Skip to main content

Metallic Magnetic Materials

  • Living reference work entry
  • First Online:
Handbook of Magnetism and Magnetic Materials

Abstract

Metallic magnetic materials are based on the ferromagnetic metallic elements, and their alloys or intermetallic compounds , though non-ferromagnetic elements, may also play key roles in some of the ferromagnets. Metallic magnetic materials encompass many of the materials of greatest technological importance, including soft magnets and permanent magnets for energy conversion applications , as well as materials for functions such as magnetostriction, shape memory, and magnetorefrigeration.

This chapter, written by a team of authors, is organized as follows: we begin with Sect. 1 on amorphous iron- and iron–cobalt-based soft ferromagnetic materials and then, in Sect. 2, Alnicos, an important class of hard magnetic materials (permanent magnets) based on shape anisotropy of aligned nanoscale iron–cobalt needles embedded in a nonmagnetic matrix. These two sections illustrate how magnetic performance is related to specific phase structures and morphology of the ferromagnetic elements or simple alloys. However, most advanced magnetic materials are based on intermetallic compounds with complex crystalline and electronic structures where electronic interactions often govern the magnetic properties. Section 3 introduces the d-d and d-p intermetallic compounds. Then, Sect. 4 discusses magnetic shape memory materials that are dependent on d-electrons, and Sect. 5 summarizes recent progress in the magnetic intermetallic Heusler compounds. The 4f electrons are so important in forming magnetocrystalline anisotropy that is the key property for many hard magnetic materials. A comprehensive review on the 3d-4f intermetallic compounds is provided in Sect. 6, followed by Sects. 7 and 8 on specific discussions of two major types of rare-earth permanent magnets based on Sm-Co and Nd-Fe-B intermetallics. Section 9 reviews magnetocaloric compounds, and Sect. 10 is devoted to heavy-fermion compounds where 5f electron interactions often define the magnetic and other physical properties. The authors of each section are the leading researchers in the specific topic. The chapter is organized and edited by J. Ping Liu, with editorial assistance from Jeotikanta Mohapatra and Meiying Xing of the University of Texas at Arlington.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Gutfleisch, O., Willard, M.A., Brück, E., Chen, C.H., Sankar, S., Liu, J.P.: Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv. Mater. 23, 821–842 (2011)

    Article  Google Scholar 

  2. Ayers, J., Harris, V., Sprague, J., Elam, W., Jones, H.: On the formation of nanocrystals in the soft magnetic alloy Fe 73.5 Nb 3 Cu 1 Si 13.5 B 9. Acta Mater. 46, 1861–1874 (1998)

    Article  ADS  Google Scholar 

  3. Hono, K., Ping, D., Ohnuma, M., Onodera, H.: Cu clustering and Si partitioning in the early crystallization stage of an Fe 73.5 Si 13.5 B 9 Nb 3 Cu 1 amorphous alloy. Acta Mater. 47, 997–1006 (1999)

    Article  ADS  Google Scholar 

  4. McHenry, M.E., Willard, M.A., Laughlin, D.E.: Amorphous and nanocrystalline materials for applications as soft magnets. Prog. Mater. Sci. 44, 291–433 (1999)

    Article  Google Scholar 

  5. Inoue, A., Takeuchi, A.: Recent development and application products of bulk glassy alloys. Acta Mater. 59, 2243–2267 (2011)

    Article  ADS  Google Scholar 

  6. Willard, M.A., Daniil, M.: Nanocrystalline soft magnetic alloys two decades of progress. In: Buschow, K.H.J. (ed.) Handbook of Magnetic Materials, vol. 21, pp. 173–342 (2013)

    Google Scholar 

  7. Herzer, G.: Chapter 3 Nanocrystalline soft magnetic alloys. In: Handbook of Magnetic Materials, vol. 10, pp. 415–462. Elsevier (1997)

    Google Scholar 

  8. Willard, M.A., Daniil, M.: Nanostructured soft magnetic materials. In: Nanoscale Magnetic Materials and Applications, pp. 373–397. Springer (2009)

    Google Scholar 

  9. Willard, M., Laughlin, D., McHenry, M., Thoma, D., Sickafus, K., Cross, J.O., et al.: Structure and magnetic properties of (Fe0. 5Co0. 5) 88Zr7B4Cu1 nanocrystalline alloys. J. Appl. Phys. 84, 6773–6777 (1998)

    Article  ADS  Google Scholar 

  10. Yoshizawa, Y., Yamauchi, K., Yamane, T., Sugihara, H.: Common mode choke cores using the new Fe-based alloys composed of ultrafine grain structure. J. Appl. Phys. 64, 6047–6049 (1988)

    Article  ADS  Google Scholar 

  11. Suzuki, K., Kikuchi, M., Makino, A., Inoue, A., Masumoto, T.: Changes in microstructure and soft magnetic properties of an Fe 86 Zr 7 B 6 Cu 1 amorphous alloy upon crystallization. Mater. Trans. JIM. 32, 961–968 (1991)

    Article  Google Scholar 

  12. Knipling, K., Daniil, M., Willard, M.: Nanocrystalline Fe88− 2xCoxNixZr7B4Cu1 alloys: soft magnets for vehicle electrification technologies. J. Appl. Phys. 117, 172611 (2015)

    Article  ADS  Google Scholar 

  13. Chen, C.: Magnetism and Metallurgy of Soft Magnetic Materials. Dover Publications, New York (1986)

    Google Scholar 

  14. O’handley, R.C.: Modern Magnetic Materials: Principles and Applications, vol. 830622677. Wiley, New York (2000)

    Google Scholar 

  15. M. Inc., Alloy Specification Sheets.

    Google Scholar 

  16. Matsumoto, H., Urata, A., Yamada, Y., Inoue, A.: Novel Fe97-x-yPxByNb2Cr1 glassy alloys with high magnetization and low loss characteristics for inductor core materials. IEEE Trans. Magn. 46, 373–376 (2010)

    Article  ADS  Google Scholar 

  17. Mishima, T.: Nickel-aluminum steel for permanent magnets. Stahl und Eisen. 53, 79 (1931)

    Google Scholar 

  18. Cahn, J.W.: Magnetic aging of spinodal alloys. J. Appl. Phys. 34, 3581–3586 (1963)

    Article  ADS  Google Scholar 

  19. Cahn, J.W.: Phase separation by spinodal decomposition in isotropic systems. J. Chem. Phys. 42, 93–99 (1965)

    Article  ADS  Google Scholar 

  20. Iwama, Y., Takeuchi, M.: Spinodal decomposition in AlNiCo 8 magnet alloy. T. Jpn. I. Met. 15, 371–377 (1974)

    Google Scholar 

  21. Iwama, Y., Takeuchi, M., Iwata, M.: New determination of magnetic anisotropy constants of Alnico magnet alloys. J. Phys. Colloq. 32, C1-556–C1-557 (1971)

    Article  Google Scholar 

  22. Cronk, E.R.: Recent developments in high-energy Alnico alloys. J. Appl. Phys. 37, 1097–1100 (1966)

    Article  ADS  Google Scholar 

  23. McCaig, M.: Phase changes in high coercivity alloys. Z. Angew. Phys. 21, 66 (1966)

    Google Scholar 

  24. Stanek, M., Leonowicz, M.: Investigations of thermo-magnetic treatment of Alnico 8 alloy. Arch. Metall. Mater. 55, 571–577 (2010)

    Google Scholar 

  25. McCurrie, R.: Ferromagnetic Materials: Structure and Properties Academic, vol. 4, (1994)

    Google Scholar 

  26. Zhou, L., Miller, M.K., Dillon, H., Palasyuk, A., Constantinides, S., McCallum, R.W., et al.: Role of the applied magnetic field on the microstructural evolution in Alnico 8 alloys. Metall. Mater. Trans. E. 1, 27–35 (2014)

    Google Scholar 

  27. Zhou, L., Miller, M.K., Lu, P., Ke, L., Skomski, R., Dillon, H., et al.: Architecture and magnetism of Alnico. Acta Mater. 74, 224–233 (2014)

    Article  ADS  Google Scholar 

  28. Liu, T., Li, W., Zhu, M., Guo, Z., Li, Y.: Effect of Co on the thermal stability and magnetic properties of Alnico 8 alloys. J. Appl. Phys. 115, 17A751 (2014)

    Article  Google Scholar 

  29. Sun, Y., Zhao, J., Liu, Z., Xia, W., Zhu, S., Lee, D., et al.: The phase and microstructure analysis of Alnico magnets with high coercivity. J. Magn. Magn. Mater. 379, 58–62 (2015)

    Article  ADS  Google Scholar 

  30. Hoffmann, A., StÄblein, H.: Investigations of high-coercivity Alnico alloys. IEEE Trans. Magn. 6, 225–230 (1970)

    Article  ADS  Google Scholar 

  31. Takeuchi, M., Iwama, Y.: Effects of titanium upon magnetic anisotropy and coercivity in alnico magnet alloys. T. Jpn. I. Met. 17, 489–496 (1976)

    Google Scholar 

  32. Mason, J.J., Ashall, D.W., Dean, A.V.: The structure of Ni-Co-Al-Ti-Cu-Fe permanent magnets. IEEE Trans. Magn. 6, 191–194 (1970)

    Article  ADS  Google Scholar 

  33. Hao, S.M., Ishida, K., Nishizawa, T.: Role of alloying elements in phase decomposition in Alnico magnet alloys. Metall. Trans. A. 16, 179–185 (1985)

    Article  Google Scholar 

  34. Bronner, C., Haberer, J.-P., Planchard, E., Sauze, J.: Contribution to the study of the influence of Nb on the magnetic properties of Alnico alloys containing 4.5–6.5 % Ti. Cobalt. 46, 15–22 (1970)

    Google Scholar 

  35. Pramanik, S., Rao, V., Mohanty, O.: Effect of niobium on the directional solidification and properties of Alnico alloys. J. Mater. Sci. 28, 1237–1244 (1993)

    Article  ADS  Google Scholar 

  36. Palmer, D., Shaw, S.: Production of columnar castings in high-coercivity magnet alloys containing 5–10 Per Cent Titanium. Cobalt. 43, 63–72 (1969)

    Google Scholar 

  37. Zhou, L., Tang, W., Ke, L., Guo, W., Poplawsky, J.D., Anderson, I.E., et al.: Microstructural and magnetic property evolution with different heat-treatment conditions in an Alnico alloy. Acta Mater. 133, 73–80 (2017)

    Article  ADS  Google Scholar 

  38. Zlatkov, B., Bavdek, U., Nikolic, M., Aleksic, O., Danninger, H., Gierl, C., et al.: Magnetic properties of Alnico 8 sintered magnets produced by powder injection moulding. PIM Int. 3, 58–63 (2009)

    Google Scholar 

  39. Anderson, I., Kassen, A., White, E., Zhou, L., Tang, W., Palasyuk, A., et al.: Novel pre-alloyed powder processing of modified Alnico 8: Correlation of microstructure and magnetic properties. J. Appl. Phys. 117, 17D138 (2015)

    Article  Google Scholar 

  40. Song, C., Han, B., Li, Y.: A study on Alnico permanent magnet powders prepared by atomization. Cailiao Kexue Yu Jishu(J. Mater. Sci. Technol.)(China). 20, 347–349 (2004)

    Google Scholar 

  41. Tang, W., Zhou, L., Kassen, A., Palasyuk, A., White, E., Dennis, K., et al.: New Alnico magnets fabricated from pre-alloyed gas atomization powder through diverse consolidation techniques. In: Proceedings of Conference INTERMAG, pp. 1–1 (2015)

    Google Scholar 

  42. Chu, W., Fei, W., Li, X., Yang, D., Wang, J.: Evolution of Fe–Co rich particles in Alnico 8 alloy thermomagnetically treated at 800° C. Mater. Sci. Tech. 16, 1023–1028 (2000)

    Article  Google Scholar 

  43. Sun, X., Chen, C., Yang, L., Lv, L., Atroshenko, S., Shao, W., et al.: Experimental study on modulated structure in Alnico alloys under high magnetic field and comparison with phase-field simulation. J. Magn. Magn. Mater. 348, 27–32 (2013)

    Article  ADS  Google Scholar 

  44. Iwama, Y., Takeuchi, M.: Spinodal decomposition in AlNiCo 8 magnet alloy. Trans. Jpn. Ins. Met. 15, 371–377 (1974)

    Article  Google Scholar 

  45. Slater, J.C.: Electronic Structure of Alloys. J. Appl. Phys. 8, 385–390 (1937)

    Article  ADS  Google Scholar 

  46. Pauling, L.: The nature of the interatomic forces in metals. Phys. Rev. 54, 899 (1938)

    Article  ADS  MATH  Google Scholar 

  47. Bozorth, R.: Atomic moments of ferromagnetic alloys. Phys. Rev. 79, 887 (1950)

    Article  ADS  Google Scholar 

  48. Ikeda, K., Nakamichi, T., Yamada, T., Yamamoto, M.: Ferromagnetism in Fe2Sc with the Hexagonal MgZn2-Type Structure. J. Phys. Soc. Jpn. 36, 611–611 (1974)

    Article  ADS  Google Scholar 

  49. Nevitt, M., Kimball, C., Preston, R.: Variation of 57Fe isomer shift with atomic size in Laves phases and associated quadrupole and magnetic hyperfine fields. In: Proceedings of International Conference on Magnetism, Nottingham September 1964, p. 137 (1964)

    Google Scholar 

  50. Ikeda, K., Gschneider, K.: Disappearance of the heat capacity peak of Sc 3 In around the Curie temperature in high magnetic fields. J. Magn. Magn. Mater. 22, 207–211 (1981)

    Article  ADS  Google Scholar 

  51. Yamada, H., Tohyama, T., Shimizu, M.: Metamagnetic transition of ScCo2 and LuCo2. J. Phys. F: Met. Phys. 17, L163 (1987)

    Article  ADS  Google Scholar 

  52. Acker, F., Fisk, Z., Smith, J.L., Huang, C.Y.: Enhanced paramagnetism of TiBe2 and ferromagnetic transitions in TiBe2-xCux. J. Magn. Magn. Mater. 22, 250–256 (1981)

    Article  ADS  Google Scholar 

  53. Brückner, W., Kleinstück, K., Schulze, G.E.R.: Mössbauer study of the laves phase Ti1-xFe2+x. Phys. Status Solidi A. 1, K1–K4 (1970)

    Article  ADS  Google Scholar 

  54. Brückner, W., Perthel, R., Kleinstück, K., Schulze, G.E.R.: Magnetic Properties of ZrFe2 and TiFe2 within Their Homogeneity Range. Phys. Status Solidi B. 29, 211–216 (1968)

    Article  ADS  Google Scholar 

  55. Aoki, Y.: Magnetic properties of the Intermetallic Compound with the Cu3Au-type structure in cobalt-titanium alloy system. J. Phys. Soc. Jpn. 28, 1451–1456 (1970)

    Article  ADS  Google Scholar 

  56. Aoki, Y., Nakamichi, T., Yamamoto, M.: Magnetic behavior of two laves phases in cobalt-titanium alloy system. J. Phys. Soc. Jpn. 21, 565–566 (1966)

    Article  ADS  Google Scholar 

  57. Bozorth, R.: Ferromagnetism (The Bell Telephone Laboratories Series). Van Nostrand, New York (1951)

    Google Scholar 

  58. Read, D.A., Thomas, E.H., Forsythe, J.B.: Evidence of itinerant electron ferromagnetism in sigma phase alloys. J. Phys. Chem. Solids. 29, 1569–1572 (1968)

    Article  ADS  Google Scholar 

  59. Nevitt, M.V., Aldred, A.T.: Ferromagnetism in V-Fe and Cr-Fe alloys. J. Appl. Phys. 34, 463–468 (1963)

    Article  ADS  Google Scholar 

  60. Nevitt, M.V.: Curie Temperatures of Binary and Ternary Sigma Phases. University of Illinois at Urbana-Champaign (1954)

    Google Scholar 

  61. Wolcott, N., Falge Jr., R.: Ferromagnetism of CrBe $ sub 1$. National Bureau of Standards, Washington, DC (1968)

    Google Scholar 

  62. Wachtel, E., Bartelt, C.: Measurements of the susceptibility in the chromium-manganese-system. Z. Metallkd. 55, 29–36 (1964)

    Google Scholar 

  63. Martin, J., Downie, D.: Heat capacities of transition-metal alloys 1. Sigma-phase alloy Co 0.435 Cr 0.565. J. Chem. Thermodyn. 15, 691–699 (1983)

    Article  Google Scholar 

  64. Kussmann, A., Muller, K., Raub, E.: Thermomagnetic measurements on alloys of the platinum-group metals with chromium. Zeitschrift für Metallkunde. 59, 859–863 (1968)

    Google Scholar 

  65. Pickart, S., Nathans, R.: Neutron diffraction investigation of Pt-based alloys of the first transition series. J. Appl. Phys. 34, 1203–1204 (1963)

    Article  ADS  Google Scholar 

  66. Bauer, A., Regnat, A., Blum, C.G., Gottlieb-Schönmeyer, S., Pedersen, B., Meven, M., et al.: Low-temperature properties of single-crystal CrB 2. Phys. Rev. B. 90, 064414 (2014)

    Article  ADS  Google Scholar 

  67. Schoop, L., Hirschberger, M., Tao, J., Felser, C., Ong, N., Cava, R.: Paramagnetic to ferromagnetic phase transition in lightly Fe-doped Cr 2 B. Phys. Rev. B. 89, 224417 (2014)

    Article  ADS  Google Scholar 

  68. Coldea, M., Crişan, M., Néda, A., Pop, I.: NMR, magnetic susceptibility and specific heat of CrAl 7. J. Phys. Chem. Solids. 35, 1095–1098 (1974)

    Article  ADS  Google Scholar 

  69. Susner, M.A., Parker, D.S., Sefat, A.: Importance of doping and frustration in itinerant Fe-doped Cr 2 Al. J. Magn. Magn. Mater. 392, 68–73 (2015)

    Article  ADS  Google Scholar 

  70. Lee, C.-G., Youn, K.-T., Fukamichi, K.: Antiferromagnetic Cr-Ga layers with a high Neel temperature for biasing spin valves. IEEE Trans. Magn. 36, 2902–2904 (2000)

    Article  ADS  Google Scholar 

  71. Ohsugi, I.J., Kojima, T., Nishida, I.A.: Temperature dependence of the magnetic susceptibility of a CrSi 2 single crystal. Phys. Rev. B. 42, 10761 (1990)

    Article  ADS  Google Scholar 

  72. Hsu, H.-F., Tsai, P.-C., Lu, K.-C.: Single-crystalline chromium silicide nanowires and their physical properties. Nanoscale Res. Lett. 10, 1–8 (2015)

    Article  ADS  Google Scholar 

  73. Ghimire, N., McGuire, M.A., Parker, D.S., Sales, B.C., Yan, J.-Q., Keppens, V., et al.: Complex itinerant ferromagnetism in noncentrosymmetric Cr 11 Ge 19. Phys. Rev. B. 85, 224405 (2012)

    Article  ADS  Google Scholar 

  74. Browne, J., Liddell, P., Street, R., Mills, T.: An investigation of the antiferromagnetic transition of CrN. Phys. Status Solidi A. 1, 715–723 (1970)

    Article  ADS  Google Scholar 

  75. Wu, W., Cheng, J., Matsubayashi, K., Kong, P., Lin, F., Jin, C., et al.: Superconductivity in the vicinity of antiferromagnetic order in CrAs. Nat. Commun. 5 (2014)

    Google Scholar 

  76. Shinohara, T., Watanabe, H.: Nuclear Magnetic Resonance in Cr 3 As 2. J. Phys. Soc. Jpn. 21, 2076–2076 (1966)

    Article  ADS  Google Scholar 

  77. Ishimoto, K., Okonogi, M., Ohoyama, K., Nakajima, K., Ohashi, M., Yamauchi, H., et al.: Anisotropic exchange interaction in Cr 2 As. Phys. B. 213, 336–338 (1995)

    Article  ADS  Google Scholar 

  78. Snow, A.: Magnetic moment orientation and thermal expansion of antiferromagnetic CrSb. Rev. Mod. Phys. 25, 127 (1953)

    Article  ADS  Google Scholar 

  79. Shimada, K., Saitoh, T., Namatame, H., Fujimori, A., Ishida, S., Asano, S., et al.: Photoemission study of itinerant ferromagnet Cr 1− δ Te. Phys. Rev. B. 53, 7673 (1996)

    Article  ADS  Google Scholar 

  80. Matsui, M., Ido, T., Sato, K., Adachi, K.: Ferromagnetism and Antiferromagnetism in Co–Mn Alloy. J. Phys. Soc. Jpn. 28, 791–791 (1970)

    Article  ADS  Google Scholar 

  81. Acet, M., John, C., Wassermann, E.: Magnetism and structural stability in CoMn alloys. J. Appl. Phys. 70, 6556–6558 (1991)

    Article  ADS  Google Scholar 

  82. Paoletti, A., Ricci, F., Passari, L.: Magnetization and State of Order in MnNi3. J. Appl. Phys. 37, 3236–3239 (1966)

    Article  ADS  Google Scholar 

  83. Coey, J.M.: Magnetism and Magnetic Materials. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  84. Hori, T., Nakagawa, Y., Sakurai, J.: Magnetization and magnetic structure of Mn-Zn and Mn-Zn-Ga alloys of CsCl-type structure. J. Phys. Soc. Jpn. 24, 971–976 (1968)

    Article  ADS  Google Scholar 

  85. Leavey, C., Stewart, J., Rainford, B., Hillier, A.: Magnetic ground states and spin dynamics of β-Mn1− xRux alloys. J. Phys.: Condens. Matter. 19, 145288 (2007)

    Google Scholar 

  86. Krén, E., Kádár, G., Tarnóczi, T.: Atomic and magnetic order in Mn 2 Pd 3. Phys. Lett. A. 25, 56–57 (1967)

    Article  ADS  Google Scholar 

  87. Caron, L., Hudl, M., Höglin, V., Dung, N., Gomez, C.P., Sahlberg, M., et al.: Magnetocrystalline anisotropy and the magnetocaloric effect in Fe 2 P. Phys. Rev. B. 88, 094440 (2013)

    Article  ADS  Google Scholar 

  88. Cadeville, M.: Proprietes magnetiques des diborures de manganese et de chrome: MnB 2 et CrB 2. J. Phys. Chem. Solids. 27, 667–670 (1966)

    Article  ADS  Google Scholar 

  89. Neov, S., Legrand, E.: Neutron diffraction study of the magnetic structure of Mn3B4. Phys. Status Solidi B. 49, 589–596 (1972)

    Article  ADS  Google Scholar 

  90. Lundquist, N., Myers, H., Westin, R.: The paramagnetic properties of the monoborides of V, Cr, Mn, Fe, Co and Ni. Philos. Mag. 7, 1187–1195 (1962)

    Article  ADS  Google Scholar 

  91. Park, J., Hong, Y., Bae, S., Lee, J., Jalli, J., Abo, G., et al.: Saturation magnetization and crystalline anisotropy calculations for MnAl permanent magnet. J. Appl. Phys. 107, 09A731 (2010)

    Article  Google Scholar 

  92. Bither, T.A., Cloud, W.H.: Magnetic tetragonal δ phase in the Mn–Ga binary. J. Appl. Phys. 36, 1501–1502 (1965)

    Article  ADS  Google Scholar 

  93. Tsuboya, I., Sugihara, M.: Magnetic properties of ζ phase in Mn-Ga system. J. Phys. Soc. Jpn. 18, 1096–1096 (1963)

    Article  ADS  Google Scholar 

  94. Tsuboya, I., Sugihara, M.: The magnetic properties of ε phase in Mn–Ga system. J. Phys. Soc. Jpn. 18, 143–143 (1963)

    Article  ADS  Google Scholar 

  95. Kharel, P., Huh, Y., Al-Aqtash, N., Shah, V., Sabirianov, R., Skomski, R., et al.: Structural and magnetic transitions in cubic Mn3Ga. J. Phys.: Condens. Matter. 26, 126001 (2014)

    ADS  Google Scholar 

  96. Zhang, Q., Li, D., Cui, W., Li, J., Zhang, Z.: Magnetic properties and spin-glass-like behavior in stoichiometric Mn (3) In compound. J. Appl. Phys. 106, 113915 (2009)

    Article  ADS  Google Scholar 

  97. Karen, P., Fjellvag, H., Kjekshus, A., Andresen, A.: On the phase relations and structural and magnetic properties of the stable manganese carbides Mn23C6, Mn5C2 and Mn7C3. Acta Chem. Scand. 45, 549–557 (1991)

    Article  Google Scholar 

  98. Mühlbauer, S., Binz, B., Jonietz, F., Pfleiderer, C., Rosch, A., Neubauer, A., et al.: Skyrmion lattice in a chiral magnet. Science. 323, 915–919 (2009)

    Article  ADS  Google Scholar 

  99. Yamada, N., Maeda, K., Usami, Y., Ohoyama, T.: Magnetic properties of intermetallic compound Mn11Ge8. J. Phys. Soc. Jpn. 55, 3721–3724 (1986)

    Article  ADS  Google Scholar 

  100. Kim, Y., Kim, E.J., Choi, K., Han, W.B., Kim, H.-S., Yoon, C.S.: Magnetocaloric effect of Mn 5+ xGe 3− x alloys. J. Alloys Compd. 620, 164–167 (2015)

    Article  Google Scholar 

  101. Timoschuk, V., Rozenberg, E.: Magnetic phase transitions of ζ-Mn 5 Ge 2 in magnetic fields up to 25 T. Solid State Commun. 78, 531–534 (1991)

    Article  ADS  Google Scholar 

  102. Wachtel, E., Henig, E.-T.: Magnetic properties of germanium and germanium- manganese alloys in the solid and liquid states. Z. Metallkd. 60, 316–321 (1969)

    Google Scholar 

  103. Yasukōchi, K., Kanematsu, K., Ohoyama, T.: Magnetic Properties of Intermetallic Compounds in Iron-Germanium System: Fe1. 67Ge and FeGe2. J. Phys. Soc. Jpn. 16, 429–433 (1961)

    Article  ADS  Google Scholar 

  104. Duan, T., Ren, W., Liu, W., Li, S., Liu, W., Zhang, Z.: Magnetic anisotropy of single-crystalline Mn3Sn in triangular and helix-phase states. Appl. Phys. Lett. 107, 082403 (2015)

    Article  ADS  Google Scholar 

  105. Mazet, T., Recour, Q., Malaman, B.: Neutron diffraction and S 119 n Mössbauer spectroscopy study of Mn 3 Sn 2. Phys. Rev. B. 81, 174427 (2010)

    Article  ADS  Google Scholar 

  106. Felcher, G.: Magnetic structure of MnP. J. Appl. Phys. 37, 1056–1058 (1966)

    Article  ADS  Google Scholar 

  107. Bacmann, M., Fruchart, D., Chenevier, B., Fruchart, R., Puertolas, J., Rillo, C.: Magnetic phase diagram of the (Fe 1− x Mn x) 2 P system. J. Magn. Magn. Mater. 83, 313–314 (1990)

    Article  ADS  Google Scholar 

  108. Leitão, J., Xinmin, Y., Caron, L., Brück, E.: Magnetostructural study of the (Mn, Fe) 3 (P, Si) system. J. Alloys Compd. 520, 52–58 (2012)

    Article  Google Scholar 

  109. Nascimento, F.C., dos Santos, A.O., de Campos, A., Gama, S., Cardoso, L.P.: Structural and magnetic study of the MnAs magnetocaloric compound. Mater. Res. 9, 111–114 (2006)

    Article  Google Scholar 

  110. Kanomata, T., Goto, T., Ido, H.: Magnetic phase transitions in the Fe2As-Mn2As system. J. Phys. Soc. Jpn. 43, 1178–1184 (1977)

    Article  ADS  Google Scholar 

  111. Takei, W., Cox, D., Shirane, G.: Magnetic structures in the MnSb-CrSb system. Phys. Rev. 129, 2008 (1963)

    Article  ADS  Google Scholar 

  112. Shirakawa, K., Ido, H.: Magnetic transition of the Mn2Sb-Mn2As system. J. Phys. Soc. Jpn. 40, 666–673 (1976)

    Article  ADS  Google Scholar 

  113. Adachi, K., Sato, K., Takeda, M.: Magnetic properties of some compounds with pyrite structure. J. Appl. Phys. 39, 900–900 (1968)

    Article  ADS  Google Scholar 

  114. Massalski, T., Okamoto, H., Subramanian, P., Kacprzak, L.: Binary Alloys Phase Diagrams, vol. II. ASM International, Materials Park (1990) 2001

    Google Scholar 

  115. Brando, M., Duncan, W., Moroni-Klementowicz, D., Albrecht, C., Grüner, D., Ballou, R., et al.: Logarithmic Fermi-liquid breakdown in NbFe 2. Phys. Rev. Lett. 101, 026401 (2008)

    Article  ADS  Google Scholar 

  116. Nikitin, S., Myalikgulyev, G., Tishin, A., Annaorazov, M., Asatryan, K., Tyurin, A.: The magnetocaloric effect in Fe 49 Rh 51 compound. Phys. Lett. A. 148, 363–366 (1990)

    Article  ADS  Google Scholar 

  117. Klemmer, T., Hoydick, D., Okumura, H., Zhang, B., Soffa, W.: Magnetic hardening and coercivity mechanisms in L1 0 ordered FePd ferromagnets. Scr. Metall. Mater. 33, 1793–1805 (1995)

    Article  Google Scholar 

  118. Ikeda, K.: Ferromagnetism in hexagonal and cubic Fe 2 Hf compounds (1977)

    Google Scholar 

  119. Duijn, H., Brück, E., Menovsky, A., Buschow, K., De Boer, F., Coehoorn, R., et al.: Magnetic and transport properties of the itinerant electron system Hf1− xTaxFe2. J. Appl. Phys. 81, 4218–4220 (1997)

    Article  ADS  Google Scholar 

  120. Liu, Y., Jiang, Y., Zhang, X., Wang, Y., Zhang, Y., Liu, H., et al.: Structural and magnetic properties of the ordered FePt 3, FePt and Fe 3 Pt nanoparticles. J. Solid State Chem. 209, 69–73 (2014)

    Article  ADS  Google Scholar 

  121. Zeng, H., Li, J., Liu, J.P., Wang, Z.L., Sun, S.: Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature. 420, 395–398 (2002)

    Article  ADS  Google Scholar 

  122. Kakeshita, T., Takeuchi, T., Fukuda, T., Tsujiguchi, M., Saburi, T., Oshima, R., et al.: Giant magnetostriction in an ordered Fe3Pt single crystal exhibiting a martensitic transformation. Appl. Phys. Lett. 77, 1502–1504 (2000)

    Article  ADS  Google Scholar 

  123. Kneller, E., Khan, Y.: The phase Fe sub 2 B. Z. Metallkd. 78, 825–835 (1987)

    Google Scholar 

  124. Dobrzynski, L., Petrillo, C., Sacchetti, F.: Iron magnetic moments and spin-density asphericity in Fe 3 (Al x Si 1− x) alloys. Phys. Rev. B. 42, 1142 (1990)

    Article  ADS  Google Scholar 

  125. Kawamiya, N., Adachi, K.: Magnetic structure of Fe 3 Ga studied by neutron diffraction. Trans. Jpn. Inst. Met. 23, 296–302 (1982)

    Article  Google Scholar 

  126. Taheri, P., Barua, R., Hsu, J., Zamanpour, M., Chen, Y., Harris, V.: Structure, magnetism, and magnetostrictive properties of mechanically alloyed Fe 81 Ga 19. J. Alloys Compd. 661, 306–311 (2016)

    Article  Google Scholar 

  127. Mendez, J., Ekuma, C., Wu, Y., Fulfer, B., Prestigiacomo, J., Shelton, W., et al.: Competing magnetic states, disorder, and the magnetic character of Fe 3 Ga 4. Phys. Rev. B. 91, 144409 (2015)

    Article  ADS  Google Scholar 

  128. Kobeissi, M., Hutchings, J., Appleyard, P., Thomas, M., Booth, J.: Mössbauer studies of the alloys Fe3Ga4,(Fe1-xTix) 3Ga4 and (Fe1-yCry) 3Ga4. J. Phys.: Condens. Matter. 11, 6251 (1999)

    ADS  Google Scholar 

  129. Matsushita, M., Matsushima, Y., Ono, F.: Anomalous structural transformation and magnetism of Fe–Ga alloys. Phys. B. 405, 1154–1157 (2010)

    Article  ADS  Google Scholar 

  130. Sluchanko, N., Glushkov, V., Demishev, S., Menovsky, A., Weckhuysen, L., Moshchalkov, V.: Crossover in magnetic properties of FeSi. Phys. Rev. B. 65, 064404 (2002)

    Article  ADS  Google Scholar 

  131. Adams, T., Mühlbauer, S., Neubauer, A., Münzer, W., Jonietz, F., Georgii, R., et al.: Skyrmion lattice domains in Fe1− xCoxSi. J. Phys. Conf. Ser., 032001 (2010)

    Google Scholar 

  132. Yasukōchi, K., Kanematsu, K., Ohoyama, T.: Magnetic properties of intermetallic compounds in manganese-Tin system: Mn3. 67Sn, Mn1. 77Sn, and MnSn2. J. Phys. Soc. Jpn. 16, 1123–1130 (1961)

    Article  ADS  Google Scholar 

  133. Yu, X., Kanazawa, N., Onose, Y., Kimoto, K., Zhang, W., Ishiwata, S., et al.: Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat. Mater. 10, 106–109 (2011)

    Article  ADS  Google Scholar 

  134. Felcher, G., Jorgensen, J.: Magnetic structures of monoclinic FeGe. J. Phys. C: Solid State Phys. 16, 6281 (1983)

    Article  ADS  Google Scholar 

  135. Beckman, O., Carrander, K., Lundgren, L., Richardson, M.: Susceptibility measurements and magnetic ordering of hexagonal FeGe. Phys. Scr. 6, 151 (1972)

    Article  ADS  Google Scholar 

  136. Drijver, J., Sinnema, S., Van der Woude, F.: Magnetic properties of hexagonal and cubic Fe3Ge. J. Phys. F: Met. Phys. 6, 2165 (1976)

    Article  ADS  Google Scholar 

  137. Venturini, G., Malaman, B., Le Caër, G., Fruchart, D.: Low-temperature magnetic structure of FeSn 2. Phys. Rev. B. 35, 7038 (1987)

    Article  ADS  Google Scholar 

  138. Häggström, L., Ericsson, T., Wäppling, R., Chandra, K.: Studies of the magnetic structure of FeSn using the Mössbauer effect. Phys. Scr. 11, 47 (1975)

    Article  ADS  Google Scholar 

  139. Malaman, B., Fruchart, D., Le Caër, G.: Magnetic properties of Fe3Sn2. II. Neutron diffraction study (and Mossbauer effect). J. Phys. F.: Metal Phys. 8, 2389 (1978)

    Article  ADS  Google Scholar 

  140. Sales, B.C., Saparov, B., McGuire, M.A., Singh, D.J., Parker, D.S.: Ferromagnetism of Fe3Sn and alloys. Sci. Rep. 4 (2014)

    Google Scholar 

  141. Felcher, G., Smith, F., Bellavance, D., Wold, A.: Magnetic structure of iron monophosphide. Phys. Rev. B. 3, 3046 (1971)

    Article  ADS  Google Scholar 

  142. Andersson, Y., Rundqvist, S., Beckman, O., Lundgren, L., Nordblad, P.: Properties of Fe2 P crystals prepared from a liquid copper medium. Phys. Status Solidi A. 49, K153–K156 (1978)

    Article  ADS  Google Scholar 

  143. Broddefalk, A., Granberg, P., Nordblad, P., Liu, H.-p., Andersson, Y.: Magnetocrystalline anisotropy of (Fe1-xCox) 3P. J. Appl. Phys. 83, 6980–6982 (1998)

    Article  ADS  Google Scholar 

  144. Selte, K., Kjekshus, A., Andresen, A.: Magnetic structure and properties of FeAs. Acta Chem. Scand. 26, 3101–3113 (1972)

    Article  Google Scholar 

  145. Önnerud, P., Andersson, Y., Tellgren, R., Ericsson, T., Nordblad, P., Krishnamurthy, A., et al.: A magnetic structure investigation of tetragonal (Fe 1− x Co x) 2 As. J. Magn. Magn. Mater. 147, 346–354 (1995)

    Article  ADS  Google Scholar 

  146. Petrovic, C., Kim, J.W., Bud’ko, S.L., Goldman, A., Canfield, P.C., Choe, W., et al.: Anisotropy and large magnetoresistance in the narrow-gap semiconductor FeSb 2. Phys. Rev. B. 67, 155205 (2003)

    Article  ADS  Google Scholar 

  147. Komędera, K., Jasek, A., Błachowski, A., Ruebenbauer, K., Krztoń-Maziopa, A.: Magnetic anisotropy in FeSb studied by 57 Fe Mössbauer spectroscopy. J. Magn. Magn. Mater. 399, 221–227 (2016)

    Article  ADS  Google Scholar 

  148. Buschow, K.: Intermetallic compounds of rare-earth and 3d transition metals. Rep. Prog. Phys. 40, 1179 (1977)

    Article  ADS  Google Scholar 

  149. Handbook of Magnetic Materials, vol. 4, p. 211, Elseviers Science (1988)

    Google Scholar 

  150. Fujii, H., Pourarian, F., Wallace, W.: Appearance of spontaneous ferromagnetism in non-stoichiometric ZrCo 2. J. Magn. Magn. Mater. 24, 93–96 (1981)

    Article  ADS  Google Scholar 

  151. Pareti, L., Solzi, M., Paoluzi, A.: Magnetocrystalline anisotropy of the 3d sublattice in the cubic intermetallic system Zr6Co23− xMx (M= Fe, Ni). J. Appl. Phys. 73, 2941–2947 (1993)

    Article  ADS  Google Scholar 

  152. Burzo, E., Grössinger, R., Hundegger, P., Kirchmayr, H., Krewenka, R., Mayerhofer, O., et al.: Magnetic properties of ZrCo5. 1− xFex alloys. J. Appl. Phys. 70, 6550–6552 (1991)

    Article  ADS  Google Scholar 

  153. Buschow, K.: Differences in magnetic properties between amorphous and crystalline alloys. J. Appl. Phys. 53, 7713–7716 (1982)

    Article  ADS  Google Scholar 

  154. Crangle, J., Parsons, D.: The magnetization of ferromagnetic binary alloys of cobalt or nickel with elements of the palladium and platinum groups. Proc. Roy. Soc., 509–519 (1960)

    Google Scholar 

  155. Shen, Y., Turgut, Z., Horwath, J., Huang, M.: Bulk nanocomposite LaCo5/LaCo13 magnets. J. Appl. Phys. 109, 07A765 (2011)

    Article  Google Scholar 

  156. Franse, J., Gerdsdorf, R.: Magnetic properties of metals-3d, 4d and 5d elements, alloys and compounds (Landolt-Börnstein, New Series vol 19a) ed HPJ Wijn. Springer, Berlin (1986)

    Google Scholar 

  157. Menzinger, F., Paoletti, A.: Magnetic moments and unpaired-electron densities in Co Pt 3. Phys. Rev. 143, 365 (1966)

    Article  ADS  Google Scholar 

  158. Cadeville, M., Dahmani, C., Kern, F.: Magnetism and spatial order in Ni-Pt and Co-Pt alloys. J. Magn. Magn. Mater. 54, 1055–1056 (1986)

    Article  ADS  Google Scholar 

  159. Sanchez, J., Mora-Loṕez, J., Leroux, C., Cadeville, M.: Chemical and magnetic ordering in CoPt. J. Phys. Colloques. 49, C8-107–C8-108 (1988)

    Article  Google Scholar 

  160. Onnerud, P., Andersson, Y., Tellgren, R., Nordblad, P.: The ferromagnetic structure of hexagonal (Fe1-xCox) 2As. Solid State Commun. 101, 271–275 (1997)

    Article  ADS  Google Scholar 

  161. Krumbügel-Nylund, A.: Thesis, Orsay, (1974)

    Google Scholar 

  162. Paccard, D., Pauthenet, R.: Proprietes Cristallographiques Et Magnetiques Des Alliages De Formule TNI3 Dans Laquelle T Designe Un Metal De Terre Rare Ou Lyttrium. C. R. Heb. Séances Acad. Sci. Ser. B. 264, 1056–1967

    Google Scholar 

  163. Gignoux, D., Lemaire, R., Molho, P., Tasset, F.: Onset of magnetism in the yttrium-nickel compounds: II. Very weak itinerant ferromagnetism in YNi3. J. Magn. Magn. Mater. 21, 307–315 (1980)

    Article  ADS  Google Scholar 

  164. Lemaire, R., Paccard, D., Pauthenet, R., Schweizer, J.: Magnetic behavior of cobalt and of nickel in compounds with rare earth metals. J. Appl. Phys. 39, 1092–1093 (1968)

    Article  ADS  Google Scholar 

  165. Gignoux, D., Lemaire, R., Molho, P.: Onset of magnetism in the yttrium-nickel compounds: I. Collective electron metamagnetism in Y2Ni17. J. Magn. Magn. Mater. 21, 119–124 (1980)

    Article  ADS  Google Scholar 

  166. Sadron, S.: Ferromagnetic moments of the elements and the periodic system. Ann. Phvs. 17, 371 (1932)

    ADS  Google Scholar 

  167. Tazuke, Y., Nakabayashi, R., Murayama, S., Sakakibara, T., Goto, T.: Magnetism of R2Ni7 and RNi3 (R= Y, La, Ce). Phys. B. 186, 596–598 (1993)

    Article  ADS  Google Scholar 

  168. Buschow, K.: Magnetic properties of La 2 Ni 7 and its hydride. J. Magn. Magn. Mater. 40, 224–226 (1983)

    Article  ADS  Google Scholar 

  169. Kawamiya, N., Adachi, K.: Magnetic properties of ordered and disordered Ni 1− x Fe x Pt. Trans. Jpn. Inst. Met. 16, 327–332 (1975)

    Article  Google Scholar 

  170. Parra, R., Cable, J.: Neutron study of magnetic-moment distribution in Ni-Pt alloys. Phys. Rev. B. 21, 5494 (1980)

    Article  ADS  Google Scholar 

  171. Marian, V.: Ferromagnetic Curie points and the absolute saturation of some nickel alloys. Ann. Phys. 7, 459–527 (1937)

    Article  Google Scholar 

  172. De Boer, F., Schinkel, C., Biesterbos, J., Proost, S.: Exchange-enhanced paramagnetism and weak ferromagnetism in the Ni3Al and Ni3Ga phases; Giant moment inducement in Fe-Doped Ni3Ga. J. Appl. Phys. 40, 1049–1055 (1969)

    Article  ADS  Google Scholar 

  173. Heczko, O., Scheerbaum, N., Gutfleisch, O.: Magnetic shape memory phenomena. In: Nanoscale Magnetic Materials and Applications, pp. 399–439. Springer (2009)

    Google Scholar 

  174. Tickle, R., James, R.: Magnetic and magnetomechanical properties of Ni 2 MnGa. J. Mag.Mag. Mater. 195, 627–638 (1999)

    Article  ADS  Google Scholar 

  175. Planes, A., Mañosa, L., Acet, M.: Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys. J. Phys.: Condens. Matter. 21, 233201 (2009)

    ADS  Google Scholar 

  176. Ullakko, K., Huang, J., Kantner, C., O’handley, R., Kokorin, V.: Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl. Phys. Lett. 69, 1966–1968 (1996)

    Article  ADS  Google Scholar 

  177. Wu, G., Yu, C., Meng, L., Chen, J., Yang, F., Qi, S., et al.: Giant magnetic-field-induced strains in Heusler alloy NiMnGa with modified composition. Appl. Phys. Lett. 75, 2990–2992 (1999)

    Article  ADS  Google Scholar 

  178. Yu, C., Wang, W., Chen, J., Wu, G., Yang, F., Tang, N., et al.: Magnetic-field-induced strains and magnetic properties of Heusler alloy Ni52Mn23Ga25. J. Appl. Phys. 87, 6292–6294 (2000)

    Article  ADS  Google Scholar 

  179. Murray, S.J., Marioni, M., Allen, S., O’handley, R., Lograsso, T.A.: 6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni–Mn–Ga. Appl. Phys. Lett. 77, 886–888 (2000)

    Article  ADS  Google Scholar 

  180. Likhachev, A., Ullakko, K.: Magnetic-field-controlled twin boundaries motion and giant magneto-mechanical effects in Ni–Mn–Ga shape memory alloy. Phys. Lett. A. 275, 142–151 (2000)

    Article  ADS  Google Scholar 

  181. Heczko, O., Sozinov, A., Ullakko, K.: Giant field-induced reversible strain in magnetic shape memory NiMnGa alloy. IEEE Trans. Magn. 36, 3266–3268 (2000)

    Article  ADS  Google Scholar 

  182. Wang, W., Wu, G., Chen, J., Gao, S., Zhan, W., Wen, G., et al.: Intermartensitic transformation and magnetic-field-induced strain in Ni52Mn24. 5Ga23. 5 single crystals. Appl. Phys. Lett. 79, 1148–1150 (2001)

    Article  ADS  Google Scholar 

  183. Sozinov, A., Likhachev, A., Lanska, N., Ullakko, K.: Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase. Appl. Phys. Lett. 80, 1746–1748 (2002)

    Article  ADS  Google Scholar 

  184. Liang, T., Jiang, C., Xu, H.: Temperature dependence of transformation strain and magnetic-field-induced strain in Ni 51 Mn 24 Ga 25 single crystal. Mater. Sci. Eng., A. 402, 5–8 (2005)

    Article  Google Scholar 

  185. Jiang, C., Wang, J., Xu, H.: Temperature dependence of the giant magnetostrain in a NiMnGa magnetic shape memory alloy. Appl. Phys. Lett. 86, 252508 (2005)

    Article  ADS  Google Scholar 

  186. Callaway, J., Sehitoglu, H., Hamilton, R., Aslantas, K., Miller, N., Maier, H., et al.: Magnetic shape memory in Ni2MnGa as influenced by applied stress. Appl. Phys. Lett. 89, 221905 (2006)

    Article  ADS  Google Scholar 

  187. Popov, A., Belozerov, E., Sagaradze, V., Pecherkina, N., Kabanova, I., Gaviko, V., et al.: Martensitic transformations and magnetic-field-induced strains in Ni50Mn50− x Gax alloys. Physi Met Metallogr. 102, 140–148 (2006)

    Article  ADS  Google Scholar 

  188. Pagounis, E., Chulist, R., Szczerba, M., Laufenberg, M.: Over 7% magnetic field-induced strain in a Ni-Mn-Ga five-layered martensite. Appl. Phys. Lett. 105, 052405 (2014)

    Article  ADS  Google Scholar 

  189. Pagounis, E., Chulist, R., Szczerba, M., Laufenberg, M.: High-temperature magnetic shape memory actuation in a Ni–Mn–Ga single crystal. Scr. Mater. 83, 29–32 (2014)

    Article  Google Scholar 

  190. Scheerbaum, N., Hinz, D., Gutfleisch, O., Müller, K.-H., Schultz, L.: Textured polymer bonded composites with Ni–Mn–Ga magnetic shape memory particles. Acta Mater. 55, 2707–2713 (2007)

    Article  ADS  Google Scholar 

  191. Kauffmann-Weiss, S., Scheerbaum, N., Liu, J., Klauss, H., Schultz, L., Mäder, E., et al.: Reversible magnetic field induced strain in Ni2MnGa-polymer-composites. Adv. Eng. Mater. 14, 20–27 (2012)

    Article  Google Scholar 

  192. Scheerbaum, N., Heczko, O., Liu, J., Hinz, D., Schultz, L., Gutfleisch, O.: Magnetic field-induced twin boundary motion in polycrystalline Ni–Mn–Ga fibres. New J. Phys. 10, 073002 (2008)

    Article  ADS  Google Scholar 

  193. Boonyongmaneerat, Y., Chmielus, M., Dunand, D.C., Müllner, P.: Increasing magnetoplasticity in polycrystalline Ni-Mn-Ga by reducing internal constraints through porosity. Phys. Rev. Lett. 99, 247201 (2007)

    Article  ADS  Google Scholar 

  194. Chmielus, M., Zhang, X., Witherspoon, C., Dunand, D., Müllner, P.: Giant magnetic-field-induced strains in polycrystalline Ni–Mn–Ga foams. Nat. Mater. 8, 863–866 (2009)

    Article  ADS  Google Scholar 

  195. Pötschke, M., Weiss, S., Gaitzsch, U., Cong, D., Hürrich, C., Roth, S., et al.: Magnetically resettable 0.16% free strain in polycrystalline Ni–Mn–Ga plates. Scr. Mater. 63, 383–386 (2010)

    Article  Google Scholar 

  196. Gaitzsch, U., Romberg, J., Pötschke, M., Roth, S., Müllner, P.: Stable magnetic-field-induced strain above 1% in polycrystalline Ni–Mn–Ga. Scr. Mater. 65, 679–682 (2011)

    Article  Google Scholar 

  197. Gaitzsch, U., Pötschke, M., Roth, S., Rellinghaus, B., Schultz, L.: A 1% magnetostrain in polycrystalline 5M Ni–Mn–Ga. Acta Mater. 57, 365–370 (2009)

    Article  ADS  Google Scholar 

  198. Liang, T., Jiang, C., Xu, H., Liu, Z., Zhang, M., Cui, Y., et al.: Phase transition strain and large magnetic field induced strain in Ni 50.5 Mn 24 Ga 25.5 unidirectionally solidified alloy. J. Magn. Magn. Mater. 268, 29–32 (2004)

    Article  ADS  Google Scholar 

  199. Kohl, M., Agarwal, A., Chernenko, V., Ohtsuka, M., Seemann, K.: Shape memory effect and magnetostriction in polycrystalline Ni–Mn–Ga thin film microactuators. Mater. Sci. Eng., A. 438, 940–943 (2006)

    Article  Google Scholar 

  200. Liu, G., Chen, J., Liu, Z., Dai, X., Wu, G., Zhang, B., et al.: Martensitic transformation and shape memory effect in a ferromagnetic shape memory alloy: Mn2NiGa. Appl. Phys. Lett. 87, 262504 (2005)

    Article  ADS  Google Scholar 

  201. Liu, J., Zheng, H., Xia, M., Huang, Y., Li, J.: Martensitic transformation and magnetic properties in Heusler CoNiGa magnetic shape memory alloys. Scr. Mater. 52, 935–938 (2005)

    Article  ADS  Google Scholar 

  202. Morito, H., Oikawa, K., Fujita, A., Fukamichi, K., Kainuma, R., Ishida, K.: Enhancement of magnetic-field-induced strain in Ni–Fe–Ga–Co Heusler alloy. Scr. Mater. 53, 1237–1240 (2005)

    Article  Google Scholar 

  203. Kainuma, R., Imano, Y., Ito, W., Sutou, Y., Morito, H., Okamoto, S., et al.: Magnetic-field-induced shape recovery by reverse phase transformation. Nature. 439, 957–960 (2006)

    Article  ADS  Google Scholar 

  204. Monroe, J., Karaman, I., Basaran, B., Ito, W., Umetsu, R., Kainuma, R., et al.: Direct measurement of large reversible magnetic-field-induced strain in Ni–Co–Mn–In metamagnetic shape memory alloys. Acta Mater. 60, 6883–6891 (2012)

    Article  ADS  Google Scholar 

  205. Morito, H., Fujita, A., Oikawa, K., Ishida, K., Fukamichi, K., Kainuma, R.: Stress-assisted magnetic-field-induced strain in Ni–Fe–Ga–Co ferromagnetic shape memory alloys. Appl. Phys. Lett. 90, 062505 (2007)

    Article  ADS  Google Scholar 

  206. Morito, H., Oikawa, K., Fujita, A., Fukamichi, K., Kainuma, R., Ishida, K.: A large magnetic-field-induced strain in Ni–Fe–Mn–Ga–Co ferromagnetic shape memory alloy. J. Alloys Compd. 577, S372–S375 (2013)

    Article  Google Scholar 

  207. Omori, T., Watanabe, K., Umetsu, R., Kainuma, R., Ishida, K.: Martensitic transformation and magnetic field-induced strain in Fe–Mn–Ga shape memory alloy. Appl. Phys. Lett. 95, 082508 (2009)

    Article  ADS  Google Scholar 

  208. Sugiyama, M., Oshima, R., Fujita, F.E.: Martensitic transformation in the Fe–Pd alloy system. Trans. Jpn. Ins. Met. 25, 585–592 (1984)

    Article  Google Scholar 

  209. James, R.D., Wuttig, M.: Magnetostriction of martensite. Philos. Mag. A. 77, 1273–1299 (1998)

    Article  ADS  Google Scholar 

  210. Kakeshita, T., Fukuda, T.: Giant magnetostriction in Fe3Pt and FePd ferromagnetic shape-memory alloys. Mater. Sci. For. 394, 531–536 (2002)

    Google Scholar 

  211. Sakon, T., Takaha, A., Obara, K., Dejima, K., Nojiri, H., Motokawa, M., et al.: Magnetic-field-induced strain of shape-memory alloy Fe3Pt studied by a capacitance method in a pulsed magnetic field. Jpn. J. Appl. Phys. 46, 146 (2007)

    Article  ADS  Google Scholar 

  212. Fukuda, T., Kakeshita, T.: Giant magnetic field induced strain in ferromagnetic shape memory alloys and its condition. Mater. Sci. Technol. 24, 890–895 (2008)

    Article  Google Scholar 

  213. Liu, E., Zhu, W., Feng, L., Chen, J., Wang, W., Wu, G., et al.: Vacancy-tuned paramagnetic/ferromagnetic martensitic transformation in Mn-poor Mn1-xCoGe alloys. Europhys. Lett. 91, 17003 (2010)

    Article  ADS  Google Scholar 

  214. Liu, E., Wang, W., Feng, L., Zhu, W., Li, G., Chen, J., et al.: Stable magnetostructural coupling with tunable magnetoresponsive effects in hexagonal ferromagnets. Nat. Commun. 3, 873 (2012)

    Article  ADS  Google Scholar 

  215. Zhang, C., Shi, H., Ye, E., Nie, Y., Han, Z., Wang, D.: Magnetostructural transition and magnetocaloric effect in MnCoGe–NiCoGe system. J. Alloys Compd. 639, 36–39 (2015)

    Article  Google Scholar 

  216. Wei, Z.Y., Liu, E.K., Li, Y., Xu, G.Z., Zhang, X.M., Liu, G.D., et al.: Unprecedentedly wide Curie-temperature windows as phase-transition design platform for tunable magneto-multifunctional materials. Adv. Electron. Mater. 1 (2015)

    Google Scholar 

  217. Fujita, A., Fukamichi, K., Gejima, F., Kainuma, R., Ishida, K.: Magnetic properties and large magnetic-field-induced strains in off-stoichiometric Ni-Mn-Al Heusler alloys. Appl. Phys. Lett. 77, 3054 (2000)

    Article  ADS  Google Scholar 

  218. Liu, Z., Zhang, M., Cui, Y., Zhou, Y., Wang, W., Wu, G., et al.: Martensitic transformation and shape memory effect in ferromagnetic Heusler alloy Ni2FeGa. Appl. Phys. Lett. 82, 424–426 (2003)

    Article  ADS  Google Scholar 

  219. Krenke, T., Acet, M., Wassermann, E.F., Moya, X., Mañosa, L., Planes, A.: Ferromagnetism in the austenitic and martensitic states of Ni− Mn− In alloys. Phys. Rev. B. 73, 174413 (2006)

    Article  ADS  Google Scholar 

  220. Zhang, M., Brück, E., de Boer, F.R., Wu, G.: Magnetic, martensitic transformation, magnetostriction and shape memory effect in Co50Ni20Ga30 melt-spun ribbons. J. Phys. D: Appl. Phys. 38, 1361 (2005)

    Article  ADS  Google Scholar 

  221. Li, Z., Xu, K., Yang, H., Zhang, Y., Jing, C.: Magnetostrain and magnetocaloric effect by field-induced reverse martensitic transformation for Pd-doped Ni45Co5Mn37In13 Heusler alloy. J. Appl. Phys. 117, 223904 (2015)

    Article  ADS  Google Scholar 

  222. Jing, C., Wang, X., Liao, P., Li, Z., Yang, Y., Kang, B., et al.: Martensitic phase transition, inverse magnetocaloric effect, and magnetostrain in Ni50Mn37-xFexIn13 Heusler alloys. J. Appl. Phys. 114, 063907 (2013)

    Article  ADS  Google Scholar 

  223. Kainuma, R., Imano, Y., Ito, W., Morito, H., Sutou, Y., Oikawa, K., et al.: Metamagnetic shape memory effect in a Heusler-type Ni43Co7Mn39Sn11 polycrystalline alloy. Appl. Phys. Lett. 88, 192513 (2006)

    Article  ADS  Google Scholar 

  224. Liao, P., Jing, C., Zheng, D., Li, Z., Kang, B., Deng, D., et al.: Tuning martensitic transformation, large magnetoresistance and strain in Ni 50− x Fe x Mn 36 Sn 14 Heusler alloys. Solid State Commun. 217, 28–33 (2015)

    Article  ADS  Google Scholar 

  225. Chernenko, V., Barandiarán, J., L’vov, V., Gutiérrez, J., Lázpita, P., Orue, I.: Temperature dependent magnetostrains in polycrystalline magnetic shape memory Heusler alloys. J. Alloys Compd. 577, S305–S308 (2013)

    Article  Google Scholar 

  226. Li, Z., Jing, C., Zhang, H., Qiao, Y., Cao, S., Zhang, J., et al.: A considerable metamagnetic shape memory effect without any prestrain in Ni46Cu4Mn38Sn12 Heusler alloy. J. Appl. Phys. 106, 083908 (2009)

    Article  ADS  Google Scholar 

  227. Zhu, W., Liu, E., Feng, L., Tang, X., Chen, J., Wu, G., et al.: Magnetic-field-induced transformation in FeMnGa alloys. Appl. Phys. Lett. 95, 222512–222511 (2009)

    Article  ADS  Google Scholar 

  228. Wei, Z., Liu, E., Chen, J., Li, Y., Liu, G., Luo, H., et al.: Realization of multifunctional shape-memory ferromagnets in all-d-metal Heusler phases. Appl. Phys. Lett. 107, 022406 (2015)

    Article  ADS  Google Scholar 

  229. Felser, C., Fecher, G.H., Balke, B.: Spintronics: a challenge for materials science and solid-state chemistry. Angew. Chem. Int. Ed. 46, 668–699 (2007)

    Article  Google Scholar 

  230. Graf, T., Felser, C., Parkin, S.S.: Simple rules for the understanding of Heusler compounds. Prog. Solid State Chem. 39, 1–50 (2011)

    Article  Google Scholar 

  231. Villar, P., Calvert, L.: Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, 2nd edn. ASM International, Materials Park (1996)

    Google Scholar 

  232. Kandpal, H.C., Felser, C., Seshadri, R.: Covalent bonding and the nature of band gaps in some half-Heusler compounds. J. Phys. D: Appl. Phys. 39, 776 (2006)

    Article  ADS  Google Scholar 

  233. Pan, Y., Nikitin, A., Bay, T., Huang, Y., Paulsen, C., Yan, B., et al.: Superconductivity and magnetic order in the noncentrosymmetric half-Heusler compound ErPdBi. Europhys. Lett. 104, 27001 (2013)

    Article  ADS  Google Scholar 

  234. Nikitin, A., Pan, Y., Mao, X., Jehee, R., Araizi, G., Huang, Y., et al.: Magnetic and superconducting phase diagram of the half-Heusler topological semimetal HoPdBi. J. Phys.: Condens. Matter. 27, 275701 (2015)

    Google Scholar 

  235. De Groot, R., Mueller, F., Van Engen, P., Buschow, K.: New class of materials: half-metallic ferromagnets. Phys. Rev. Lett. 50, 2024 (1983)

    Article  ADS  Google Scholar 

  236. Felser, C., Wollmann, L., Chadov, S., Fecher, G.H., Parkin, S.S.: Basics and prospective of magnetic Heusler compounds. APL Mater. 3, 041518 (2015)

    Article  ADS  Google Scholar 

  237. Felser, C., Wollmann, L., Chadov, S., Fecher, G.H., Parkin, S.S.P.: Heusler alloys. In: Felser, C., Hirohata, A. (eds.) Springer Series in Materials Science, vol. 222, pp. 37–48. Springer International Publishing (2016)

    Google Scholar 

  238. Nishino, Y., Kato, M., Asano, S., Soda, K., Hayasaki, M., Mizutani, U.: Semiconductorlike behavior of electrical resistivity in Heusler-type Fe 2 VAl compound. Phys. Rev. Lett. 79, 1909 (1997)

    Article  ADS  Google Scholar 

  239. Galanakis, I., Dederichs, P., Papanikolaou, N.: Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys. Phys. Rev. B. 66, 174429 (2002)

    Article  ADS  Google Scholar 

  240. Felser, C., Fecher, G.H.: Spintronics: From Materials to Devices. Springer Science & Business Media (2013)

    Google Scholar 

  241. Kandpal, H.C., Ksenofontov, V., Wojcik, M., Seshadri, R., Felser, C.: Electronic structure, magnetism and disorder in the Heusler compound Co2TiSn. J. Phys. D: Appl. Phys. 40, 1587 (2007)

    Article  ADS  Google Scholar 

  242. Liu, H.-x., Kawami, T., Moges, K., Uemura, T., Yamamoto, M., Shi, F., et al.: Influence of film composition in quaternary Heusler alloy Co2 (Mn, Fe) Si thin films on tunnelling magnetoresistance of Co2 (Mn, Fe) Si/MgO-based magnetic tunnel junctions. J. Phys. D: Appl. Phys. 48, 164001 (2015)

    Article  ADS  Google Scholar 

  243. Jourdan, M., Minár, J., Braun, J., Kronenberg, A., Chadov, S., Balke, B., et al.: Direct observation of half-metallicity in the Heusler compound Co2MnSi. Nat. Commun. 5 (2014)

    Google Scholar 

  244. Wurmehl, S., Fecher, G.H., Kandpal, H.C., Ksenofontov, V., Felser, C., Lin, H.-J., et al.: Geometric, electronic, and magnetic structure of Co 2 FeSi: Curie temperature and magnetic moment measurements and calculations. Phys. Rev. B. 72, 184434 (2005)

    Article  ADS  Google Scholar 

  245. Kübler, J., Fecher, G., Felser, C.: Understanding the trend in the Curie temperatures of Co 2-based Heusler compounds: Ab initio calculations. Phys. Rev. B. 76, 024414 (2007)

    Article  ADS  Google Scholar 

  246. Wurmehl, S., Kandpal, H.C., Fecher, G.H., Felser, C.: Valence electron rules for prediction of half-metallic compensated-ferrimagnetic behaviour of Heusler compounds with complete spin polarization. J. Phys.: Condens. Matter. 18, 6171 (2006)

    ADS  Google Scholar 

  247. Wollmann, L., Chadov, S., Kübler, J., Felser, C.: Magnetism in cubic manganese-rich Heusler compounds. Phys. Rev. B. 90, 214420 (2014)

    Article  ADS  Google Scholar 

  248. Galanakis, I., Özdoǧan, K., Aktaş, B., Şaşinoǧlu, E.: Ferrimagnetism and antiferro-magnetism in half-metallic Heusler alloys. Phys. Status Solidi A. 205, 1036–1039 (2008)

    Article  ADS  Google Scholar 

  249. Wollmann, L., Chadov, S., Kübler, J., Felser, C.: Magnetism in tetragonal manganese-rich Heusler compounds. Phys. Rev. B. 92, 064417 (2015)

    Article  ADS  Google Scholar 

  250. Kübler, J., William, A., Sommers, C.: Formation and coupling of magnetic moments in Heusler alloys. Phys. Rev. B. 28, 1745 (1983)

    Article  ADS  Google Scholar 

  251. Ouardi, S., Fecher, G.H., Stinshoff, R., Felser, C., Kubota, T., Mizukami, S., et al.: Stoichiometry dependent phase transition in Mn-Co-Ga-based thin films: from cubic in-plane, soft magnetized to tetragonal perpendicular, hard magnetized. Appl. Phys. Lett. 101 (2012)

    Google Scholar 

  252. Balke, B., Fecher, G.H., Winterlik, J., Felser, C.: Mn3Ga, a compensated ferrimagnet with high Curie temperature and low magnetic moment for spin torque transfer applications. Appl. Phys. Lett. 90, 2504 (2007)

    Article  Google Scholar 

  253. Coey, J.: Permanent magnets: plugging the gap. Scr. Mater. 67, 524–529 (2012)

    Article  ADS  Google Scholar 

  254. Winterlik, J., Chadov, S., Gupta, A., Alijani, V., Gasi, T., Filsinger, K., et al.: Design scheme of new tetragonal Heusler compounds for spin-transfer torque applications and its experimental realization. Adv. Mater. 24, 6283–6287 (2012)

    Article  Google Scholar 

  255. Siewert, M., Gruner, M., Dannenberg, A., Chakrabarti, A., Herper, H., Wuttig, M., et al.: Designing shape-memory Heusler alloys from first-principles. Appl. Phys. Lett. 99, 191904 (2011)

    Article  ADS  Google Scholar 

  256. Suits, J.C.: New magnetic compounds with Heusler and Heusler-related structures. Phys. Rev. B. 14, 4131 (1976)

    Article  ADS  Google Scholar 

  257. Kurt, H., Rode, K., Stamenov, P., Venkatesan, M., Lau, Y.-C., Fonda, E., et al.: Cubic Mn 2 Ga thin films: crossing the spin gap with ruthenium. Phys. Rev. Lett. 112, 027201 (2014)

    Article  ADS  Google Scholar 

  258. Galanakis, I., Şaşıoğlu, E.: High TC half-metallic fully-compensated ferrimagnetic Heusler compounds. Appl. Phys. Lett. 99, 052509 (2011)

    Article  ADS  Google Scholar 

  259. Nayak, A.K., Nicklas, M., Chadov, S., Khuntia, P., Shekhar, C., Kalache, A., et al.: Design of compensated ferrimagnetic Heusler alloys for giant tunable exchange bias. Nat. Mater. 14, 679–684 (2015)

    Article  ADS  Google Scholar 

  260. Yoon, S., Booth, J.: Structural and magnetic properties of Fe 3− x Mn x Si alloys. Phys. Lett. A. 48, 381–382 (1974)

    Article  ADS  Google Scholar 

  261. Mohn, P., Supanetz, E.: Spin ordering in Fe3-x Mn x Si Heusler alloys. Philos. Mag. B. 78, 629–636 (1998)

    Article  ADS  Google Scholar 

  262. Meshcheriakova, O., Chadov, S., Nayak, A., Rößler, U., Kübler, J., André, G., et al.: Large noncollinearity and spin reorientation in the novel Mn 2 RhSn Heusler magnet. Phys. Rev. Lett. 113, 087203 (2014)

    Article  ADS  Google Scholar 

  263. Buschow, K.: The crystal structure of Th2Co7. Acta Crystallogr. Sect. B. 26, 1389–1392 (1970)

    Article  Google Scholar 

  264. Buschow, K.: Structural and magnetic characteristics of Th–Co and Th–Fe compounds. J. Appl. Phys. 42, 3433–3437 (1971)

    Article  ADS  Google Scholar 

  265. Bartashevich, M., Deryagin, A., Kudrevatykh, N., Tarasov, E.: High-temperature metamagnetism of the Y2CO7H6 hydride. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki. 84, 1140–1144 (1983)

    Google Scholar 

  266. Andreev, A., Bartashevich, M.: AV Der3’agin, tnd Ye, N. Tarasov. Phys. Met. Metallogr. 62, 66 (1986)

    Google Scholar 

  267. Kuz’min, M., Skokov, K., Radulov, I., Schwöbel, C., Foro, S., Donner, W., et al.: Magnetic anisotropy of La2Co7. J. Appl. Phys. 118, 053905 (2015)

    Article  ADS  Google Scholar 

  268. Buschow, K.: Magnetic properties of CeCo3, Ce2Co7 and CeNi3 and their ternary hydrides. J. Less-Common Met. 72, 257–263 (1980)

    Article  Google Scholar 

  269. Buschow, K.H.J.: Colloq. Int. CNRS, Les Elements de Terres Rares 1969, 1, 101 (1970)

    Google Scholar 

  270. Ray, A.E., Biermann, A.T., Hammer, R.S., Davison, J.E.: Cobalt. 4, 103 (1973)

    Google Scholar 

  271. Bartashevich, M., Andreev, A., Tarasov, E., Goto, T., Yamaguchi, M.: Magnetic properties and spontaneous magnetostriction of a Sm2Co7 single crystal. Phys. B. 183, 369–378 (1993)

    Article  ADS  Google Scholar 

  272. Bartashevich, M., Goto, T., Yamaguchi, M.: Field induced magnetic phase transition and magnetostriction in ErCo 3, HoCo 3 and Nd 2 Co 7 single crystals. J. Magn. Magn. Mater. 111, 83–89 (1992)

    Article  ADS  Google Scholar 

  273. Lemaire, R.: Magnetic properties of the intermetallic compounds of cobalt with the rare earth metals and yttrium. Cobalt, 201–211 (1966)

    Google Scholar 

  274. Andreev, A., Tarasov, E., Deryagin, A., Zadvorkin, S.: Influence of symmetry of the crystalline structure on the magnetic anisotropy of Tb2Co7. Phys. Status Solidi A. 71, K245–K247 (1982)

    Article  ADS  Google Scholar 

  275. Ostertag, W.: The crystal structure of Er2Co7 and other rare earth-cobalt compounds R2Co7 (R = Gd, Tb, Dy, Ho, Tm, Lu, Y). J. Less-Common Met. 13, 385–390 (1967)

    Article  Google Scholar 

  276. Andreev, A., Zadvorkin, S., Tarasov, E.: Thermal expansion anomalies and spontaneous magnetostriction in Tm 2 Co 7. J. Alloys Compd. 189, 187–190 (1992)

    Article  Google Scholar 

  277. Parker, F., Oesterreicher, H.: Magnetic properties of La2Ni7. J. Less-Common Met. 90, 127–136 (1983)

    Article  Google Scholar 

  278. Lemaire, R., Paccard, D., Pauthenet, R.: Structural and – magnetic properties of alloys of composition T 2 NI 7, where T is a rare-earth metal or yttrium. Compt. Rend. 265(23), 1280–1282 (1967)

    Google Scholar 

  279. Virkar, A.V., Raman, A.: Crystal structures of AB3 and A2B7 rare earth-nickel phases. J. Less-Common Met. 18, 59–66 (1969)

    Article  Google Scholar 

  280. Buschow, K., Van Der Goot, A.: The crystal structure of rare-earth nickel compounds of the type R 2 Ni 7. J. Less-Common Met. 22, 419–428 (1970)

    Article  Google Scholar 

  281. Bhattacharyya, A., Giri, S., Majumdar, S.: Successive magnetic transitions and low temperature magnetocaloric effect in RE2Ni7 (RE=Dy, Ho). J. Magn. Magn. Mater. 323, 1484–1489 (2011)

    Article  ADS  Google Scholar 

  282. Tsvyashchenko, A.V.: High-pressure synthesis of YB3CO, YB3NI compounds. J. Less-Common Met. 118, 103–107 (1986)

    Article  Google Scholar 

  283. Palenzona, A., Cirafici, S.: The equilibrium diagram of the Th-Ni system. J. Less-Common Met. 142, 311–317 (1988)

    Article  Google Scholar 

  284. Schneider, G., Landgraf, F., Villas-Boas, V., Bezerra, G., Missell, F., Ray, A.: New stable phase in the binary Fe-Nd system. Mater. Lett. 8, 472–476 (1989)

    Article  Google Scholar 

  285. Moreau, J.M., Paccard, L., Nozieres, J.P., Missell, F.P., Schneider, G., Villas-Boas, V.: A new phase in the Nd-Fe system: Crystal structure of Nd5Fe17. J. Less Common Met. 163, 245–251 (1990)

    Article  Google Scholar 

  286. Nozieres, J., Rechenberg, H.: Magnetic properties of Nd5Fe17. Solid State Commun. 79, 21–24 (1991)

    Article  ADS  Google Scholar 

  287. Stadelmaier, H., Schneider, G., Henig, E.-T., Ellner, M.: Magnetic Fe17R5 in the Fe-Nd and Fe (-Ti)-Sm systems, and other phases in Fe-Nd. Mater. Lett. 10, 303–309 (1991)

    Article  Google Scholar 

  288. Maruyama, F., Amako, Y.: Magnetic properties of Sm 5 (Fe 1− x T x) 17 (T= Ti and V) compounds. J. Alloys Compd. 474, 1–3 (2009)

    Article  Google Scholar 

  289. Saito, T.: High coercivity in Sm 5 Fe 17 melt-spun ribbon. J. Alloys Compd. 440, 315–318 (2007)

    Article  Google Scholar 

  290. Saito, T., Ichihara, M.: Synthesis and magnetic properties of Sm 5 Fe 17 hard magnetic phase. Scr. Mater. 57, 457–460 (2007)

    Article  Google Scholar 

  291. Yelon, W., Luo, H., Chen, M., Missell, F.: Magnetic and crystallographic structure of Nd5Fe17. J. Appl. Phys. 85, 5693–5695 (1999)

    Article  ADS  Google Scholar 

  292. Chu, Z., Yelon, W., Missell, F., Murakami, R.: Site occupancy of Sm in (Nd1− xSmx) 5 (Fe1− yTiy) 17. J. Appl. Phys. 87, 6704–6706 (2000)

    Article  ADS  Google Scholar 

  293. Saito, T.: Annealing of amorphous Sm5Fe17 melt-spun ribbon. Mater. Trans. 49, 1446–1450 (2008)

    Article  Google Scholar 

  294. Stadelmaier, H., Schneider, G., Ellner, M.: A CaCu5-type iron-neodymium phase stabilized by rapid solidification. J. Less-Common Met. 115, L11–L14 (1986)

    Article  Google Scholar 

  295. Moze, O., Pareti, L., Paoluzi, A., Buschow, K.: Magnetic structure and anisotropy of Ga-and Al-substituted LaCo 5 and YCo 5 intermetallics. Phys. Rev. B. 53, 11550 (1996)

    Article  ADS  Google Scholar 

  296. Alameda, J., Givord, D., Lemaire, R., Lu, Q.: Co energy and magnetization anisotropies in RCo5 intermetallics between 4.2 K and 300 K. J. Appl. Phys. 52, 2079–2081 (1981)

    Article  ADS  Google Scholar 

  297. Alameda, J., Deportes, J., Givord, D., Lemaire, R., Lu, Q.: Large magnetization anisotropy in uniaxial YCo5 intermetallic. J. Magn. Magn. Mater. 15, 1257–1258 (1980)

    Article  ADS  Google Scholar 

  298. Barbara, B., Uehara, M.: Anisotropy and coercivity in SmCo 5-based compounds. IEEE Trans. Magn. 12, 997–999 (1976)

    Article  ADS  Google Scholar 

  299. Gubbens, P., Van der Kraan, A.: Magnetic properties of ThFe 5. J. Magn. Magn. Mater. 9, 349–354 (1978)

    Article  ADS  Google Scholar 

  300. Cadieu, F., Cheung, T., Wickramasekara, L., Aly, S.: Magnetic properties of a metastable Sm-Fe phase synthesized by selectively thermalized sputtering. J. Appl. Phys. 55, 2611–2613 (1984)

    Article  ADS  Google Scholar 

  301. Alameda, J., Givord, D., Lemaire, R., Lu, Q., Palmer, S., Tasset, F.: Reduced 4f-moment of the Nd ground state in NdCo5. Le Journal de Physique Colloques. 43, C7-133–C7-139 (1982)

    Article  Google Scholar 

  302. Schweizer, J., Tasset, F.: Polarised neutron study of the RCo5 intermetallic compounds. I. The cobalt magnetisation in YCo5. J. Phys. F: Met. Phys. 10, 2799 (1980)

    Article  ADS  Google Scholar 

  303. Decrop, B., Deportes, J., Lemaire, R.: Magnetic structure of HoCo 5 below room temperature. J. Less-Common Met. 94, 199–203 (1983)

    Article  Google Scholar 

  304. Coroian, N., Klosek, V., Isnard, O.: The influence of substituting Si for Co on the magnetic properties of PrCo 5. J. Alloys Compd. 427, 5–10 (2007)

    Article  Google Scholar 

  305. Barthem, V., Gignoux, D., Nait-Saada, A., Schmitt, D., Creuzet, G.: Magnetic and magnetoelastic properties of PrNi 5 single crystal. Phys. Rev. B. 37, 1733 (1988)

    Article  ADS  Google Scholar 

  306. Coldea, M., Andreica, D., Bitu, M., Crisan, V.: Spin fluctuations in YNi 5 and CeNi 5. J. Magn. Magn. Mater. 157, 627–628 (1996)

    Article  ADS  Google Scholar 

  307. Grechnev, G., Logosha, A., Panfilov, A., Kuchin, A., Vasijev, A.: Effect of pressure on the magnetic properties of YNi5, LaNi5, and CeNi5. Low Temp. Phys. 37, 138 (2011)

    Article  ADS  Google Scholar 

  308. Burzo, E., Ursu, I.: Paramagnetic resonance and magnetic measurements on GdNi 5 compound. Solid State Commun. 9, 2289–2292 (1971)

    Article  ADS  Google Scholar 

  309. Barthem, V., Gignoux, D., Naitsaada, A., Schmitt, D., Takeuchi, A.Y.: Magnetic-properties of the hexagonal NDNI5 and NDCU5 Compounds. J. Magn. Magn. Mater. 80, 142–148 (1989)

    Article  ADS  Google Scholar 

  310. Gubbens, P., Van Der Kraan, A., Buschow, K.: Crystal-field effects and magnetic behavior in R Ni 5 and R Co 5+ x rare-earth compounds. Phys. Rev. B. 39, 12548 (1989)

    Article  ADS  Google Scholar 

  311. Gignoux, D., Nait-Saada, A., De La Bâthie, R.P.: Magnetic properties of TbNi5 and HoNi5 single crystals. Le Journal de Physique Colloques. 40, C5-188–C5-190 (1979)

    Article  Google Scholar 

  312. Sada, A.N.: Ph.D. thesis, University of Grenoble (1980)

    Google Scholar 

  313. Givord, D., Laforest, J., Schweizer, J., Tasset, F.: Temperature dependence of the samarium magnetic form factor in SmCo5. J. Appl. Phys. 50, 2008–2010 (1979)

    Article  ADS  Google Scholar 

  314. Buschow, K., Van Diepen, A., De Wijn, H.: Crystal-field anisotropy of Sm 3+ in SmCo 5. Solid State Commun. 15, 903–906 (1974)

    Article  ADS  Google Scholar 

  315. Laforest, J.: Ph.D. thesis, Université de Grenoble (1981)

    Google Scholar 

  316. Sankar, S., Rao, V., Segal, E., Wallace, W., Frederick, W., Garrett, H.: Magnetocrystalline anisotropy of Sm Co 5 and its interpretation on a crystal-field model. Phys. Rev. B. 11, 435 (1975)

    Article  ADS  Google Scholar 

  317. Von Ranke, P., Mota, M., Grangeia, D., Carvalho, A.M.G., Gandra, F., Coelho, A., et al.: Magnetocaloric effect in the R Ni 5 (R= Pr, Nd, Gd, Tb, Dy, Ho, Er) series. Phys. Rev. B. 70, 134428 (2004)

    Article  ADS  Google Scholar 

  318. Skokov, K.P., Pastushenkov, Y.G., Koshkid’ko, Y.S., Shütz, G., Goll, D., Ivanova, T.I., et al.: Magnetocaloric effect, magnetic domain structure and spin-reorientation transitions in HoCo5 single crystals. J. Magn. Magn. Mater. 323, 447–450 (2011)

    Article  ADS  Google Scholar 

  319. Givord, D., Laforest, J., Lemaire, R.: Polarized neutron study of the itinerant electron metamagnetism in ThCo5. J. Appl. Phys. 50, 7489–7491 (1979)

    Article  ADS  Google Scholar 

  320. Givord, D., Laforest, J., Lemaire, R.: Magnetic transition in ThCo5 due to change of Co-moment. Phys. B. 86–88, Part 1, 204–206 (1977)

    Article  Google Scholar 

  321. Ballou, R., Shimizu, M., Voiron, J.: Pressure effects on the metamagnetic transition of ThCo 5. J. Magn. Magn. Mater. 84, 23–28 (1990)

    Article  ADS  Google Scholar 

  322. Velge, W., Buschow, K.: Magnetic and crystallographic properties of some rare earth cobalt compounds with CaZn5 structure. J. Appl. Phys. 39, 1717–1720 (1968)

    Article  ADS  Google Scholar 

  323. Wernick, J., Geller, S.: Transition element–rare earth compounds with Cu5Ca structure. Acta Crystallogr. 12, 662–665 (1959)

    Article  Google Scholar 

  324. Klein, H.P., Menth, A., Perkins, R.S.: Magnetocrystalline anisotropy of light rare-earth cobalt compounds. Phys. B. 80, 153–163 (1975)

    Article  Google Scholar 

  325. Ibarra, M., Morellon, L., Algarabel, P., Moze, O.: Single-ion competing magnetic anisotropies in Pr x Nd 1− x Co 5 intermetallic compounds. Phys. Rev. B. 44, 9368 (1991)

    Article  ADS  Google Scholar 

  326. Tatsumoto, E., Okamoto, T., Fujii, H., Inoue, C.: Saturation magnetic moment and crystalline anisotropy of single crystals of light rare earth cobalt compounds RCo5. Le Journal de Physique Colloques. 32, C1-550–C1-551 (1971)

    Article  Google Scholar 

  327. Decrop, B.: Ph.D. thesis, INPG Grenoble (1982)

    Google Scholar 

  328. Lemaire, R., Schweizer, J.: Structures magnétiques des composés intermétalliques CeCo5 et TbCo5. J. Phys. 28, 216–220 (1967)

    Article  Google Scholar 

  329. Ohkoshi, M., Kobayashi, H., Katayama, T., Hirano, M., Tsushima, T.: Spin reorientation in DyCo 5. Phys. B. 86, 195–196 (1977)

    Article  Google Scholar 

  330. Buschow, K., Velge, W.: Permanent magnetic materials of rare earth – cobalt compounds. Philips Research Lab. and Metallurgical Lab, Eindhoven (1969)

    Google Scholar 

  331. Givord, D., Laforest, J., Lemaire, R., Lu, Q.: Cobalt magnetism in RCo5-intermetallics: onset of 3d magnetism and magnetocrystalline anisotropy (r=rare earth or Th). J. Magn. Magn. Mater. 31–34, Part 1, 191–196 (1983)

    Article  ADS  Google Scholar 

  332. Van Diepen, A., Buschow, K., Van Wieringen, J.: Study of the Mössbauer effect, magnetization, and crystal structures of the pseudobinary compounds ThCo5− 5xFe5x and ThNi5− 5xFe5x. J. Appl. Phys. 43, 645–650 (1972)

    Article  ADS  Google Scholar 

  333. Ballou, R., Barthem, V., Gignoux, D.: Crystal field effects in the hexagonal SmNi5 compound. Phys. B. 149, 340–344 (1988)

    Article  Google Scholar 

  334. Oliver, F., West, K., Cohen, R., Buschow, K.: Mossbauer effect of 151Eu in EuNi5, EuMg2 and their hydrides. J. Phys. F: Met. Phys. 8, 701 (1978)

    Article  ADS  Google Scholar 

  335. De Jesus, V., Oliveira, I., Riedi, P., Guimaraes, A.: 155,157 Gd NMR study of Gd–Ni intermetallic compounds. J. Magn. Magn. Mater. 212, 125–137 (2000)

    Article  ADS  Google Scholar 

  336. Mulder, F., Thiel, R., Buschow, K.: 155 Gd Mössbauer effect and magnetic properties of aluminium-and gallium-substituted GdCu 5 and GdNi 5. J. Alloys Compd. 190, 77–82 (1992)

    Article  Google Scholar 

  337. Haldar, A., Dhiman, I., Das, A., Suresh, K., Nigam, A.: Magnetic, magnetocaloric and neutron diffraction studies on TbNi 5− x M x (M= Co and Fe) compounds. J. Alloys Compd. 509, 3760–3765 (2011)

    Article  Google Scholar 

  338. Mulders, A., Kaiser, C., Harker, S., Gubbens, P., Amato, A., Gygax, F., et al.: Muon location and muon dynamics in DyNi 5. Phys. Rev. B. 67, 014303 (2003)

    Article  ADS  Google Scholar 

  339. Barthem, V., Gignoux, D., Schmitt, D., Creuzet, G.: Magnetic and magnetoelastic properties of the hexagonal TmNi 5 compound. J. Magn. Magn. Mater. 78, 56–66 (1989)

    Article  ADS  Google Scholar 

  340. Zhang, F., Gignoux, D., Schmitt, D., Franse, J., Kayzel, F., Kim-Ngan, N., et al.: Crystalline electric field and high field magnetization in ErNi 5 single crystal. J. Magn. Magn. Mater. 130, 108–114 (1994)

    Article  ADS  Google Scholar 

  341. Hodges, J., Bonville, P., Ocio, M.: Magnetic properties of YbNi5 from 170Yb Mössbauer and magnetisation measurements. Eur. Phys. J. B. 57, 365–370 (2007)

    Article  ADS  Google Scholar 

  342. Knyazev, Y.V., Lukoyanov, A., Kuz’min, Y.I., Kuchin, A.: Influence of copper impurities on the evolution of the electronic structure and optical spectra of the LuNi5 compound. Phys. Solid State. 57, 866–870 (2015)

    Article  ADS  Google Scholar 

  343. Florio, J.V., Baenziger, N., Rundle, R.: Compounds of thorium with transition metals. II. Systems with iron, cobalt and nickel. Acta Crystallogr. 9, 367–372 (1956)

    Article  Google Scholar 

  344. Narasimhan, K., Do-Dinh, C., Wallace, W., Hutchens, R.: Magnetic properties of the ThCo5− xNix system. J. Appl. Phys. 46, 4961–4964 (1975)

    Article  ADS  Google Scholar 

  345. Aubert, G., Gignoux, D., Hennion, B., Michelutti, B., Saada, A.N.: Bulk magnetization study of a DyNi 5 single crystal. Solid State Commun. 37, 741–743 (1981)

    Article  ADS  Google Scholar 

  346. Boucherle, J., Givord, D., Laforest, J., Schweizer, J., Tasset, F.: Determination of exchange and crystal field effects in Sm alloys by polarized neutron diffraction. Le Journal de Physique Colloques. 40, C5-180–C5-182 (1979)

    Article  Google Scholar 

  347. Lu, Q.: PhD Thesis, Université de Grenoble (1981).

    Google Scholar 

  348. Ibarra, M., Morellon, L., Algarabel, P., Moze, O.: A determination of the crystal electric field and exchange parameters of Pr 3+ and Nd 3+ ions in RCo 5 intermetallics. J. Magn. Magn. Mater. 104, 1149–1151 (1992)

    Article  ADS  Google Scholar 

  349. Decrop, B., Deportes, J., Givord, D., Lemaire, R., Chapert, J.: Study of the magnetization reorientation in HoCo5. J. Appl. Phys. 53, 1953–1955 (1982)

    Article  ADS  Google Scholar 

  350. Kren, E., Schweizer, J., Tasset, F.: Polarized-neutron-diffraction study of magnetic moments in yttrium-cobalt alloys. Phys. Rev. 186, 479 (1969)

    Article  ADS  Google Scholar 

  351. Buschow, K.: The crystal structures of the rare-earth compounds of the form R 2 Ni 17, R 2 Co 17 and R 2 Fe 17. J. Less-Common Met. 11, 204–208 (1966)

    Article  Google Scholar 

  352. Givord, D., Givord, F., Lemaire, R., James, W.J., Shah, J.: Evidence of disordered substitutions in the “Th 2 Ni 17-type” structure. Exact structure determination of the Th-Ni, Y-Ni and Er-Co compounds. J. Less-Common Met. 29, 389–396 (1972)

    Article  Google Scholar 

  353. Isnard, O., Hautot, D., Long, G.J., Grandjean, F.: A structural, magnetic, and Mössbauer spectral study of Dy2Fe17 and its hydrides. J. Appl. Phys. 88, 2750–2759 (2000)

    Article  ADS  Google Scholar 

  354. Christensen, A.N., Hasell, R.G.: Acta Chem. Scand A. 34, 6 (1980)

    Google Scholar 

  355. Averbuch-Pouchot, M., Chevalier, R., Deportes, J., Kebe, B., Lemaire, R.: Anisotropy of the magnetization and of the iron hyperfine field in R 2 Fe 17 compounds. J. Magn. Magn. Mater. 68, 190–196 (1987)

    Article  ADS  Google Scholar 

  356. Burzo, E., Chelkowski, A., Kirchmayr, H.: Magnetic Properties of Metals: Compounds Between Rare Earth Elements and 3d, 4d or 5d Elements HPJ Wijn, Landolt-Börnstein, New Series, Group III, vol. 19, (1990)

    Google Scholar 

  357. Givord, D., Lemaire, R.: Magnetic transition and anomalous thermal expansion in R 2 Fe 17 compounds. IEEE Trans. Magn. 10, 109–113 (1974)

    Article  ADS  Google Scholar 

  358. Givord, D., Lemaire, R.: Ferromagnetic-Helimagnetic Transition in the Compounds LuFe 9. 5 and Ce 2 Fe 17. Compt. Rend. 274, 1166–1169 (1972)

    Google Scholar 

  359. Prokhnenko, O., Ritter, C., Arnold, Z., Isnard, O., Kamarád, J., Pirogov, A., et al.: Neutron diffraction studies of the magnetic phase transitions in Ce2Fe17 compound under pressure. J. Appl. Phys. 92, 385–391 (2002)

    Article  ADS  Google Scholar 

  360. Kamarád, J., Prokhnenko, O., Prokeš, K., Arnold, Z.: Magnetization and neutron diffraction studies of Lu2Fe17 under high pressure. J. Phys.: Condens. Matter. 17, S3069 (2005)

    ADS  Google Scholar 

  361. Kreyssig, A., Chang, S., Janssen, Y., Kim, J., Nandi, S., Yan, J., et al.: Crystallographic phase transition within the magnetically ordered state of Ce 2 Fe 17. Phys. Rev. B. 76, 054421 (2007)

    Article  ADS  Google Scholar 

  362. Janssen, Y., Chang, S., Kreyssig, A., Kracher, A., Mozharivskyj, Y., Misra, S., et al.: Magnetic phase diagram of Ce 2 Fe 17. Phys. Rev. B. 76, 054420 (2007)

    Article  ADS  Google Scholar 

  363. Prokhnenko, O., Kamarád, J., Prokeš, K., Arnold, Z., Andreev, A.: Helimagnetism of Fe: High Pressure Study of an Y 2 Fe 17 Single Crystal. Phys. Rev. Lett. 94, 107201 (2005)

    Article  ADS  Google Scholar 

  364. Kamarád, J., Prokhnenko, O., Prokeš, K., Arnold, Z., Andreev, A.: Pressure induced helimagnetism in Fe-based (Y 2 Fe 17, Lu 2 Fe 17) intermetallic compounds. J. Magn. Magn. Mater. 310, 1801–1803 (2007)

    Article  ADS  Google Scholar 

  365. Prokhnenko, O., Ritter, C., Medvedeva, I., Arnold, Z., Kamarád, J., Kuchin, A.: Neutron diffraction study of Lu 2 Fe 17 under high pressure. J. Magn. Magn. Mater. 258, 564–566 (2003)

    Article  ADS  Google Scholar 

  366. Burzo, E.: F. Givord CR hebd. séanc. Acad. Sci. Paris B. 271, 1159 (1970)

    Google Scholar 

  367. Elemans, J., Buschow, K.: The Magnetic Structure of Tm2Fe17. Phys. Status Solidi A. 24, K125–K127 (1974)

    Article  ADS  Google Scholar 

  368. Isnard, O., Andreev, A., Kuz’min, M., Skourski, Y., Gorbunov, D., Wosnitza, J., et al.: High magnetic field study of the Tm 2 Fe 17 and Tm 2 Fe 17 D 3.2 compounds. Phys. Rev. B. 88, 174406 (2013)

    Article  ADS  Google Scholar 

  369. Deportes, J., Kebe, B., Lemaire, R.: Hyperfine field anisotropy in RE-Fe compounds. J. Magn. Magn. Mater. 54, 1089–1090 (1986)

    Article  ADS  Google Scholar 

  370. Koyama, K., Fujii, H., Canfield, P.: Magnetocrystalline anisotropy of a Nd 2 Fe 17 single crystal. Phys. B. 226, 363–369 (1996)

    Article  ADS  Google Scholar 

  371. Clausen, K., Nielsen, O.V.: Magnetic anisotropy in single crystals of Ho2Co17 and Ho2Fe17. J. Magn. Magn. Mater. 23, 237–240 (1981)

    Article  ADS  Google Scholar 

  372. Isnard, O., Miraglia, S., Guillot, M., Fruchart, D.: High field magnetization measurements of Sm2Fe17, Sm2Fe17N3, Sm2Fe17D5, and Pr2Fe17, Pr2Fe17N3. J. Appl. Phys. 75, 5988–5993 (1994)

    Article  ADS  Google Scholar 

  373. Kou, X., De Boer, F., Grössinger, R., Wiesinger, G., Suzuki, H., Kitazawa, H., et al.: Magnetic anisotropy and magnetic phase transitions in R 2 Fe 17 with R= Y, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm and Lu. J. Magn. Magn. Mater. 177, 1002–1007 (1998)

    Article  ADS  Google Scholar 

  374. Isnard, O., Fruchart, D.: Magnetism in Fe-based intermetallics: relationships between local environments and local magnetic moments. J. Alloys Compd. 205, 1–15 (1994)

    Article  Google Scholar 

  375. Long, G.J., Isnard, O., Grandjean, F.: A Mössbauer spectral study of the magnetic properties of Ho2Fe17 and Ho2Fe17D3. 8. J. Appl. Phys. 91, 1423–1430 (2002)

    Article  ADS  Google Scholar 

  376. Schweizer, J., Tasset, F.: Proceedings of the International Conference on Magnetism, 1973 (1974)

    Google Scholar 

  377. Ohashi, K.: Present and future of Sm 2 Co 17 magnets. J. Jpn. Inst. Met. (2012)

    Google Scholar 

  378. Chin, G.: New magnetic alloys. Science. 208, 888–894 (1980)

    Article  ADS  Google Scholar 

  379. Chin, G., Wernick, J.: Magnetic Materials, Bulk. In: Encyclopedia of Chemical Technology, vol. 14, pp. 646–686. Wiley, New York (1981)

    Google Scholar 

  380. Strnat, K.: In: Wohlfarth, E.P., Buschow, K.H.J. (eds.) Ferromagnetic Materials, vol. 4. Elsevier Science Publishers BV (1988)

    Google Scholar 

  381. Narasimhan, K., Wallace, W., Hutchens, R., Greedan, J.: Magnetic anisotropy of R2Co17 compounds (R= Er, Tm, Yb). In: American Institute of Physics Conference Series, pp. 1212–1216 (1974)

    Google Scholar 

  382. Deryagin, A., Kudrevatykh, N.: Magnetic anisotropy of single crystals of intermetallic R2Co17 (R= Tb, Dy, Ho, Lu) compounds. Phys. Status Solidi A. 30, K129–K133 (1975)

    Article  ADS  Google Scholar 

  383. Deryagin, A., Kudrevatykh, N., Baskhov, Y.: Proceedings of the International Conference on Magnetism, 1973 (1974)

    Google Scholar 

  384. Tereshina, E., Andreev, A.: Crystal structure and magnetic properties of Lu 2 Co 17− x Six single crystals. Intermetallics. 18, 641–648 (2010)

    Article  Google Scholar 

  385. Moze, O., Caciuffo, R., Gillon, B., Kayzel, F.: Magnetization density in Er 2 Co 17. J. Magn. Magn. Mater. 104, 1394–1396 (1992)

    Article  ADS  Google Scholar 

  386. Le Caer, G., Malaman, B., Isnard, O., Soubeyroux, J., Fruchart, D., Jacobs, T., et al.: Magnetic characterisation of the ternary carbide ThFe11C x (1.5≤ x≤ 2) by57Fe Mössbauer spectroscopy. Hyperfine Interact. 77, 221–234 (1993)

    Article  ADS  Google Scholar 

  387. Brouha, M., Buschow, K.: Pressure dependence of the Curie temperature of intermetallic compounds of iron and rare-earth elements, Th, and Zr. J. Appl. Phys. 44, 1813–1816 (1973)

    Article  ADS  Google Scholar 

  388. Hautot, D., Long, G.J., Grandjean, F., Isnard, O.: Mössbauer spectral study of the magnetic properties of Ce 2 Fe 17 H x (x= 0, 1, 2, 3, 4, and 5). Phys. Rev. B. 62, 11731 (2000)

    Article  ADS  Google Scholar 

  389. Dan’kov, S.Y., Ivtchenko, V., Tishin, A., Gschneidner Jr., K., Pecharsky, V.: Magnetocaloric effect in GdAl2 and Nd2Fe17. In: Advances in Cryogenic Engineering Materials, pp. 397–404. Springer (2000)

    Google Scholar 

  390. Chen, H., Zhang, Y., Han, J., Du, H., Wang, C., Yang, Y.: Magnetocaloric effect in R 2 Fe 17 (R= Sm, Gd, Tb, Dy, Er). J. Magn. Magn. Mater. 320, 1382–1384 (2008)

    Article  ADS  Google Scholar 

  391. Isnard, O., Miraglia, S., Fruchart, D., Guillot, M.: High field magnetization study of the Gd 2 Fe 17 H x system. IEEE Trans. Magn. 30, 4969–4971 (1994)

    Article  ADS  Google Scholar 

  392. Kuz’min, M., Skourski, Y., Skokov, K., Müller, K.-H., Gutfleisch, O.: Determining anisotropy constants from a first-order magnetization process in Tb 2 Fe 17. Phys. Rev. B. 77, 132411 (2008)

    Article  ADS  Google Scholar 

  393. Zhao, T., Lee, T., Pang, K., Lee, J.: High-field magnetization processes in Tb 2 Fe 17 and Er 2 Fe 17. J. Magn. Magn. Mater. 140, 1009–1010 (1995)

    Article  ADS  Google Scholar 

  394. Nikitin, S., Tereshina, I., Tereshina, E., Suski, W., Drulis, H.: The effect of hydrogen on the magnetocrystalline anisotropy of R 2 Fe 17 and R (Fe, Ti) 12 (R= Dy, Lu) compounds. J. Alloys Compd. 451, 477–480 (2008)

    Article  Google Scholar 

  395. Franse, J., Radwanski, R., Buschow, K.: Handbook of Magnetic Materials, vol. 7, p. 307. North-Holland, Amsterdam (1993)

    Google Scholar 

  396. Gubbens, P.C.M.: Ph.D. thesis, Delft University Press (1977)

    Google Scholar 

  397. Andreev, A., Deryagin, A., Zadvorkin, S., Kudrevatykh, N., Moskalev, V., Levitin, R., et al.: Physics of Magnetic Materials, p. 21. Kalinin University, Kalinin, USSR (1985)

    Google Scholar 

  398. Buschow, K.: Note on the structure and occurrence of ytterbium transition metal compounds. J. Less-Common Met. 26, 329–333 (1972)

    Article  Google Scholar 

  399. Tishin, A.M., Spichkin, Y.I.: The Magnetocaloric Effect and Its Applications. CRC Press (2003)

    Google Scholar 

  400. Bouchet, G., Laforest, J., Lemaire, R., Schweizer, J.: Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences, Serie B: Sci. Phys. (1966)

    Google Scholar 

  401. Khan, Y.: On the crystal structures of the R2Co17 intermetallic compounds. Acta Crystallogr. Sect. B. 29, 2502–2507 (1973)

    Article  Google Scholar 

  402. Hirosawa, S., Wallace, W.: Effect of Substitution of Zr and Pr on magnetic properties of R 2 Co 17 (R= Er, Yb). J. Magn. Magn. Mater. 30, 238–242 (1982)

    Article  ADS  Google Scholar 

  403. Merches, M., Wallace, W., Craig, R.: Magnetic and structural characteristics of some 2: 17 rare earth-cobalt systems. J. Magn. Magn. Mater. 24, 97–105 (1981)

    Article  ADS  Google Scholar 

  404. Herbst, J., Croat, J., Yelon, W.: Structural and magnetic properties of Nd2Fe14B. J. Appl. Phys. 57, 4086–4090 (1985)

    Article  ADS  Google Scholar 

  405. Shoemaker, C.B., Shoemaker, D., Fruchart, R.: The structure of a new magnetic phase related to the sigma phase: iron neodymium boride Nd2Fe14B. Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 40, 1665–1668 (1984)

    Article  Google Scholar 

  406. Givord, D., Li, H., Moreau, J.: Magnetic properties and crystal structure of Nd 2 Fe 14 B. Solid State Commun. 50, 497–499 (1984)

    Article  ADS  Google Scholar 

  407. Coey, J.M.D.: In: Coey, J.M.D. (ed.) Chap. 1 in Rare-Earth Iron Permanent Magnets. Oxford Science Publishing, Oxford (1996)

    Google Scholar 

  408. Herbst, J.: R 2 Fe 14 B materials: intrinsic properties and technological aspects. Rev. Mod. Phys. 63, 819 (1991)

    Article  ADS  Google Scholar 

  409. Burzo, E.: Permanent magnets based on R-Fe-B and R-Fe-C alloys. Rep. Prog. Phys. 61, 1099 (1998)

    Article  ADS  Google Scholar 

  410. Franse, J.J.M., Radwanski, R.J.: In: Coey, J.M.D. (ed.) Chap. 2 in Rare-Earth Iron Permanent Magnets. Oxford Science Publishing, Oxford (1996)

    Google Scholar 

  411. Franse, J.J.M., Radwanski, R.J.: In: Buschow, K.H.J. (ed.) Chap. 5 in Handbook of Magnetic Materials, vol. 7, p. 307. Elsevier B.V (1993) ISBN: 978-0-444-89853-1.

    Google Scholar 

  412. Givord, D., Li, H., de La Bathie, R.P.: Magnetic properties of Y 2 Fe 14 B and Nd 2 Fe 14 B single crystals. Solid State Commun. 51, 857–860 (1984)

    Article  ADS  Google Scholar 

  413. Fruchart, R., l’Héritier, P., De Reotier, P.D., Fruchart, D., Wolfers, P., Coey, J., et al.: Mossbauer spectroscopy of R2Fe14B. J. Phys. F: Met. Phys. 17, 483 (1987)

    Article  ADS  Google Scholar 

  414. Isnard, O., Yelon, W., Miraglia, S., Fruchart, D.: Neutron-diffraction study of the insertion scheme of hydrogen in Nd2Fe14B. J. Appl. Phys. 78, 1892–1898 (1995)

    Article  ADS  Google Scholar 

  415. Givord, D., Li, H., Tasset, F.: Polarized neutron study of the compounds Y2Fe14B and Nd2Fe14B. J. Appl. Phys. 57, 4100–4102 (1985)

    Article  ADS  Google Scholar 

  416. Wolfers, P., Obbade, S., Fruchart, D., Verhoef, R.: Precise crystal and magnetic structure determinations. Part I: a neutron diffraction study of Nd 2 Fe 14 B at 20 K. J. Alloys Compd. 242, 74–79 (1996)

    Article  Google Scholar 

  417. Wolfers, P., Bacmann, M., Fruchart, D.: Single crystal neutron diffraction investigations of the crystal and magnetic structures of R 2 Fe 14 B (R= Y, Nd, Ho, Er). J. Alloys Compd. 317, 39–43 (2001)

    Article  Google Scholar 

  418. Obbade, S., Wolfers, P., Fruchart, D., Argoud, R., Muller, J., Palacios, E.: A precise crystal structure determination. Part II: an X-ray four-circle study of Nd 2 Fe 14 B at 20 and 290 K. J. Alloys Compd. 242, 80–84 (1996)

    Article  Google Scholar 

  419. Herbst, J., Fuerst, C., Yelon, W.: Neutron powder diffraction study of Tb2Fe14B. J. Appl. Phys. 73, 5884–5886 (1993)

    Article  ADS  Google Scholar 

  420. Drebov, N., Martinez-Limia, A., Kunz, L., Gola, A., Shigematsu, T., Eckl, T., et al.: Ab initio screening methodology applied to the search for new permanent magnetic materials. New J. Phys. 15, 125023 (2013)

    Article  ADS  Google Scholar 

  421. Liebs, M., Hummler, K., Fähnle, M.: Ab-initio calculation of the effective exchange couplings in rare-earth—transition-metal intermetallics. J. Magn. Magn. Mater. 124, 239–242 (1993)

    Article  ADS  Google Scholar 

  422. Andreev, A., Bartashevich, M.: Magnetic properties of Th 2 Fe 14 B and its hydride. J. Less-Common Met. 167, 107–111 (1990)

    Article  Google Scholar 

  423. Sinnema, S., Franse, J., Radwanski, R., Buschow, K., de Mooij, D.: Magnetic measurements on R2Fe14B and R2Co14B compounds in high fields. Le Journal de Physique Colloques. 46, C6-301–C6-304 (1985)

    Article  Google Scholar 

  424. Verhoef, R., Franse, J.J.M., Menovsky, A.A., Radwanski, R.J., Ji, S., Yang, F., et al.: High-field magnetization measurements on R2FE14B single-crystals. J. Phys. 49, 565–566 (1988)

    Google Scholar 

  425. Li, H.S., Gavigan, J.P., Cadogan, J.M., Givord, D., Coey, J.M.D.: A study of exchange and crystalline electric-field interactions in ND2CO14B – comparison with ND2FE14B. J. Magn. Magn. Mater. 72, L241–L246 (1988)

    Article  ADS  Google Scholar 

  426. Sagawa, M., Fujimura, S., Yamamoto, H., Matsuura, Y., Hirosawa, S.: Magnetic properties of rare-earth-iron-boron permanent magnet materials. J. Appl. Phys. 57, 4094–4096 (1985)

    Article  ADS  Google Scholar 

  427. Hirosawa, S., Tokuhara, K., Yamamoto, H., Fujimura, S., Sagawa, M., Yamauchi, H.: Magnetization and magnetic anisotropy of R2Co14B and Nd2 (Fe1− x Cox) 14B measured on single crystals. J. Appl. Phys. 61, 3571–3573 (1987)

    Article  ADS  Google Scholar 

  428. Itoh, T., Hikosaka, K., Takahashi, H., Ukai, T., Mori, N.: Anisotropy energies for Y2Fe14B and Nd2Fe14B. J. Appl. Phys. 61, 3430–3432 (1987)

    Article  ADS  Google Scholar 

  429. Burlet, P., Coey, J.M.D., Gavigan, J.P., Givord, D., Meyer, C.: A note on exchange and crystal-field interactions in R2FE14B compounds – YB2FE14B. Solid State Commun. 60, 723–727 (1986)

    Article  ADS  Google Scholar 

  430. Meyer, C., Gavigan, J.P., Czjzek, G., Bornemann, H.J.: A study of crystal fields in YB2FE14B bY YB-174 Mossbauer-spectroscopy. Solid State Commun. 69, 83–86 (1989)

    Article  ADS  Google Scholar 

  431. Luong, N.H., Thuy, N.P., Tai, L.T., Hien, T.D.: Rare earth magnetocrystalline anisotropy in R2Fe14B (R= Sm, Er, Tm, Yb). Phys. Status Solidi A. 111, 591–595 (1989)

    Article  ADS  Google Scholar 

  432. Kou, X., Grössinger, R., Müller, H., Buschow, K.: Anomalous 3d anisotropy of R 2 Fe 14 C and R 2 Fe 14 B compounds. J. Magn. Magn. Mater. 101, 349–351 (1991)

    Article  ADS  Google Scholar 

  433. Dennis, K.W., Laabs, F.C., Cook, B.A., Harringa, J.L., Russell, A.M., McCallum, R.W.: Observations of multi-phase microstructures in R-2(Fe1-xCox)(14)B where R = Nd or Dy. J. Magn. Magn. Mater. 231, L33–L37 (2001)

    Article  ADS  Google Scholar 

  434. Leroux, D., Vincent, H., Lheritier, P., Fruchart, R.: Crystallographic and magnetic studies of ND2CO14B and Y2CO14B. J. Phys. 46, 243–247 (1985)

    Google Scholar 

  435. Roux, D.L.: D. Le Roux, Ph.D. thesis, University Grenoble France (1986)

    Google Scholar 

  436. Buschow, K.H.J., Demooij, D.B., Sinnema, S., Radwanski, R.J., Franse, J.J.M.: Magnetic and crystallographic properties of ternary rare-earth compounds of the type R2CO14B. J. Magn. Magn. Mater. 51, 211–217 (1985)

    Article  ADS  Google Scholar 

  437. Jacobs, T.H., Denissen, C.J.M., Buschow, K.H.J.: Note on the magnetic-properties of CE2FE14C. J. Less-Common Met. 153, L5–L8 (1989)

    Google Scholar 

  438. Denissen, C.J.M., Demooij, B.D., Buschow, K.H.J.: Spin reorientation in ND2FE14C. J. Less-Common Met. 142, 195–202 (1988)

    Article  Google Scholar 

  439. Hellwig, C., Girgis, K., Schefer, J., Buschow, K.H.J., Fischer, P.: Crystal and magnetic-structure of the permanent-magnet materiaL TB2FE14C. J. Less-Common Met. 169, 147–156 (1991)

    Article  Google Scholar 

  440. Deboer, F.R., Verhoef, R., Zhang, Z.D., Demooij, D.B., Buschow, K.H.J.: Magnetic-properties of ND2FE14C and some related pseudoternary compounds. J. Magn. Magn. Mater. 73, 263–266 (1988)

    Article  ADS  Google Scholar 

  441. Deboer, F.R., Huang, Y.K., Zhang, Z.D., Demooij, D.B., Buschow, K.H.J.: Magnetic and crystallographic properties of ternary rare-earth compounds of the type R2FE14C. J. Magn. Magn. Mater. 72, 167–173 (1988)

    Article  ADS  Google Scholar 

  442. Obbade, S., Isnard, O., Miraglia, S., Fruchart, D., L’heritier, P., Lazaro, F., et al.: Hydrogenation, crystal structure and magnetic ordering of R 2 Fe 14 C (R≡ Sm, Er, Tm). J. Less-Common Met. 168, 321–328 (1991)

    Article  Google Scholar 

  443. Hellwig, C., Girgis, K., Fischer, P., Buschow, K.H.J., Schefer, J.: Crystal and magnetic-structure of the permanent magnetic material TM2FE14C. J. Alloys Compd. 184, 175–185 (1992)

    Article  Google Scholar 

  444. Hellwig, C., Girgis, K., Schefer, J., Buschow, K.H.J., Fischer, P.: Crystal and magnetic-structure of the permanent-magnet material LU2FE14C. J. Less-Common Met. 163, 361–368 (1990)

    Article  Google Scholar 

  445. Fuerst, C.D., Herbst, J.F.: Formation of R2FE14C compounds (R = Y, CE) by rapid solidification. J. Appl. Phys. 69, 7727–7730 (1991)

    Article  ADS  Google Scholar 

  446. Coey, J.M.D., Li, H.S., Gavigan, J.P., Cadogan, J.M., Hu, B.P.: In: Mitchell, I.V., Coey, J.M.D., Harris, I.R., Hanitsch, R. (eds.) Concerted European Action on Magnets, p. 76. Elsevier Applied Science Publishing, London (1989)

    Chapter  Google Scholar 

  447. Wolfers, P., Bacmann, M., Fruchart, D.: Single crystal neutron diffraction investigations of the crystal and magnetic structures of R2Fe14B (R=Y, Nd, Ho, Er). J. Alloys Compd. 317–318, 39–43 (2001)

    Article  Google Scholar 

  448. Kido, G., Kato, H., Yamada, M., Nakagawa, Y., Hirosawa, S., Sagawa, M.: Magnetization anomaly of Sm 2 Fe 14 B single crystal in high magnetic fields. J. Phys. Soc. Jpn. 56, 4635–4636 (1987)

    Article  ADS  Google Scholar 

  449. Buschow, K.: New developments in hard magnetic materials. Rep. Prog. Phys. 54, 1123 (1991)

    Article  ADS  Google Scholar 

  450. Bogé, M., Coey, J., Czjzek, G., Givord, D., Jeandey, C., Li, H., et al.: 3d-4f magnetic interactions and crystalline electric field in the R 2 Fe 14 B compounds: magnetization measurements and Mössbauer study of Gd 2 Fe 14 B. Solid State Commun. 55, 295–298 (1985)

    Article  ADS  Google Scholar 

  451. Loewenhaupt, M., Sosnowska, I.: Exchange and crystal fields in R2Fe14B studied by inelastic neutron scattering. J. Appl. Phys. 70, 5967–5971 (1991)

    Article  ADS  Google Scholar 

  452. Ito, M., Yano, M., Dempsey, N.M., Givord, D.: Calculations of the magnetic properties of R 2 M 14 B intermetallic compounds (R= rare earth, M= Fe, Co). J. Magn. Magn. Mater. 400, 379–383 (2016)

    Article  ADS  Google Scholar 

  453. Allemand, J., Letant, A., Moreau, J., Nozieres, J., De La Bathie, R.P.: A new phase in Nd 2 Fe 14 B magnets. Crystal structure and magnetic properties of Nd 6 Fe 13 Si. J. Less-Comm. Met. 166, 73–79 (1990)

    Article  Google Scholar 

  454. Weitzer, F., Leithe-Jasper, A., Rogl, P., Hiebl, K., Rainbacher, A.: G. experience frustration with regard to the coupling with the Wiesinger, J. Friedl, FE Wagner. J. Appl. Phys. 75, 7745 (1995)

    Article  ADS  Google Scholar 

  455. Schrey, P., Velicescu, M.: Influence of Sn additions on the magnetic and microstructural properties of Nd-Dy-Fe-B magnets. J. Magn. Magn. Mater. 101, 417–418 (1991)

    Article  ADS  Google Scholar 

  456. Kramer, M., O’connor, A., Dennis, K., McCallum, R., Lewis, L., Tung, L., et al.: Origins of coercivity in the amorphous alloy Nd-Fe-Al. IEEE Trans. Magn. 37, 2497–2499 (2001)

    Article  ADS  Google Scholar 

  457. Weitzer, F., Leithe-Jasper, A., Rogl, P., Hiebl, K., Noël, H., Wiesinger, G., et al.: Magnetism of (Fe, Co)-based alloys with the La 6 Co 11 Ga 3-type. J. Solid State Chem. 104, 368–376 (1993)

    Article  ADS  Google Scholar 

  458. Schobinger-Papamantellos, P., Buschow, K., Ritter, C.: Magnetic ordering of the Nd 6 Fe 13− x Ga 1+ x (x= 0, 1) and Pr 6 Fe 13− x Ga 1+ x (x= 0, 1) compounds: a neutron diffraction study. J. Alloys Compd. 359, 10–21 (2003)

    Article  Google Scholar 

  459. Nagata, Y., Kamonji, M., Kurihara, M., Yashiro, S., Samata, H., Abe, S.: Magnetism and transport properties of Nd 6 Fe 13− x Al 1+ x crystals. J. Alloys Compd. 296, 209–218 (2000)

    Article  Google Scholar 

  460. Kennedy, S., Wu, E., Wang, F., Zhang, P., Yan, Q.: Neutron diffraction study of the magnetic structure of Pr 6 Fe 11 Al 3. Phys. B. 276, 622–623 (2000)

    Article  ADS  Google Scholar 

  461. De Groot, C., Buschow, K., De Boer, F.: Magnetic properties of R 6 Fe 13− x M 1+ x compounds and their hydrides. Phys. Rev. B. 57, 11472 (1998)

    Article  ADS  Google Scholar 

  462. Schobinger-Papamantellos, P., Buschow, K., De Groot, C., De Boer, F., Ritter, C., Fauth, F., et al.: On the magnetic ordering of R 6 Fe 13 X compounds. J. Alloys Compd. 280, 44–55 (1998)

    Article  Google Scholar 

  463. Isnard, O., Long, G.J., Hautot, D., Buschow, K., Grandjean, F.: A neutron diffraction and Mössbauer spectral study of the magnetic spin reorientation in Nd6Fe13Si. J. Phys.: Condens. Matter. 14, 12391 (2002)

    ADS  Google Scholar 

  464. Schobinger-Papamantellos, P., Buschow, K., De Groot, C., De Boer, F., Ritter, C.: Magnetic ordering of the R 6 Fe 13 Sn (R= Nd, Pr) compounds studied by neutron diffraction. J. Magn. Magn. Mater. 218, 31–41 (2000)

    Article  ADS  Google Scholar 

  465. De Groot, C., De Boer, F., Buschow, K., Hautot, D., Long, G.J., Grandjean, F.: Magnetic and Mössbauer spectral properties of the compound Nd 6 Fe 13 Au. J. Alloys Compd. 233, 161–164 (1996)

    Article  Google Scholar 

  466. Hu, B.-p., Coey, J., Klesnar, H., Rogl, P.: Crystal structure, magnetism and 57Fe Mössbauer spectra of ternary RE6Fe11Al3 and RE6Fe13Ge compounds. J. Magn. Magn. Mater. 117, 225–231 (1992)

    Article  ADS  Google Scholar 

  467. Ruzitschka, R., Reissner, M., Steiner, W., Rogl, P.: Investigation of magnetic order in RE 6 Fe 13 X (RE= Nd, Pr; X= Pd, Sn, Si). J. Magn. Magn. Mater. 242, 806–808 (2002)

    Article  ADS  Google Scholar 

  468. Iranmanesh, P., Tajabor, N., Pourarian, F.: Magnetostriction effect of Co substitution in the Nd 6 Fe 13 Si intermetallic compound. Intermetallics. 42, 180–183 (2013)

    Article  Google Scholar 

  469. Iranmanesh, P., Tajabor, N., Roknabadi, M.R., Pourarian, F., Brück, E.: Influence of Co substitution on magnetic properties and thermal expansion of Nd 6 Fe 13 Si intermetallic compound. Intermetallics. 19, 682–687 (2011)

    Article  Google Scholar 

  470. Schobinger-Papamantellos, P., Buschow, K., De Groot, C., De Boer, F., Böttger, G., Ritter, C.: Magnetic ordering of Pr6Fe13Si and Nd6Fe13Au studied by neutron diffraction. J. Phys.: Condens. Matter. 11, 4469 (1999)

    ADS  Google Scholar 

  471. Leithe-Jasper, A., Skomski, R., Qi, Q., Coey, J., Weitzer, F., Rogl, P.: Hydrogen in intermetallic compounds (RE= Pr, Nd; X= Ag, Au, Si, Ge, Sn, Pb). J. Phys.: Condens. Matter. 8, 3453 (1996)

    ADS  Google Scholar 

  472. Bodak, O., Stepien-Damm, J., Galdecka, E.: Phase equilibria in the ternary systems Pr–Fe–Bi and Sm–Fe–Bi. J. Alloys Compd. 298, 195–197 (2000)

    Article  Google Scholar 

  473. Hautot, D., Long, G.J., Grandjean, F., Buschow, K.: A comparative Mössbauer spectral study of the electronic and magnetic properties of Nd 6 Fe 13 Ag and Nd 6 Fe 13 AgH 13. J. Alloys Compd. 388, 159–167 (2005)

    Article  Google Scholar 

  474. Wang, F., Zhang, P., Shen, B.-g., Yan, Q., Gong, H.: Transport properties of R6Fe11Al3 compounds (R= La, Nd). J. Appl. Phys. 87, 6043–6045 (2000)

    Article  ADS  Google Scholar 

  475. Jonen, S., Rechenberg, H.: Magnetoresistance effects at the metamagnetic transition in R6Fe14− xAlx (R= Nd, La). J. Appl. Phys. 85, 4448–4450 (1999)

    Article  ADS  Google Scholar 

  476. Coey, J., Qi, Q., Knoch, K., Leithe-Jasper, A., Rogl, P.: Hydrogen induced metamagnetism in R 6 Fe 13 X compounds. J. Magn. Magn. Mater. 129, 87–97 (1994)

    Article  ADS  Google Scholar 

  477. Yartys, V., Denys, R., Bulyk, I., Delaplane, R., Hauback, B.: Powder neutron diffraction study of Nd 6 Fe 13 GaD 12.3 with a filled Nd 6 Fe 13 Si-type structure. J. Alloys Compd. 312, 158–164 (2000)

    Article  Google Scholar 

  478. Yartys, V.A., de Boer, F.R., Buschow, K.H.J., Ouladdiaf, B., Brinks, H.W., Hauback, B.C.: Crystallographic and magnetic structure of Pr6Fe13AuD13. J. Alloys Compd. 356, 142–146 (2003)

    Article  Google Scholar 

  479. Schobinger-Papamantellos, P., Ritter, C., Buschow, K.: On the magnetic ordering of Nd 6 Fe 13− x Al 1+ x (x= 1–3) and La 6 Fe 11 Al 3 compounds. J. Magn. Magn. Mater. 260, 156–172 (2003)

    Article  ADS  Google Scholar 

  480. Leithe-Jasper, A., Rogl, P., Wiesinger, G., Rainbacher, A., Hatzl, R., Forsthuber, M.: A Sn 119 Mössbauer study of RE 6 M 13 Sn (RE= La, Pr, Nd; M= Fe, Co) and their hydrides. J. Magn. Magn. Mater. 170, 189–200 (1997)

    Article  ADS  Google Scholar 

  481. Nesbitt, E., Wernick, J., Corenzwit, E.: Magnetic moments of alloys and compounds of iron and cobalt with rare earth metal additions. J. Appl. Phys. 30, 365–367 (1959)

    Article  ADS  Google Scholar 

  482. Hubbard, W.M., Adams, E., Gilfrich, J.: Magnetic moments of alloys of gadolinium with some of the transition elements. J. Appl. Phys. 31, S368–S369 (1960)

    Article  ADS  Google Scholar 

  483. Hoffer, G., Strnat, K.: Magnetocrystalline anisotropy of YCo 5 and Y 2 Co 17. IEEE Trans. Magn. 2, 487–489 (1966)

    Article  ADS  Google Scholar 

  484. Strnat, K.J., Hoffer, G.: Air Force Materials Lab. Technical Report AFML-TR-65-446, Dayton (1965)

    Google Scholar 

  485. Strnat, K., Hoffer, G., Olson, J., Ostertag, W., Becker, J.: A family of new cobalt-base permanent magnet materials. J. Appl. Phys. 38, 1001–1002 (1967)

    Article  ADS  Google Scholar 

  486. Das, D.K.: Twenty million energy product samarium-cobalt magnet. IEEE Trans. Magn. 5, 214–216 (1969)

    Article  ADS  Google Scholar 

  487. Benz, M., Martin, D.: Cobalt-samarium permanent magnets prepared by liquid phase sintering. Appl. Phys. Lett. 17, 176–177 (1970)

    Article  ADS  Google Scholar 

  488. Ray, A., Strnat, K.: Research and development of rare earth-transition metal alloys as permanent-magnet materials. Semiannual interim technical report, 1 January–30 June 1972. Dayton University, Ohio. Research Institute (1971–1973)

    Google Scholar 

  489. Ray, A.E., Strnat, K.J.: In: Savitsky, E.I. (ed.) 7th Rare Earth Metals Conference, p. 75. A.A. Baikov Institute of Meals, Moscow (1972)

    Google Scholar 

  490. Mildrum, H., Hartings, M., Strnat, K., Tront, J.: Magnetic properties of the intermetallic phases Sm $ sub 2$(Co, Fe) $ sub 17$. In: AIP Conference Proceedings No. 10, pp. 618–622 (1973)

    Chapter  Google Scholar 

  491. Senno, H., Tawara, Y.: Permanent-magnet properties of Sm-Ce-Co-Fe-Cu alloys with compositions between 1-5 and 2-17. IEEE Trans. Magn. 10, 313–317 (1974)

    Article  ADS  Google Scholar 

  492. Ojima, T., Tomizawa, S., Yoneyama, T., Hori, T.: Magnetic properties of a new type of rare-earth cobalt magnets Sm 2 (Co, Cu, Fe, M) 17. IEEE Trans. Magn. 13, 1317–1319 (1977)

    Article  ADS  Google Scholar 

  493. Mishra, R.K., Thomas, G., Yoneyama, T., Fukuno, A., Ojima, T.: Microstructure and properties of step aged rare earth alloy magnets. J. Appl. Phys. 52, 2517–2519 (1981)

    Article  ADS  Google Scholar 

  494. Massalski, T.B.: In: Massalski, T.B. (ed.) Binary Alloy Phase Diagrams, vol. 2, 2nd edn, p. 1241. ASM International, Materials Park (1990)

    Google Scholar 

  495. Khan, Y.: Proceedings of the 11th Rare Earth Research Conference, vol. II, pp. 652–661 (1974)

    Google Scholar 

  496. Buschow, K., Van der Goot, A.: Intermetallic compounds in the system samarium-cobalt. J. Less Common Met. 14, 323–328 (1968)

    Article  Google Scholar 

  497. Strnat, J.: Rare earth – cobalt permanent magnets. In: Ferromagnetic Materials – A Handbook on the Properties of Magnetically Ordered Substances, p. 154, 186, 195. North-Holland Physics Publishing (1988)

    Google Scholar 

  498. Campbell, P.: Permanent Magnet Materials and Their Application, p. 51. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  499. Liu, S.: 18th International Workshop on High Performance Magnets, p. 691 (2004)

    Google Scholar 

  500. Wang, Y., Li, Y., Rong, C., Liu, J.P.: Sm–Co hard magnetic nanoparticles prepared by surfactant-assisted ball milling. Nanotechnology. 18, 465701 (2007)

    Article  ADS  Google Scholar 

  501. Cui, B., Li, W., Hadjipanayis, G.: Formation of SmCo 5 single-crystal submicron flakes and textured polycrystalline nanoflakes. Acta Mater. 59, 563–571 (2011)

    Article  ADS  Google Scholar 

  502. Poudyal, N., Liu, J.P.: Advances in nanostructured permanent magnets research. J. Phys. D: Appl. Phys. 46, 043001 (2012)

    Article  ADS  Google Scholar 

  503. Hu, D., Yue, M., Zuo, J., Pan, R., Zhang, D., Liu, W., et al.: Structure and magnetic properties of bulk anisotropic SmCo 5/α-Fe nanocomposite permanent magnets prepared via a bottom up approach. J. Alloys Compd. 538, 173–176 (2012)

    Article  Google Scholar 

  504. Yue, M., Zuo, J., Liu, W., Lv, W., Zhang, D., Zhang, J., et al.: Magnetic anisotropy in bulk nanocrystalline SmCo5 permanent magnet prepared by hot deformation. J. Appl. Phys. 109, 07A711 (2011)

    Article  Google Scholar 

  505. Shen, Y., Leontsev, S.O., Turgut, Z., Lucas, M.S., Sheets, A.O., Horwath, J.C.: Effect of soft phase on magnetic properties of bulk Sm – Co/<formula formulatype="inline"> <img src="/images/tex/451.gif" alt="\alpha "> </formula> – Fe nanocomposite magnets. IEEE Trans. Magn. 49, 3244–3247 (2013)

    Article  ADS  Google Scholar 

  506. Croat, J.J., Herbst, J.F., Lee, R.W., Pinkerton, F.E.: High-energy product Nd-Fe-B permanent magnets. Appl. Phys. Lett. 44, 148–149 (1984)

    Article  ADS  Google Scholar 

  507. Croat, J.J., Herbst, J.F., Lee, R.W., Pinkerton, F.E.: Pr-Fe and Nd-Fe-based materials: A new class of high-performance permanent magnets (invited). J. Appl. Phys. 55, 2078–2082 (1984)

    Google Scholar 

  508. Sagawa, M., Fujimura, S., Togawa, N., Yamamoto, H., Matsuura, Y.: New material for permanent magnets on a base of Nd and Fe. J. Appl. Phys. 55, 2083–2087 (1984)

    Article  ADS  Google Scholar 

  509. Herbst, J.F., Croat, J.J., Pinkerton, F.E., Yelon, W.: Relationships between crystal structure and magnetic properties in Nd 2 Fe 14 B. Phys. Rev. B. 29, 4176 (1984)

    Article  ADS  Google Scholar 

  510. Nd-Fe-B Phase Diagram, ASM Alloy Phase Diagrams Database, P. Villars, editor-in-chief; H. Okamoto and K. Cenzual, section editors; http://www.asminternational.org, ASM International, Materials Park

  511. Herbst, J.F.: ${\mathrm{R}}_{2}$${\mathrm{Fe}}_{14}$B materials: intrinsic properties and technological aspects. Rev. Mod. Phys. 63, 819–898 (1991)

    Article  ADS  Google Scholar 

  512. Gutfleisch, O.: Controlling the properties of high energy density permanent magnetic materials by different processing routes. J. Phys. D: Appl. Phys. 33, R157 (2000)

    Article  ADS  Google Scholar 

  513. Buschow, K.: Ferromagnetic Materials, vol. 3, 4, p. 1. North-Holland, Amsterdam (1988)

    Google Scholar 

  514. Sagawa, M., Hirosawa, S., Yamamoto, H., Fujimura, S., Matsuura, Y.: Nd–Fe–B permanent magnet materials. Jpn. J. Appl. Phys. 26, 785 (1987)

    Article  ADS  Google Scholar 

  515. Mishra, R.K.: Microstructure of melt-spun Nd-Fe-B magnequench magnets. J. Magn. Magn. Mater. 54, 450–456 (1986)

    Article  ADS  Google Scholar 

  516. Coey, J., Skomski, R.: New magnets from interstitial intermetallics. Phys. Scr. 1993, 315 (1993)

    Article  Google Scholar 

  517. GschneidnerJr, K.A., Pecharsky, V., Tsokol, A.: Recent developments in magnetocaloric materials. Rep. Prog. Phys. 68, 1479 (2005)

    Article  ADS  Google Scholar 

  518. Moya, X., Kar-Narayan, S., Mathur, N.: Caloric materials near ferroic phase transitions. Nat. Mater. 13, 439–450 (2014)

    Article  ADS  Google Scholar 

  519. Moya, X., Defay, E., Heine, V., Mathur, N.D.: Too cool to work. Nat. Phys. 11, 202–205 (2015)

    Article  Google Scholar 

  520. Nikitin, S., Myalikgulyev, G., Annaorazov, M., Tyurin, A., Myndyev, R., Akopyan, S.: Giant elastocaloric effect in FeRh alloy. Phys. Lett. A. 171, 234–236 (1992)

    Article  ADS  Google Scholar 

  521. Stern-Taulats, E., Planes, A., Lloveras, P., Barrio, M., Tamarit, J.-L., Pramanick, S., et al.: Barocaloric and magnetocaloric effects in Fe 49 Rh 51. Phys. Rev. B. 89, 214105 (2014)

    Article  ADS  Google Scholar 

  522. Stern-Taulats, E., Gràcia-Condal, A., Planes, A., Lloveras, P., Barrio, M., Tamarit, J.-L., et al.: Reversible adiabatic temperature changes at the magnetocaloric and barocaloric effects in Fe49Rh51. Appl. Phys. Lett. 107, 152409 (2015)

    Article  ADS  Google Scholar 

  523. Pecharsky, V.K., Gschneidner Jr., K.A.: Giant magnetocaloric effect in Gd 5 (Si 2 Ge 2). Phys. Rev. Lett. 78, 4494 (1997)

    Article  ADS  Google Scholar 

  524. Pecharsky, V., Gschneidner, K.: Phase relationships and crystallography in the pseudobinary system Gd 5 Si 4-Gd 5 Ge 4. J. Alloys Compd. 260, 98–106 (1997)

    Article  Google Scholar 

  525. Morellon, L., Blasco, J., Algarabel, P., Ibarra, M.: Nature of the first-order antiferromagnetic-ferromagnetic transition in the Ge-rich magnetocaloric compounds Gd 5 (Si x Ge 1− x) 4. Phys. Rev. B. 62, 1022 (2000)

    Article  ADS  Google Scholar 

  526. Pecharsky, V.K., Gschneidner Jr., K.A.: Tunable magnetic regenerator alloys with a giant magnetocaloric effect for magnetic refrigeration from {bold {approximately}} 20 to {bold {approximately}} 290K. Appl. Phys. Lett. 70, 3299 (1997)

    Article  ADS  Google Scholar 

  527. Yuce, S., Barrio, M., Emre, B., Stern-Taulats, E., Planes, A., Tamarit, J.-L., et al.: Barocaloric effect in the magnetocaloric prototype Gd5Si2Ge2. Appl. Phys. Lett. 101, 1906 (2012)

    Article  Google Scholar 

  528. Hu, F.-X., Shen, B.-G., Sun, J.-R., Cheng, Z.-H., Rao, G.-H., Zhang, X.-X.: Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11. 4Si1. 6. Appl. Phys. Lett. 78, 3675–3677 (2001)

    Article  ADS  Google Scholar 

  529. Shen, B., Sun, J., Hu, F., Zhang, H., Cheng, Z.: Recent progress in exploring magnetocaloric materials. Adv. Mater. 21, 4545–4564 (2009)

    Article  Google Scholar 

  530. Hu, F.X.: Magnetic properties and magnetic entropy change of Fe-based La(Fe,M)13 compounds and Ni-Mn-Ga alloys, Ph.D. thesis, (2002)

    Google Scholar 

  531. Hu, F., Shen, B., Sun, J., Wang, G., Cheng, Z.: Very large magnetic entropy change near room temperature. Appl. Phys. Lett. 80, 826–828 (2002)

    Article  ADS  Google Scholar 

  532. Wang, F., Chen, Y., Wang, G., Shen, B.: Magnetic entropy in La (Fe, Si) 13 compounds. J. Phys. D: Appl. Phys. 36, 1–5 (2003)

    Article  ADS  Google Scholar 

  533. Chen, Y.-f., Wang, F., Shen, B.-g., Hu, F.-x., Sun, J.-r., Wang, G.-j., et al.: Magnetic properties and magnetic entropy change of LaFe11. 5Si1. 5Hy interstitial compounds. J. Phys.: Condens. Matter. 15, L161 (2003)

    Google Scholar 

  534. Fujita, A., Fujieda, S., Hasegawa, Y., Fukamichi, K.: Itinerant-electron metamagnetic transition and large magnetocaloric effects in La (Fe x Si 1− x) 13 compounds and their hydrides. Phys. Rev. B. 67, 104416–104427 (2003)

    Article  ADS  Google Scholar 

  535. Chen, Y.-F., Wang, F., Shen, B.-G., Wang, G.-J., Sun, J.-R.: Magnetism and magnetic entropy change of LaFe11. 6Si1. 4Cx (x= 0-0.6) interstitial compounds. J. Appl. Phys. 93, 1323–1325 (2003)

    Article  ADS  Google Scholar 

  536. Shen, J., Gao, B., Zhang, H., Hu, F., Li, Y., Sun, J., et al.: Reduction of hysteresis loss and large magnetic entropy change in the NaZn13-type LaPrFeSiC interstitial compounds. Appl. Phys. Lett. 91, 142504–142504 (2007)

    Article  ADS  Google Scholar 

  537. Manosa, L., González-Alonso, D., Planes, A., Barrio, M., Tamarit, J.-L., Titov, I.S., et al.: Inverse barocaloric effect in the giant magnetocaloric La–Fe–Si–Co compound. Nat. Commun. 2, 595 (2011)

    Article  ADS  Google Scholar 

  538. Liu, D., Huang, Q., Yue, M., Lynn, J., Liu, L., Chen, Y., et al.: Temperature, magnetic field, and pressure dependence of the crystal and magnetic structures of the magnetocaloric compound Mn 1.1 Fe 0.9 (P 0.8 Ge 0.2). Phys. Rev. B. 80, 174415 (2009)

    Article  ADS  Google Scholar 

  539. Tegus, O., Brück, E., Buschow, K., De Boer, F.: Transition-metal-based magnetic refrigerants for room-temperature applications. Nature. 415, 150–152 (2002)

    Article  ADS  Google Scholar 

  540. Brück, E., Kamarad, J., Sechovsky, V., Arnold, Z., Tegus, O., de Boer, F.: Pressure effects on the magnetocaloric properties of MnFeP 1− xAsx. J. Magn. Magn. Mater. 310, e1008–e1009 (2007)

    Article  ADS  Google Scholar 

  541. Thanh, D.C., Brück, E., Tegus, O., Klaasse, J., Gortenmulder, T., Buschow, K.: Magnetocaloric effect in MnFe (P, Si, Ge) compounds. J. Appl. Phys. 99, 08Q107 (2006)

    Article  Google Scholar 

  542. Hu, F.-X., Shen, B.-g., Sun, J.-R.: Magnetic entropy change in Ni51. 5Mn22. 7Ga25. 8 alloy. Appl. Phys. Lett. 76, 3460 (2000)

    Article  ADS  Google Scholar 

  543. Krenke, T., Duman, E., Acet, M., Wassermann, E.F., Moya, X., Mañosa, L., et al.: Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys. Nat. Mater. 4, 450–454 (2005)

    Article  ADS  Google Scholar 

  544. Liu, J., Gottschall, T., Skokov, K.P., Moore, J.D., Gutfleisch, O.: Giant magnetocaloric effect driven by structural transitions. Nat. Mater. 11, 620–626 (2012)

    Article  ADS  Google Scholar 

  545. Mañosa, L., González-Alonso, D., Planes, A., Bonnot, E., Barrio, M., Tamarit, J.-L., et al.: Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy. Nat. Mater. 9, 478–481 (2010)

    Article  ADS  Google Scholar 

  546. Lu, B., Xiao, F., Yan, A., Liu, J.: Elastocaloric effect in a textured polycrystalline Ni-Mn-In-Co metamagnetic shape memory alloy. Appl. Phys. Lett. 105, 161905 (2014)

    Article  ADS  Google Scholar 

  547. Zhao, Y.-Y., Hu, F.-X., Bao, L.-F., Wang, J., Wu, H., Huang, Q.-Z., et al.: Giant negative thermal expansion in bonded MnCoGe-based compounds with Ni2In-type hexagonal structure. J. Am. Chem. Soc. 137, 1746–1749 (2015)

    Article  Google Scholar 

  548. Wang, J.-T., Wang, D.-S., Chen, C., Nashima, O., Kanomata, T., Mizuseki, H., et al.: Vacancy induced structural and magnetic transition in MnCo1-xGe. Appl. Phys. Lett. 89, 2504 (2006)

    Article  Google Scholar 

  549. Trung, N., Biharie, V., Zhang, L., Caron, L., Buschow, K., Brück, E.: From single-to double-first-order magnetic phase transition in magnetocaloric Mn1− xCrxCoGe compounds. Appl. Phys. Lett. 96, 162507 (2010)

    Article  ADS  Google Scholar 

  550. Gercsi, Z., Hono, K., Sandeman, K.G.: Designed metamagnetism in CoMnGe 1− x P x. Phys. Rev. B. 83, 174403 (2011)

    Article  ADS  Google Scholar 

  551. Wu, R.-R., Bao, L.-F., Hu, F.-X., Wu, H., Huang, Q.-Z., Wang, J., et al.: Sci. Rep. 5, 18027 (2015)

    Article  ADS  Google Scholar 

  552. Kuhrt, C., Schittny, T., Barner, K.: Magnetic b-t phase-diagram of anion substituted mnas – magnetocaloric experiments. Phys. Status Solidi A. 91, 105–113 (1985)

    Article  ADS  Google Scholar 

  553. Wada, H., Tanabe, Y.: Giant magnetocaloric effect of MnAs1-xSbx. Appl. Phys. Lett. 79, 3302–3304 (2001)

    Article  ADS  Google Scholar 

  554. Wada, H., Matsuo, S., Mitsuda, A.: Pressure dependence of magnetic entropy change and magnetic transition in MnAs1-xSbx. Phys. Rev. B. 79 (2009)

    Google Scholar 

  555. Mosca, D.H., Vidal, F., Etgens, V.H.: Strain engineering of the magnetocaloric effect in MnAs epilayers. Phys. Rev. Lett. 101 (2008)

    Google Scholar 

  556. Stewart, G.: Heavy-fermion systems. Rev. Mod. Phys. 56, 755 (1984)

    Article  ADS  Google Scholar 

  557. Flouquet, J.: On the heavy fermion road. Prog. Low Temp. Phys. 15, 139 (2005)

    Article  Google Scholar 

  558. Coleman, P., Maple, B., Millis, A.: Special issue containing papers presented at the Institute for Theoretical Physics Conference on Non-Fermi Liquid Behaviour in Metals – Santa Barbara, USA, 17–21 June 1996 – Preface. J. Phys. Conden. Matter. 8, U3–U6 (1996)

    Google Scholar 

  559. Stewart, G.: Non-Fermi-liquid behavior in d-and f-electron metals. Rev. Mod. Phys. 73, 797 (2001)

    Article  ADS  Google Scholar 

  560. Grewe, N., Steglich, F.: In: Gschneidner, K.A., Eyring, L. (eds.) Handbook on thePhysics and Chemistry of Rare Earths, vol. 14, pp. 343–474. Elsevier Science Publishers, Amsterdam (1991)

    Google Scholar 

  561. Ott, H.R., Fisk, Z.: In: Freeman, A.J., Lander, G.H. (eds.) Handbook on thePhysics and Chemistry ofActinides, vol. 5, pp. 85–225. Elsevier Science Publishers, Amsterdam (1987)

    Google Scholar 

  562. Doniach, S.: The Kondo lattice and weak antiferromagnetism. Phys. B+ C. 91, 231–234 (1977)

    Article  ADS  Google Scholar 

  563. von Loehneysen, H., Rosch, A., Vojta, M., Woelfle, P.: Fermi-liquid instabilities at magnetic quantum phase transitions. Rev. Mod. Phys. 79, 1015–1075 (2007)

    Article  ADS  Google Scholar 

  564. Coleman, P., Pepin, C., Si, Q.M., Ramazashvili, R.: How do Fermi liquids get heavy and die? J Phys. Conden. Matter. 13, R723–R738 (2001)

    Article  ADS  Google Scholar 

  565. Si, Q.: Quantum criticality and global phase diagram of magnetic heavy fermions. Phys. Status Solidi B. 247, 476–484 (2010)

    Article  ADS  Google Scholar 

  566. Sigrist, M., Ueda, K.: Phenomenological theory of unconventional superconductivity. Rev. Mod. Phys. 63, 239–311 (1991)

    Article  ADS  Google Scholar 

  567. Pfleiderer, C.: Superconducting phases of f-electron compounds. Rev. Mod. Phys. 81, 1551–1624 (2009)

    Article  ADS  Google Scholar 

  568. White, B.D., Thompson, J.D., Maple, M.B.: Unconventional superconductivity in heavy-fermion compounds. Phys. C. 514, 246–278 (2015)

    Article  ADS  Google Scholar 

  569. Andres, K., Graebner, J.E., Ott, H.R.: 4F-virtual-bound-state formation in ceal-3 at low-temperatures. Phys. Rev. Lett. 35, 1779–1782 (1975)

    Article  ADS  Google Scholar 

  570. Mattens, W.C.M., Elenbaas, R.A., Boer, F.R.D.: Mixed-valence behavior in intermetallic compound ybcual. Commun. Phys. 2, 147–150 (1977)

    Google Scholar 

  571. Stewart, G.R., Fisk, Z., Wire, M.S.: New Ce heavy-fermion system – CeCu6. Phys. Rev. B. 30, 482–484 (1984)

    Article  ADS  Google Scholar 

  572. Fujita, T., Satoh, K., Onuki, Y., Komatsubara, T.: Specific-heat of the dense kondo compound CeCu6. J. Magn. Magn. Mater. 47–8, 66–68 (1985)

    Article  ADS  Google Scholar 

  573. Besnus, M.J., Kappler, J.P., Lehmann, P., Meyer, A.: Low-temperature heat-capacity, magnetization, resistivity of CeRu2SI2, with Y or La substitution. Solid State Commun. 55, 779–782 (1985)

    Article  ADS  Google Scholar 

  574. Haen, P., Flouquet, J., Lapierre, F., Lejay, P., Remenyi, G.: Metamagnetic-like transition in CeRu2SI2. J. Low Temp. Phys. 67, 391–419 (1987)

    Article  ADS  Google Scholar 

  575. Lee, W., Shelton, R.: CePtSi: a new heavy-fermion compound. Phys. Rev. B. 35, 5369 (1987)

    Article  ADS  Google Scholar 

  576. Havela, L., Sechovský, V., Svoboda, P., Diviš, M., Nakotte, H., Prokeš, K., et al.: Heavy fermion behavior of U2T2X compounds. J. Appl. Phys. 76, 6214–6216 (1994)

    Article  ADS  Google Scholar 

  577. Yatskar, A., Beyermann, W., Movshovich, R., Canfield, P.: Possible correlated-electron behavior from quadrupolar fluctuations in PrInA g 2. Phys. Rev. Lett. 77, 3637 (1996)

    Article  ADS  Google Scholar 

  578. Torikachvili, M., Jia, S., Mun, E., Hannahs, S., Black, R., Neils, W., et al.: Six closely related YbT2Zn20 (T= Fe, Co, Ru, Rh, Os, Ir) heavy fermion compounds with large local moment degeneracy. Proc. Natl. Acad. Sci. U.S.A. 104, 9960–9963 (2007)

    Article  ADS  Google Scholar 

  579. Ott, H., Rudigier, H., Delsing, P., Fisk, Z.: Magnetic ground state of a heavy-electron system: U 2 Zn 17. Phys. Rev. Lett. 52, 1551 (1984)

    Article  ADS  Google Scholar 

  580. Fisk, Z., Stewart, G., Willis, J., Ott, H., Hulliger, F.: Low-temperature properties of the heavy-fermion system U Cd 11. Phys. Rev. B. 30, 6360 (1984)

    Article  ADS  Google Scholar 

  581. Stewart, G., Fisk, Z., Smith, J., Willis, J., Wire, M.: New heavy-fermion system, NpBe 13, with a comparison to UBe 13 and PuBe 13. Phys. Rev. B. 30, 1249 (1984)

    Article  ADS  Google Scholar 

  582. Ott, H., Rudigier, H., Felder, E., Fisk, Z., Batlogg, B.: Low-temperature state of U Cu 5: formation of heavy electrons in a magnetically ordered material. Phys. Rev. Lett. 55, 1595 (1985)

    Article  ADS  Google Scholar 

  583. Lin, C., Teter, J., Crow, J., Mihalisin, T., Brooks, J., Abou-Aly, A., et al.: Observation of Magnetic-Field-Induced Superconductivity in a Heavy-Fermion Antiferromagnet: Ce Pb 3. Phys. Rev. Lett. 54, 2541 (1985)

    Article  ADS  Google Scholar 

  584. Fisk, Z., Canfield, P., Beyermann, W., Thompson, J., Hundley, M., Ott, H., et al.: Massive electron state in YbBiPt. Phys. Rev. Lett. 67, 3310 (1991)

    Article  ADS  Google Scholar 

  585. Kitazawa, H., Schank, C., Thies, S., Seidel, B., Geibel, C., Steglich, F.: A new antiferromagnetic heavy fermion compound: CePd 2 Al 3. J. Phys. Soc. Jpn. 61, 1461–1464 (1992)

    Article  ADS  Google Scholar 

  586. Morosan, E., Bud’ko, S.L., Canfield, P.C., Torikachvili, M.S., Lacerda, A.H.: Thermodynamic and transport properties of RAgGe (R = Tb-Lu) single crystals. J. Magn. Magn. Mater. 277, 298–321 (2004)

    Article  ADS  Google Scholar 

  587. Vonlohneysen, H., Pietrus, T., Portisch, G., Schlager, H.G., Schroder, A., Sieck, M., et al.: Non-fermi-liquid behavior in a heavy-fermion alloy at a magnetic instabilitY. Phys. Rev. Lett. 72, 3262–3265 (1994)

    Article  ADS  Google Scholar 

  588. Raymond, S., Regnault, L.P., Kambe, S., Mignot, J.M., Lejay, P., Flouquet, J.: Magnetic correlations in Ce0.925La0.075Ru2Si2. J. Low Temp. Phys. 109, 205–224 (1997)

    Article  ADS  Google Scholar 

  589. Trovarelli, O., Geibel, C., Mederle, S., Langhammer, C., Grosche, F.M., Gegenwart, P., et al.: YbRh2Si2: pronounced non-Fermi-liquid effects above a low-lying magnetic phase transition. Phys. Rev. Lett. 85, 626–629 (2000)

    Article  ADS  Google Scholar 

  590. Custers, J., Gegenwart, P., Wilhelm, H., Neumaier, K., Tokiwa, Y., Trovarelli, O., et al.: The break-up of heavy electrons at a quantum critical point. Nature. 424, 524–527 (2003)

    Article  ADS  Google Scholar 

  591. Paschen, S., Mueller, M., Custers, J., Kriegisch, M., Prokofiev, A., Hilscher, G., et al.: Quantum critical behaviour in Ce3Pd20Si6? J. Magn. Magn. Mater. 316, 90–92 (2007)

    Article  ADS  Google Scholar 

  592. Steglich, F., Aarts, J., Bredl, C.D., Lieke, W., Meschede, D., Franz, W., et al.: Superconductivity in the presence of strong pauli paramagnetism – CeCu2SI2. Phys. Rev. Lett. 43, 1892–1896 (1979)

    Article  ADS  Google Scholar 

  593. Stockert, O., Faulhaber, E., Zwicknagl, G., Stusser, N., Jeevan, H.S., Deppe, M., et al.: Nature of the A phase in CeCu2Si2. Phys. Rev. Lett. 92 (2004)

    Google Scholar 

  594. Ott, H.R., Rudigier, H., Fisk, Z., Smith, J.L.: UBe13 – an unconventional actinide superconductor. Phys. Rev. Lett. 50, 1595–1598 (1983)

    Article  ADS  Google Scholar 

  595. Ott, H.R., Rudigier, H., Felder, E., Fisk, Z., Smith, J.L.: Influence of impurities and magnetic-fields on the normal and superconducting states of UBe13. Phys. Rev. B. 33, 126–131 (1986)

    Article  ADS  Google Scholar 

  596. Stewart, G.R., Fisk, Z., Willis, J.O., Smith, J.L.: Possibility of coexistence of bulk superconductivity and spin fluctuations in UPt3. Phys. Rev. Lett. 52, 679–682 (1984)

    Article  ADS  Google Scholar 

  597. Aeppli, G., Bucher, E., Broholm, C., Kjems, J.K., Baumann, J., Hufnagl, J.: Magnetic order and fluctuations in superconducting UPt3. Phys. Rev. Lett. 60, 615–618 (1988)

    Article  ADS  Google Scholar 

  598. Fisher, R.A., Kim, S., Woodfield, B.F., Phillips, N.E., Taillefer, L., Hasselbach, K., et al.: Specific-heat of UPt3 – evidence for unconventional superconductivitY. Phys. Rev. Lett. 62, 1411–1414 (1989)

    Article  ADS  Google Scholar 

  599. Palstra, T., Menovsky, A., Van den Berg, J., Dirkmaat, A., Kes, P., Nieuwenhuys, G., et al.: Superconducting and magnetic transitions in the heavy-fermion system U Ru 2 Si 2. Phys. Rev. Lett. 55, 2727 (1985)

    Article  ADS  Google Scholar 

  600. Petrovic, C., Pagliuso, P.G., Hundley, M.F., Movshovich, R., Sarrao, J.L., Thompson, J.D., et al.: Heavy-fermion superconductivity in CeCoIn5 at 2.3 K. J. Phys.: Condens. Matter. 13, L337–L342 (2001)

    ADS  Google Scholar 

  601. Petrovic, C., Movshovich, R., Jaime, M., Pagliuso, P.G., Hundley, M.F., Sarrao, J.L., et al.: A new heavy-fermion superconductor CeIrIn5: A relative of the cuprates? Europhys. Lett. 53, 354–359 (2001)

    Article  ADS  Google Scholar 

  602. Bauer, E.D., Frederick, N.A., Ho, P.C., Zapf, V.S., Maple, M.B.: Superconductivity and heavy fermion behavior in PrOs4Sb12. Phys. Rev. B. 65 (2002)

    Google Scholar 

  603. Vollmer, R., Faisst, A., Pfleiderer, C., von Lohneysen, H., Bauer, E.D., Ho, P.C., et al.: Low-temperature specific heat of the heavy-fermion superconductor PrOs4Sb12. Phys. Rev. Lett. 90 (2003)

    Google Scholar 

  604. Chen, G.F., Ohara, S., Hedo, M., Uwatoko, Y., Saito, K., Sorai, M., et al.: Observation of superconductivity in heavy-fermion compounds of Ce2CoIn8. J. Phys. Soc. Jpn. 71, 2836–2838 (2002)

    Article  ADS  Google Scholar 

  605. Nakatsuji, S., Kuga, K., Machida, Y., Tayama, T., Sakakibara, T., Karaki, Y., et al.: Superconductivity and quantum criticality in the heavy-fermion system beta-YbAlB(4). Nat. Phys. 4, 603–607 (2008)

    Article  Google Scholar 

  606. Kaczorowski, D., Pikul, A.P., Gnida, D., Tran, V.H.: Emergence of a superconducting state from an antiferromagnetic phase in single crystals of the heavy fermion compound Ce2PdIn8. Phys. Rev. Lett. 103 (2009)

    Google Scholar 

  607. Geibel, C., Thies, S., Kaczorowski, D., Mehner, A., Grauel, A., Seidel, B., et al.: A new heavy-fermion superconduCTOR – UNI2AL3. Z. Phys. B: Condens. Matter. 83, 305–306 (1991)

    Article  ADS  Google Scholar 

  608. Geibel, C., Schank, C., Thies, S., Kitazawa, H., Bredl, C.D., Bohm, A., et al.: Heavy-fermion superconductivity at Tc=2K in the antiferromagnet UPd2AL3. Z. Phys. B: Condens. Matter. 84, 1–2 (1991)

    Article  ADS  Google Scholar 

  609. Bauer, E., Hilscher, G., Michor, H., Paul, C., Scheidt, E.W., Gribanov, A., et al.: Heavy fermion superconductivity and magnetic order in noncentrosymmetric CePt3Si. Phys. Rev. Lett. 92 (2004)

    Google Scholar 

  610. Prokleska, J., Kratochvilova, M., Uhlirova, K., Sechovsky, V., Custers, J.: Magnetism, superconductivity, and quantum criticality in the multisite cerium heavy-fermion compound Ce3PtIn11. Phys. Rev. B. 92 (2015)

    Google Scholar 

  611. Jaccard, D., Behnia, K., Sierro, J.: Pressure-induced heavy fermion superconductivity of CeCu2Ge2. Phys. Lett. A. 163, 475–480 (1992)

    Article  ADS  Google Scholar 

  612. Fisher, R.A., Emerson, J.P., Caspary, R., Phillips, N.E., Steglich, F.: The low-temperature specific-heat of CeCu2Ge2 at 0-kbar and 9.5-kbar. Phys. B. 194, 459–460 (1994)

    Article  ADS  Google Scholar 

  613. Grosche, F.M., Julian, S.R., Mathur, N.D., Lonzarich, G.G.: Magnetic and superconducting phases of CePd2Si2. Phys. B. 223–24, 50–52 (1996)

    Article  ADS  Google Scholar 

  614. Steeman, R.A., Frikkee, E., Helmholdt, R.B., Menovsky, A.A., Vandenberg, J., Nieuwenhuys, G.J., et al.: CePd2SI2 – a reduced-moment antiferromagnet. Solid State Commun. 66, 103–107 (1988)

    Article  ADS  Google Scholar 

  615. Movshovich, R., Graf, T., Mandrus, D., Thompson, J.D., Smith, J.L., Fisk, Z.: Superconductivity in heavy-fermion CeRh2Si2. Phys. Rev. B. 53, 8241–8244 (1996)

    Article  ADS  Google Scholar 

  616. Walker, I.R., Grosche, F.M., Freye, D.M., Lonzarich, G.G.: The normal and superconducting states of CeIn3 near the border of antiferromagnetic order. Phys. C. 282, 303–306 (1997)

    Article  ADS  Google Scholar 

  617. Hegger, H., Petrovic, C., Moshopoulou, E.G., Hundley, M.F., Sarrao, J.L., Fisk, Z., et al.: Pressure-induced superconductivity in quasi-2D CeRhIn5. Phys. Rev. Lett. 84, 4986–4989 (2000)

    Article  ADS  Google Scholar 

  618. Kimura, N., Ito, K., Saitoh, K., Umeda, Y., Aoki, H., Terashima, T.: Pressure-induced superconductivity in noncentrosymmetric heavy-fermion CeRhSi3. Phys. Rev. Lett. 95 (2005)

    Google Scholar 

  619. Sugitani, I., Okuda, Y., Shishido, H., Yamada, T., Thamhavel, A., Yamamoto, E., et al.: Pressure-induced heavy-fermion superconductivity in antiferromagnet CeIrSi3 without inversion symmetry. J. Phys. Soc. Jpn. 75 (2006)

    Google Scholar 

  620. Saxena, S.S., Agarwal, P., Ahilan, K., Grosche, F.M., Haselwimmer, R.K.W., Steiner, M.J., et al.: Superconductivity on the border of itinerant-electron ferromagnetism in UGe2. Nature. 406, 587–592 (2000)

    Article  ADS  Google Scholar 

  621. Aoki, D., Huxley, A., Ressouche, E., Braithwaite, D., Flouquet, J., Brison, J.P., et al.: Coexistence of superconductivity and ferromagnetism in URhGe. Nature. 413, 613–616 (2001)

    Article  ADS  Google Scholar 

  622. Kobayashi, T.C., Fukushima, S., Hidaka, H., Kotegawa, H., Akazawa, T., Yamamoto, E., et al.: Pressure-induced superconductivity in ferromagnet UIr without inversion symmetry. Phys. B. 378–80, 355–358 (2006)

    Article  ADS  Google Scholar 

  623. Huy, N.T., Gasparini, A., de Nijs, D.E., Huang, Y., Klaasse, J.C.P., Gortenmulder, T., et al.: Superconductivity on the border of weak itinerant ferromagnetism in UCoGe. Phys. Rev. Lett. 99 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ping Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 This is a U.S. Government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Liu, J.P. et al. (2021). Metallic Magnetic Materials. In: Coey, M., Parkin, S. (eds) Handbook of Magnetism and Magnetic Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-63101-7_16-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63101-7_16-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63101-7

  • Online ISBN: 978-3-030-63101-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics