Skip to main content

Magnetostriction and Magnetoelasticity

  • Reference work entry
  • First Online:
Handbook of Magnetism and Magnetic Materials

Abstract

The physical concepts magnetostriction and magnetoelasticity are presented. Spontaneous volume magnetostriction and saturation linear magnetostriction are distinguished. Various magnetoelastic phenomena are introduced, but the emphasis is on magnetostriction in bulk samples and thin films. The equations for magnetostrictive and magnetoelastic coefficients are derived for cubic, hexagonal, and isotropic systems. Experiments on the measurement of the linear magnetostriction λi and magnetoelastic coupling coefficients Bj are discussed. Ab initio-based theory elucidates the physical origin of magnetostrictive effects in metals at the electronic level, although accurate calculations are often elusive. The magnetoelastic properties of nm thin films may deviate in magnitude and sign from the bulk values. Both experiment and theory identify substrate-induced lattice strain as a driving force for this deviation. Data on magnetostriction and magnetoelasticity are compiled, including those of highly magnetostrictive systems, such as (Tb,Dy)Fe2 (Terfenol) and (Fe,Ga) (Galfenol).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Becker, R., Döring, W.: Ferromagnetismus. Springer, Berlin (1939)

    Book  MATH  Google Scholar 

  2. Kittel, C.: Physical theory of ferromagnetic domains. Rev. Mod. Phys. 21, 541–583 (1949)

    Article  ADS  Google Scholar 

  3. Lee, E.W.: Magnetostriction and magnetomechanical effects. Rep. Prog. Phys. 18(1), 184 (1955)

    Article  ADS  Google Scholar 

  4. Kneller, E.: Ferromagnetismus. Springer, Berlin (1962)

    Book  MATH  Google Scholar 

  5. Kittel, C.: Introduction to Solid State Physics. Wiley, New York (1963)

    MATH  Google Scholar 

  6. Bozorth, R.M.: Ferromagnetism. IEEE-Press, Piscataway (1993)

    Book  Google Scholar 

  7. Chikazumi, S.: Physics of Ferromagnetism. Oxford University Press, Oxford (2010)

    Google Scholar 

  8. du Trémolet de Lacheisserie, E.: Magnetostriction: Theory and Applications of Magnetoelasticity. CRC-Press, Boca Raton (1993)

    Google Scholar 

  9. Hubert, A., Schäfer, R.: Magnetic Domains. Springer, Berlin (1998)

    Google Scholar 

  10. O’Handley, R.C.: Modern Magnetic Materials: Principles and Applications. Wiley, New York (2000)

    Google Scholar 

  11. O’Handley, R.C.: Magnetostrictive materials and magnetic shape memory materials. In: Kronmüller, H., Parkin, S. (eds.) Handbook of Magnetism and Advanced Magnetic Materials, vol. 4, pp. 2401–2427. Wiley, New York (2007)

    Google Scholar 

  12. Moral, A.: Handbook of Magnetostriction and Magnetostrictive Materials. 2 volumes. Del Moral Publisher, University of Zaragoza, Zaragoza (2008)

    Google Scholar 

  13. Coey, J.M.D.: Magnetism and Magnetic Materials. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  14. Joule, J.P.: On a new class of magnetic forces. Ann. Electricity Magn. Chem. 8, 219–224 (1842)

    Google Scholar 

  15. Joule, J.P.: On the effect of magnetism upon the dimensions of iron and steel bars. Philos. Mag. (Third Series) 30, 76–87 (1847)

    Google Scholar 

  16. Joule, J.P.: On the effect of magnetism upon the dimensions of iron and steel bars. Philos. Mag.(Third Series) 30, 225–241 (1847)

    Google Scholar 

  17. Sander, D.: The correlation between mechanical stress and magnetic anisotropy in ultrathin films. Rep. Prog. Phys. 62, 809–858 (1999)

    Article  ADS  Google Scholar 

  18. Clark, A.E., Belson, H.S.: Giant room-temperature magnetostrictions in TbFe2 and DyFe2. Phys. Rev. B 5(9), 3642–3644 (1972)

    Article  ADS  Google Scholar 

  19. Clark, A.E.: Magnetostrictive Rare Earth-Fe2 Compounds. Ferromagnetic Materials, vol. 1. Nort-Holland Publishing Company, Amsterdam (1980)

    Google Scholar 

  20. Clark, A.E., Restorff, J.B., Wun-Fogle, M., Lograsso, T.A., Schlagel, D.L.: Magnetostrictive properties of body-centered cubic Fe-Ga and Fe-Ga-Al alloys. Magn. IEEE Trans. 36(5), 3238–3240 (2000)

    Article  ADS  Google Scholar 

  21. Clark, A.E., Wun-Fogle, M.: Modern magnetostrictive materials: classical and nonclassical alloys. Proc. SPIE 4699, 421–436 (2002)

    Article  ADS  Google Scholar 

  22. Engdahl, G.: Chapter 1 – Physics of Giant magnetostriction. In: Engdahl, G. (ed.) Handbook of Giant Magnetostrictive Materials. Electromagnetism, pp. 1–125. Academic, San Diego (2000)

    Google Scholar 

  23. Wassermann, E.F.: Invar: moment-volume instabilities in transition metals and alloys. In: Buschow, K.H.J., Wohlfarth, E.P. (eds.) Ferromagnetic Materials, vol. 5, pp. 237–322. Nort-Holland Publishing Company, Amsterdam (1990)

    Google Scholar 

  24. Hausch, G.: Magnetovolume effects in invar alloys: spontaneous and forced volume magnetostriction. Phys. Status Solidi (A) 18(2), 735–740 (1973)

    Google Scholar 

  25. Wassermann, E.F.: The Invar problem. J. Magn. Magn. Mater. 100(1–3), 346–362 (1991)

    Article  ADS  Google Scholar 

  26. Takenaka, K., Takagi, H.: Magnetovolume effect and negative thermal expansion in MnCuGeN. Mater. Trans. 47, 471–474 (2006)

    Article  Google Scholar 

  27. Nagaoka, H., Honda, K.: Sur l’aimantation et la magntostriction des aciers au nickel. J. Phys. Theor. Appl. 3(1), 613–620 (1904)

    Article  Google Scholar 

  28. Khmelevskyi, S., Mohn, P.: Magnetostriction in Fe-based alloys and the origin of the Invar anomaly. Phys. Rev. B 69, 140404 (2004)

    Article  ADS  Google Scholar 

  29. Shiga, M.: Invar alloys. Curr. Opin. Solid State Mater. Sci. 1(3), 340–348 (1996)

    Article  ADS  Google Scholar 

  30. Khmelevskyi, S., Turek, I., Mohn, P.: Large negative magnetic contribution to the thermal expansion in iron-platinum alloys: quantitative theory of the Invar effect. Phys. Rev. Lett. 91, 037201 (2003)

    Article  ADS  Google Scholar 

  31. Villari, E.: Intorno alle modificazioni del momento magnetico di una verga di ferro e di acciaio, prodotte per la trazione della medesima e pel passaggio di una corrente attraverso la stessa. Il Nuovo Cimento 20(1), 317–362 (1864)

    Article  ADS  Google Scholar 

  32. Siegel, S., Quimby, S.L.: The variation of Young’s modulus with magnetization and temperature in nickel. Phys. Rev. 49, 663–670 (1936)

    Article  ADS  Google Scholar 

  33. Hankemeier, S., Frömter, R., Mikuszeit, N., Stickler, D., Stillrich, H., Pütter, S., Vedmedenko, E.Y., Oepen, H.P.: Magnetic ground state of single and coupled permalloy rectangles. Phys. Rev. Lett. 103, 147204 (2009)

    Article  ADS  Google Scholar 

  34. Berry, B.S., Pritchet, W.C.: Magnetic annealing and directional ordering of an amorphous ferromagnetic alloy. Phys. Rev. Lett. 34, 1022–1025 (1975)

    Article  ADS  Google Scholar 

  35. Becker, R., Kornetzki, M.: Einige magneto-elastische Torsionsversuche. Zeitschrift für Physik 88(9–10), 634–646 (1934)

    Article  ADS  Google Scholar 

  36. Hathaway, K.B., Clark, A.E., Teter, J.P.: Magnetomechanical damping in giant magnetostriction alloys. Metall. Mater. Trans. A 26(11), 2797–2801 (1995)

    Article  Google Scholar 

  37. Wiedemann, G.: Über die Torsion und die Beziehung derselben zum Magnetismus. Ann. Phys. 182, 161–201 (1859)

    Article  Google Scholar 

  38. Drosdziok, S., Wessel, K.: A method for ultrasensitive magnetostriction measurement. Magn. IEEE Trans. 9(1), 56–59 (1973)

    Article  ADS  Google Scholar 

  39. Schmoller, F.v.: Untersuchungen über den Matteucci-Effekt. Zeitschrift für Physik 93(1–2), 35–51 (1935)

    Google Scholar 

  40. Dimitropoulos, P.D., Avaritsiotis, J.N.: A micro-fluxgate sensor based on the Matteucci effect of amorphous magnetic fibers. Sensors Actuators A: Phys. 94(3), 165–176 (2001)

    Article  Google Scholar 

  41. Szymczak, H.: From almost zero magnetostriction to giant magnetostrictive effects: recent results. J. Magn. Magn. Mater. 200(1–3), 425–438 (1999)

    Article  ADS  Google Scholar 

  42. Ullakko, K., Huang, J.K., Kantner, C., O’Handley, R.C., Kokorin, V.V.: Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl. Phys. Lett. 69(13), 1966–1968 (1996)

    Article  ADS  Google Scholar 

  43. O’Handley, R.C.: Model for strain and magnetization in magnetic shape-memory alloys. J. Appl. Phys. 83(6), 3263–3270 (1998)

    Article  ADS  Google Scholar 

  44. Sozinov, A., Likhachev, A.A., Lanska, N., Ullakko, K.: Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase. Appl. Phys. Lett. 80(10), 1746–1748 (2002)

    Article  ADS  Google Scholar 

  45. Ye, M., Kimura, A., Miura, Y., Shirai, M., Cui, Y.T., Shimada, K., Namatame, H., Taniguchi, M., Ueda, S., Kobayashi, K., Kainuma, R., Shishido, T., Fukushima, K., Kanomata, T.: Role of electronic structure in the martensitic phase transition of Ni2Mn1+xSn1−x studied by hard-X-ray photoelectron spectroscopy and ab initio calculation. Phys. Rev. Lett. 104, 176401 (2010)

    Article  ADS  Google Scholar 

  46. Ibarra, M.R., Mahendiran, R., Marquina, C., García-Landa, B., Blasco, J.: Huge anisotropic magnetostriction in La1−xSrxCoO3−δ (x >∼ 0.3) Field-induced orbital instability. Phys. Rev. B 57, R3217–R3220 (1998)

    Google Scholar 

  47. Sato, K., Bartashevich, M.I., Goto, T., Kobayashi, Y., Suzuki, M., Asai, K., Matsuo, A., Kindo, K.: High-field magnetostriction of the spin-state transition compound LaCoO3. J. Phys. Soc. Jpn. 77(2), 024601 (2008)

    Article  ADS  Google Scholar 

  48. Ikuta, H., Hirota, N., Nakayama, Y., Kishio, K., Kitazawa, K.: Giant magnetostriction in Bi2Sr2CaCu2O8 single crystal in the superconducting state and its mechanism. Phys. Rev. Lett. 70, 2166–2169 (1993)

    Article  ADS  Google Scholar 

  49. Nye, J.F.: Physical Properties of Crystals. Oxford University Press, Oxford (1985)

    Google Scholar 

  50. Sander, D., Kirschner, J.: Non-linear magnetoelastic coupling in monolayers: experimental challenges and theoretical insights. Phys. Status Solidi (B) 248(10), 2389–2397 (2011)

    Google Scholar 

  51. Callen, E.R., Callen, H.B.: Static magnetoelastic coupling in cubic crystals. Phys. Rev. 129, 578–593 (1963)

    Article  MATH  ADS  Google Scholar 

  52. Callen, E., Callen, H.B.: Magnetostriction, forced magnetostriction, and anomalous thermal expansion in ferromagnets. Phys. Rev. 139, A455–A471 (1965)

    Article  ADS  Google Scholar 

  53. O’Handley, R.C., Sun, S.-W.: Strained layers and magnetoelastic coupling. J. Magn. Magn. Mater. 104–107(Part 3), 1717–1720 (1992)

    Google Scholar 

  54. O’Handley, R.C., Song, O.-S., Ballentine, C.A.: Determining thin-film magnetoelastic constants. J. Appl. Phys. 74, 6302–6307 (1993)

    Article  ADS  Google Scholar 

  55. Koch, R., Weber, M., Rieder, K.H.: Magnetoelastic coupling of Fe at high stress investigated by means of epitaxial Fe(001) films. J. Magn. Magn. Mater. 159, L11–L16 (1996)

    Article  Google Scholar 

  56. Kim, Y.K., Silva, T.J.: Magnetostriction characteristics of ultrathin permalloy films. Appl. Phys. Lett. 68(20), 2885–2886 (1996)

    Article  ADS  Google Scholar 

  57. Wedler, G., Walz, J., Greuer, A., Koch, R.: Stress dependence of the magnetoelastic coupling constants B1 and B2 of epitaxial Fe(001). Phys. Rev. B 60(16), R11313–R11316 (1999)

    Article  ADS  Google Scholar 

  58. Tian, Z., Sander, D., Kirschner, J.: Nonlinear magnetoelastic coupling of epitaxial layers of Fe, Co, and Ni on Ir(100). Phys. Rev. B 79, 024432 (2009)

    Article  ADS  Google Scholar 

  59. Akulov, N.S.: Über die Anwendungen des Gesetzes ferromagnetischer Anisotropie zur Berechnung der Eigenschaften polykristallinischen Eisens. Zeitschrift für Physik 66(7–8), 533–542 (1930)

    Article  ADS  Google Scholar 

  60. Callen, H.B., Goldberg, N.: Magnetostriction of polycrystalline aggregates. J. Appl. Phys. 36(3), 976–977 (1965)

    Article  ADS  Google Scholar 

  61. Mason, W.P.: Derivation of magnetostriction and anisotropic energies for hexagonal, tetragonal, and orthorhombic crystals. Phys. Rev. 96(2), 302–310 (1954)

    Article  MATH  ADS  Google Scholar 

  62. Hubert, A., Unger, W., Kranz, J.: Messung der Magnetostriktionskonstanten des Kobalts als Funktion der Temperatur. Zeitschrift für Physik 224(1–3), 148–155 (1969)

    Article  ADS  Google Scholar 

  63. Wu, R., Freeman, A.J.: First principles determination of magnetostriction in transition metals. J. Appl. Phys. 79, 6209–6212 (1996)

    Article  ADS  Google Scholar 

  64. Hjortstam, O., Baberschke, K., Wills, J.M., Johansson, B., Eriksson, O.: Magnetic anisotropy and magnetostriction in tetragonal and cubic Ni. Phys. Rev. B 55(22), 15026–15032 (1997)

    Article  ADS  Google Scholar 

  65. Sander, D.: The magnetic anisotropy and spin reorientation of nanostructures and nanoscale films. J. Phys.: Condens. Matter 16(20), R603 (2004)

    Google Scholar 

  66. Sander, D., Pan, W., Ouazi, S., Kirschner, J., Meyer, W., Krause, M., Müller, S., Hammer, L., Heinz, K.: Reversible H-induced switching of the magnetic easy axis in Ni/Cu(001) thin films. Phys. Rev. Lett. 93(24), 247203 (2004)

    Article  ADS  Google Scholar 

  67. Marcus, P.M., Jona, F.: The strain tensor in a general pseudomorphic epitaxial film. J. Phys. Chem. Solids 55, 1513–1519 (1994)

    Article  ADS  Google Scholar 

  68. Marcus, P.M., Jona, F.: Strains in epitaxial films: the general case. Phys. Rev. B 51(8), 5263–5268 (1995)

    Article  ADS  Google Scholar 

  69. Jona, F., Marcus, P.M.: The importance of strain analysis in studies of pseudomorphic growth. Surf. Rev. Lett. 4, 817–820 (1997)

    Article  ADS  Google Scholar 

  70. Fähnle, M., Komelj, M.: Nonlinear magnetoelastic coupling coefficients from simultaneous measurements of magnetostrictive stress and anisotropy in epitaxial films. J. Magn. Magn. Mater. 220, L13–L17 (2000)

    Article  ADS  Google Scholar 

  71. Komelj, M., Fähnle, M.: Nonlinear magnetelastic coupling coefficients in Fe from first principles. J. Magn. Magn. Mater. 220, L8–L12 (2000)

    Article  ADS  Google Scholar 

  72. Fähnle, M., Komelj, M.: Second-order magnetoelastic effects: from the Dirac equation to the magnetic properties of ultrathin epitaxial films for magnetic thin-film applications. Zeitschrift für Metallkunde/Mater. Res. Adv. Tech. 93(10), 970–973 (2002)

    Google Scholar 

  73. Fähnle, M., Komelj, M., Wu, R.Q., Guo, G.Y.: Magnetoelasticity of Fe: possible failure of ab initio electron theory with the local-spin-density approximation and with the generalized-gradient approximation. Phys. Rev. B 65(14), 144436 (2002)

    Article  ADS  Google Scholar 

  74. Komelj, M., Fähnle, M.: Shear-strain-related nonlinear magnetoelastic properties of epitaxial films. Phys. Rev. B 65(9), 092403 (2002)

    Article  ADS  Google Scholar 

  75. Komelj, M., Fähnle, M.: Determination of the complete set of second-order magnetoelastic coupling constants on epitaxial films. Phys. Rev. B 65(21), 212410 (2002)

    Article  ADS  Google Scholar 

  76. Komelj, M., Fähnle, M.: On the magnetoelastic contribution to the magnetic anisotropy of thin epitaxial Permalloy films: an ab initio study, J. Magn. Magn. Mater. 238(2–3), 125–128 (2002)

    Article  ADS  Google Scholar 

  77. Komelj, M., Fähnle, M.: Nonlinear magnetoelastic behavior of the bcc phases of Co and Ni: importance of third-order contributions for bcc Ni. Phys. Rev. B 73(1), 012404 (2006)

    Article  ADS  Google Scholar 

  78. Ekreem, N.B., Olabi, A.G., Prescott, T., Rafferty, A., Hashmi, M.S.J.: An overview of magnetostriction, its use and methods to measure these properties. J. Mater. Process. Technol. 191(1–3), 96–101 (2007)

    Article  Google Scholar 

  79. Brizzolara, R.A., Colton, R.J.: Magnetostriction measurement using a tunneling-tip. J. Magn. Magn. Mater. 88, 343–350 (1990)

    Article  ADS  Google Scholar 

  80. Costa, J.L., Nogués, J., Rao, K.V.: Direct measurement of magnetostrictive process in amorphous wires using a scanning tunneling microscope. J. Appl. Phys. 76, 7030 (1994)

    Article  ADS  Google Scholar 

  81. White, G.K.: Measurement of thermal expansion at low temperatures. Cryogenics 1(3), 151–158 (1961)

    Article  ADS  Google Scholar 

  82. Brändli, G., Griessen, R.: Two capacitance dilatometers. Cryogenics 13(5), 299–302 (1973)

    Article  ADS  Google Scholar 

  83. Tsuya, N., Arai, K.I., Ohmori, K., Shiraga, Y.: Magnetostriction measurement by three terminal capacitance method. Jpn. J. Appl. Phys. 13(11), 1808 (1974)

    Article  ADS  Google Scholar 

  84. Pott, R., Schefzyk, R.: Apparatus for measuring the thermal expansion of solids between 1.5 and 380 K. J. Phys. E: Sci. Instrum. 16(5), 444 (1983)

    Google Scholar 

  85. Hüller, K., Sydow, M., Dietz, G.: Magnetic anisotropy, magnetostriction and intermediate range order in Co-P alloys. J. Magn. Magn. Mater. 53(3), 269–274 (1985)

    Article  ADS  Google Scholar 

  86. Weber, M., Koch, R., Rieder, K.H.: UHV cantilever beam technique for quantitative measurements of magnetization, magnetostriction, and intrinsic stress of ultrathin magnetic films. Phys. Rev. Lett. 73(8), 1166–1169 (1994)

    Article  ADS  Google Scholar 

  87. Rotter, M., Müller, H., Gratz, E., Doerr, M., Loewenhaupt, M.: A miniature capacitance dilatometer for thermal expansion and magnetostriction. Rev. Sci. Instrum. 69(7), 2742–2746 (1998)

    Article  ADS  Google Scholar 

  88. Schmiedeshoff, G.M., Lounsbury, A.W., Luna, D.J., Tracy, S.J., Schramm, A.J., Tozer, S.W., Correa, V.F., Hannahs, S.T., Murphy, T.P., Palm, E.C., Lacerda, A.H., Budko, S.L., Canfield, P.C., Smith, J.L., Lashley, J.C., Cooley, J.C.: Versatile and compact capacitive dilatometer. Rev. Sci. Instrum. 77(12), 123907 (2006)

    Article  ADS  Google Scholar 

  89. Küchler, R., Bauer, T., Brando, M., Steglich, F.: A compact and miniaturized high resolution capacitance dilatometer for measuring thermal expansion and magnetostriction. Rev. Sci. Instrum. 83(9), 095102 (2012)

    Article  ADS  Google Scholar 

  90. Fawcett, E.: Magnetostriction of paramagnetic transition metals. I. Group 4 – Ti and Zr; Group 5 – V, Nb, and Ta; Group 6 – Mo and W. Phys. Rev. B 2(6), 1604–1613 (1970)

    Google Scholar 

  91. Restorff, J.B., Wun-Fogle, M., Hathaway, K.B., Clark, A.E., Lograsso, T.A., Petculescu, G.: Tetragonal magnetostriction and magnetoelastic coupling in Fe-Al, Fe-Ga, Fe-Ge, Fe-Si, Fe-Ga-Al, and Fe-Ga-Ge alloys. J. Appl. Phys. 111(2)023905, 1–12 (2012)

    Google Scholar 

  92. Liniers, M., Madurga, V., Vázquez, M., Hernando, A.: Magnetostrictive torsional strain in transverse-field-annealed Metglas® 2605. Phys. Rev. B 31(7), 4425–4432 (1985)

    Article  ADS  Google Scholar 

  93. Mitra, A., Vázquez, M.: Measurement of the saturation magnetostriction constant of amorphous wires, J. Appl. Phys. 67, 4986–4988 (1990)

    Article  ADS  Google Scholar 

  94. Yamasaki, J., Ohkubo, Y., Humphrey, F.B.: Magnetostriction measurement of amorphous wires by means os small-angle magnetization rotation. J. Appl. Phys. 67, 5472–5474 (1990)

    Article  ADS  Google Scholar 

  95. Eastman, D.E.: Magneto-elastic coupling in RbMnF3. Phys. Rev. 156(2), 645–654 (1967)

    Article  ADS  Google Scholar 

  96. Smith, A.B.: A ferromagnetic resonance method for measuring magnetostriction constants. Rev. Sci. Instrum. 39, 378–385 (1967)

    Article  ADS  Google Scholar 

  97. Krams, P., Hillebrands, B., Güntherodt, G., Oepen, H.P.: Magnetic anisotropies of ultrathin Co films on Cu(1 1 13) substrates. Phys. Rev. B 49(5), 3633–3636 (1994)

    Article  ADS  Google Scholar 

  98. Premper, J., Sander, D., Kirschner, J.: A combined surface stress and magneto-optical Kerr effect measurement setup for temperatures down to 30 K and in fields of up to 0.7 T. Rev. Sci. Instrum. 83(7), 073904 (2012)

    Google Scholar 

  99. Dahmen, K., Ibach, H., Sander, D.: A finite element analysis of the bending of crystalline plates due to anisotropic surface and film stress applied to magnetoelasticity. J. Magn. Magn. Mater. 231(1), 74–84 (2001)

    Article  ADS  Google Scholar 

  100. Dahmen, K., Lehwald, S., Ibach, H.: Bending of crystalline plates under the influence of surface stress a finite element analysis. Surf. Sci. 446(1–2), 161–173 (2000)

    Article  ADS  Google Scholar 

  101. Klokholm, E.: The measurement of magnetostriction in ferromagnetic thin films. IEEE Trans. Magn. MAG-12, 819–821 (1976)

    Article  ADS  Google Scholar 

  102. Tam, A.C., Schroeder, H.: Precise measurement of a magnetostriction coefficient of a thin sofmagnetic film deposited on a substrate. J. Appl. Phys. 64, 5422–5424 (1988)

    Article  ADS  Google Scholar 

  103. Betz, J., du Trémolet de Lacheisserie, E., Baczewski, L.T.: Magnetoelastic properties of nickel thin films. Appl. Phys. Lett. 68, 132–133 (1996)

    Article  ADS  Google Scholar 

  104. Koch, R., Weber, M., Henze, E., Rieder. K.H.: Magnetization, magnetostriction and intrinsic stress of polycrystalline Fe films measured by a UHV cantilever beam technique. Surf. Sci. 331–333, 1398–1403 (1995)

    Google Scholar 

  105. Wu, R.: First principles determination of magnetic anisotropy and magnetostriction in transition metal alloys. In: Baberschke, K., Nolting, W., Donath, M. (eds.) Band-Ferromagnetism: Ground-State and Finite-Temperature Phenomena, pp. 60–71. Springer, Berlin/Heidelberg (2001)

    Chapter  Google Scholar 

  106. Wu, R.: Theory of magnetocrystalline aniostropy and magnetoelasticity in transition metal system. In: Kronmüller, H., Parkin, S. (eds.) Handbook of Magnetism, vol. 1. Wiley, New York (2007)

    Google Scholar 

  107. Chappert, C., Bruno, P.: Magnetic anisotropy in metallic ultrathin films and related experiments on cobalt. J. Appl. Phys. 64, 5736–5741 (1988)

    Article  ADS  Google Scholar 

  108. Bruno, P., Renard, J.-P.: Magnetic surface anisotropy of transition metal ultrathin films. Appl. Phys. A 49, 499–506 (1989)

    Article  ADS  Google Scholar 

  109. de Jonge, W.J.M., Bloemen, P.J.H., den Broeder, F.J.A.: Experimental investigation of magnetic anisotropy. In: Bland, J., Heinrich, B. (eds.) Ultrathin Magnetic Structures I, pp. 65–90. Springer, Berlin (1994)

    Google Scholar 

  110. Johnson, M.T., Bloemen, P.J.H., den Broeder, F.J.A., de Vries, J.J.: Magnetic anisotropy in metallic multilayers. Rep. Prog. Phys. 59, 1409–1458 (1996)

    Article  ADS  Google Scholar 

  111. Skomski, R., Coey, J.M.D.: Permanent Magnetism. IOP Publishing, Bristol (1999)

    Google Scholar 

  112. Baberschke, K.: Anisotropy in magnetism. In: Baberschke, K., Nolting, W., Donath, M. (eds.) Band-Ferromagnetism: Ground-State and Finite-Temperature Phenomena, pp. 27–45. Springer, Berlin/Heidelberg (2001)

    Chapter  Google Scholar 

  113. Burkert, T., Eriksson, O., James, P., Simak, S.I., Johansson, B., Nordström, L.: Calculation of uniaxial magnetic anisotropy energy of tetragonal and trigonal Fe, Co, Ni. Phys. Rev. B 69, 104426–1–104426–7 (2004)

    Google Scholar 

  114. Blügel, S., Bihlmayer, G.: Magnetism of low-dimensional systems: theory. In: Kronmüller, H., Parkin, S. (eds.) Handbook of Magnetism, vol. 1, pp. 598–639. Wiley, New York (2007)

    Google Scholar 

  115. Wu, R., Chen, L.J., Shick, A., Freeman, A.J.: First-principles determinations of magneto-crystalline anisotropy and magnetostriction in bulk and thin-film transition metals. J. Magn. Magn. Mater. 177–181, 1216–1219 (1998)

    Article  ADS  Google Scholar 

  116. Wang, H., Zhang, Y.N., Wu, R.Q., Sun, L.Z., Xu, D.S., Zhang, Z.D.: Understanding strong magnetostriction in Fe100−xGax alloys. Sci. Rep. 3, 3521 (2013)

    Article  ADS  Google Scholar 

  117. Bruno, P.: Tight-binding approach to the orbital magnetic moment and magnetocrystalline anisotropy of transition-metal monolayers. Phys. Rev. B 39(1), 865–868 (1989)

    Article  ADS  Google Scholar 

  118. Weinberger, P.: Magnetic Anisotropies in Nanostructured Materials. CRC, Boca Raton (2008)

    Book  Google Scholar 

  119. Wu, R., Chen, L., Freeman, A.J.: First principles determination of magnetostriction in bulk transition metals and thin films. J. Magn. Magn. Mater. 170(1–2), 103–109 (1997)

    Article  ADS  Google Scholar 

  120. Cao, J.X., Zhang, Y.N., Ouyang, W.J., Wu, R.Q.: Large magnetostriction of Fe(1−x)Gex and its electronic origin: density functional study. Phys. Rev. B 80, 104414 (2009)

    Article  ADS  Google Scholar 

  121. Cao, H., Gehring, P.M., Devreugd, C.P., Rodriguez, Rodriguez-Rivera, J.A., Li, J., Viehland, D.: Role of nanoscale precipitates on the enhanced magnetostriction of heat-treated galfenol (Fe1−xGax) alloys. Phys. Rev. Lett. 102, 127201 (2009)

    Google Scholar 

  122. Zhang, Y.N., Cao, J.X., Barsukov, I., Lindner, J., Krumme, B., Wende, H., Wu, R.Q.: Magnetocrystalline anisotropy of Fe-Si alloys on MgO(001). Phys. Rev. B 81, 144418 (2010)

    Article  ADS  Google Scholar 

  123. Buck, S., Fähnle, M.: Ab initio calculation of the giant magnetostriction in terbium and erbium. Phys. Rev. B 57, R14044–R14047 (1998)

    Article  ADS  Google Scholar 

  124. Hummler, K., Fähnle, M.: Full-potential linear-muffin-tin-orbital calculations of the magnetic properties of rare-earth˘transition-metal intermetallics. I. Description of the formalism and application to the series R Co5 ( R =rare-earth atom). Phys. Rev. B 53, 3272–3289 (1996)

    Google Scholar 

  125. Kanamori, J.: Theory of the magnetic properties of ferrous and cobaltous oxides, I. Prog. Theor. Phys. 17(2), 177–196 (1957)

    Article  MATH  ADS  Google Scholar 

  126. Slonczewski, J.C.: Anisotropy and magnetostriction in magnetic oxides. J. Appl. Phys. 32(3), S253–S263 (1961)

    Article  ADS  Google Scholar 

  127. Greenwald, S.: The antiferromagnetic structure deformations in CoO and MnTe. Acta Crystallogr. 6(5), 396–398 (1953)

    Article  Google Scholar 

  128. Bozorth, R.M., Tilden, E.F., Williams, A.J.: Anisotropy and magnetostriction of some ferrites. Phys. Rev. 99, 1788–1798 (1955)

    Article  ADS  Google Scholar 

  129. Sander, D., Phark, S.-H., Corbetta, M., Fischer, J.A., Oka, H., Kirschner, J.: The impact of structural relaxation on spin polarization and magnetization reversal of individual nano structures studied by spin-polarized scanning tunneling microscopy. J. Phys.: Condens. Matter 26(39), 394008 (2014)

    Google Scholar 

  130. Brovko, O.O., Bazhanov, D.I., Meyerheim, H.L., Sander, D., Stepanyuk, V.S., Kirschner, J.: Effect of mesoscopic misfit on growth, morphology, electronic properties and magnetism of nanostructures at metallic surfaces. Surf. Sci. Rep. 69(4), 159–195 (2014)

    Article  ADS  Google Scholar 

  131. Oka, H., Ignatiev, P.A., Wedekind, S., Rodary, G., Niebergall, L., Stepanyuk, V.S., Sander, D., Kirschner, J.: Spin-dependent quantum interference within a single magnetic nanostructure. Science 327(5967), 843–846 (2010)

    Article  ADS  Google Scholar 

  132. Oka, H., Brovko, O.O., Corbetta, M., Stepanyuk, V.S., Sander, D., Kirschner, J.: Spin-polarized quantum confinement in nanostructures: scanning tunneling microscopy. Rev. Mod. Phys. 86, 1127–1168 (2014)

    Article  ADS  Google Scholar 

  133. Wu, R., Freeman, A.J.: Spin-orbit induced magnetic phenomena in bulk metals and their surfaces and interfaces. J. Magn. Magn. Mater. 200(1–3), 498–514 (1999)

    Article  ADS  Google Scholar 

  134. Gutjahr-Löser, T., Sander, D., Kirschner, J.: Magnetoelastic coupling in Ni and Fe monolayers on Cu(001). J. Appl. Phys. 87, 5920–5922 (2000)

    Article  ADS  Google Scholar 

  135. Gutjahr-Löser, T., Sander, D., Kirschner, J.: Magnetoelastic coupling in Co thin films on W(001). J. Magn. Magn. Mater. 220, L1–L7 (2000)

    Article  ADS  Google Scholar 

  136. Summers, E.M., Lograsso, T.A., Wun-Fogle, M.: Magnetostriction of binary and ternary FeGa alloys. J. Mater. Sci. 42(23), 9582–9594 (2007)

    Article  ADS  Google Scholar 

  137. Clark, A.E., Hathaway, K.B., Wun-Fogle, M., Restorff, J.B., Lograsso, T.A., Keppens, V.M., Petculescu, G., Taylor, R.A.: Extraordinary magnetoelasticity and lattice softening in bcc Fe-Ga alloys. J. Appl. Phys. 93(10), 8621–8623 (2003)

    Article  ADS  Google Scholar 

  138. Wu, R.: Origin of large magnetostriction in FeGa alloys. J. Appl. Phys. 91(10), 7358–7360 (2002)

    Article  ADS  Google Scholar 

  139. Wang, H., Zhang, Y.N., Yang, T., Zhang, Z.D., Sun, L.Z., Wu, R.Q.: Ab initio studies of the effect of nanoclusters on magnetostriction of Fe1−xGax alloys. Appl. Phys. Lett. 97(26), 262505 (2010)

    Article  ADS  Google Scholar 

  140. Khachaturyan, A.G., Viehland, D.: Structurally heterogeneous model of extrinsic magnetostriction for Fe-Ga and similar magnetic alloys: part II. Giant magnetostriction and elastic softening. Metall. Mater. Trans. A 38(13), 2317–2328 (2007)

    Article  ADS  Google Scholar 

  141. Bhattacharyya, S., Jinschek, J.R., Khachaturyan, A., Cao, H., Li, J.F., Viehland, D.: Nanodispersed DO3-phase nanostructures observed in magnetostrictive Fe-19 % Ga Galfenol alloys. Phys. Rev. B 77, 104107 (2008)

    Article  ADS  Google Scholar 

  142. Xing, Q., Lograsso, T.A.: Magnetic domains in magnetostrictive FeGa alloys. Appl. Phys. Lett. 93(18), 182501–1–182501–3 (2008)

    Google Scholar 

  143. Cao, H., Gehring, P.M., Devreugd, C.P., Rodriguez-Rivera, J.A., Li, J., Viehland, D.: Role of nanoscale precipitates on the enhanced magnetostriction of heat-treated galfenol (Fe1−xGax) alloys. Phys. Rev. Lett. 102, 127201 (2009)

    Article  ADS  Google Scholar 

  144. Wu, W., Liu, J., Jiang, C., Xu, H.: Giant magnetostriction in Tb-doped Fe83Ga17 melt-spun ribbons. Appl. Phys. Lett. 103(26), 262403–1–262403–3 (2013)

    Google Scholar 

  145. O’Handley, R.C.: Physics of ferromagnetic amorphous alloys. J. Appl. Phys. 62(10), R15–R49 (1987)

    Article  ADS  Google Scholar 

  146. Jiles: Magnetism and Magnetic Materials. Chapman&Hall, London (1994)

    Google Scholar 

  147. Herzer, G.: Modern soft magnets: amorphous and nanocrystalline materials. Acta Mater. 61(3), 718–734 (2013)

    Article  ADS  Google Scholar 

  148. Fawcett, E.: Magnetostriction of paramagnetic transition metals. II. Group-VIII metals Ru, Rh, Pd, Ir, Pt, and their alloys. Phys. Rev. B 2, 3887–3890 (1970)

    Google Scholar 

  149. Kapitza, P.: The study of the magnetic properties of matter in strong magnetic fields. Part V. Experiments on magnetostriction in dia- and para-magnetic substances. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 135(828), 568–600 (1932)

    Google Scholar 

  150. Chandrasekhar, B.S., Fawcett, E.: Magnetostriction in metals. Adv. Phys. 20(88), 775–794 (1971)

    Article  ADS  Google Scholar 

  151. Michenaud, J.P., Heremans, J., Shayegan, M., Haumont, C.: Magnetostriction of bismuth in quantizing magnetic fields. Phys. Rev. B 26, 2552–2559 (1982)

    Article  ADS  Google Scholar 

  152. Rhyne, J.J., Legvold, S.: Magnetostriction of Tb single crystals. Phys. Rev. 138, A507–A514 (1965)

    Article  ADS  Google Scholar 

  153. Legvold, S., Alstad, J., Rhyne, J.: Giant magnetostriction in dysprosium and holmium single crystals. Phys. Rev. Lett. 10, 509–511 (1963)

    Article  ADS  Google Scholar 

  154. del Moral, A., Arnaudas, J.I.: Magnetostriction of rare-earth random magnetic anisotropy spin glasses. Phys. Rev. B 39, 9453–9466 (1989)

    Article  ADS  Google Scholar 

  155. del Moral, A., Algarabel, P.A., Arnaudas, J.I., Benito, L., Ciria, M., de la Fuente, C., García-Landa, B., Ibarra, M.R., Marquina, C., Morellón, L., de Teresa, J.M.: Magnetostriction effects. J. Magn. Magn. Mater. 242–245, Part 2(0), 788–796 (2002)

    Google Scholar 

  156. Liu, J.H., Jiang, C.B., Xu, H.B.: Giant magnetostrictive materials. Sci. China Technol. Sci. 55(5), 1319–1326 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Sander .

Editor information

Editors and Affiliations

Appendix

Appendix

Notations for Lattice Strain

There are different conventions for the definition of strain, and it is mandatory essential to distinguish between tensor strain 𝜖ij and engineering strain γij [49, 17]. The two conventions differ by a factor of two for the off-diagonal elements such that 2𝜖ij = γij for i ≠ j. Note that the use of the tensor strain is required if it is transformed according to the tensor transformation rules to account for rotated coordinate systems [49]. Throughout this contribution, all strain expressions are given by the tensor strain. For completeness, we note that also the contracted Voigt notation is often used. Starting from the tensor strain, the replacement rule given in Table 9 applies to combine two subscripts into one. Note that factors of two are inserted for the components with subscripts 4, 5, and6 to get 𝜖4 = 2𝜖23, 𝜖5 = 2𝜖13, and𝜖6 = 2𝜖12.

Table 9 Subscript replacement rule for the contracted Voigt notation. Note that factors of two are inserted for the components with subscripts 4, 5, and6 to get 𝜖4 = 2𝜖23, 𝜖5 = 2𝜖13, and𝜖6 = 2𝜖12

Relation Between λ and B for the Hexagonal System

We present here the relation between λi and Bj from Eq. (21).

$$\displaystyle \begin{aligned} \lambda_{\mathrm{A}}&=\frac{B_2(c_{11}-c_{12})c_{13}+B_3(-c_{11}+c_{12})c_{33}+B_1(c_{13}^2-c_{11}c_{33})}{a} \end{aligned} $$
(37)
$$\displaystyle \begin{aligned} \lambda_{\mathrm{B}}&=\frac{B_2(c_{11}-c_{12})c_{13}+B_3(-c_{11}+c_{12})c_{33}+B_1(-c_{13}^2+c_{11}c_{33})}{a} \end{aligned} $$
(38)
$$\displaystyle \begin{aligned} \lambda_{\mathrm{C}}&=\frac{-B_2(c_{11}+c_{12})+(B_1+2B_3)c_{13}}{a} \end{aligned} $$
(39)
$$\displaystyle \begin{aligned} \lambda_{\mathrm{D}}&=\frac{-B_4 a+(-B_2(c_{11}-c_{12})(c_{11}+c_{12}-c_{13})}{4 a c_{44}}+\frac{B_3(c_{11}-c_{12})(2c_{13}-c_{33})}{4a c_{44}}\\ &\quad +\frac{B_1(c_{11}c_{13}-c_{12}c_{13}+c_{13}^2-c_{11}c_{33}))c_{44}}{4a c_{44}}\\ a&=(c_{11}-c_{12})(-2 c_{13}^2 + (c_{11}+c_{12})c_{13}) {} \end{aligned} $$
(40)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sander, D. (2021). Magnetostriction and Magnetoelasticity. In: Coey, J.M.D., Parkin, S.S. (eds) Handbook of Magnetism and Magnetic Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-63210-6_11

Download citation

Publish with us

Policies and ethics