar 

  103. Parkin, S.S.P., et al.: Giant tunneling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3, 862–867 (2004)

    Article  ADS  Google Scholar 

  104. Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y., Ando, K.: Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 868–871 (2004)

    Article  ADS  Google Scholar 

  105. Grochowski, E.: “The magnetic hard disk drive – today’s technical status and future” at SNIA Data Storage (DSC) Conference, September 19–22, 2016, Santa Clara Hyatt, Santa Clara, CA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bedoya-Pinto, A., Chang, K., Samant, M.G., S. P. Parkin, S. (2021). Material Preparation and Thin Film Growth. In: Coey, J.M.D., Parkin, S.S. (eds) Handbook of Magnetism and Magnetic Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-63210-6_23

Download citation

Publish with us

Policies and ethics