Skip to main content

Magnetoelectrics and Multiferroics

  • Living reference work entry
  • First Online:
Handbook of Magnetism and Magnetic Materials
  • 238 Accesses

Abstract

Magnetoelectrics and multiferroics can possess mutually coupled magnetic and ferroelectric order and thus have been utilized in exploring and designing many novel multifunctional devices such as sensors, transducers, and memories. This chapter presents a brief introduction to the terminology and classification of magnetoelectrics and multiferroics as well as the mechanisms underlying different types of magnetoelectric couplings. Both single-phase and composite materials are discussed. Experimental data showing the basic magnetic and ferroelectric properties of different types of single-phase multiferroics are collected. For composite magnetoelectrics, a relatively comprehensive experimental dataset of both the direct and inverse magnetoelectric coefficients is compiled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Curie, P.: Sur la symétrie dans les phénomènes physiques, symétrie d’un champ électrique et d’un champ magnétique. J. Phys. Theor. Appl. 3(1), 393–415 (1894)

    Article  MATH  Google Scholar 

  2. Debye, P.: Bemerkung zu einigen neuen Versuchen über einen magneto-elektrischen Richteffekt. Z. Phys. 36(4), 300–301 (1926)

    Article  ADS  Google Scholar 

  3. O’Dell, T.H.: The Electrodynamics of Magneto-Electric Media. North-Holland Publishing Company, Amsterdam (1970)

    Google Scholar 

  4. Landau, L.D., Lifshitz, E.M.: Course of Theoretical Physics: Electrodynamics of Continuous Media. Pergamon Press, Oxford (1957).(English Transl. in 1960)

    Google Scholar 

  5. Röntgen, W.C.: Ueber die durch Bewegung eines im homogenen electrischen Felde befindlichen Dielectricums hervorgerufene electrodynamische Kraft. Ann. Phys. 271(10), 264–270 (1888)

    Article  Google Scholar 

  6. Wilson, H.A.: On the electric effect of rotating a dielectric in a magnetic field. Philos. Trans. R. Soc. Lond. A. 204, 121–137 (1905)

    Article  ADS  MATH  Google Scholar 

  7. Hou, S.L., Bloembergen, N.: Paramagnetoelectric effects in NiSO4·H2O. Phys. Rev. 138(4A), A1218–A1226 (1965)

    Article  ADS  Google Scholar 

  8. Dzyaloshinskii, I.: On the magneto-electrical effect in antiferromagnets. Sov. Phys. JETP. 10(3), 628–629 (1960)

    Google Scholar 

  9. Astrov, D.: The magnetoelectric effect in antiferromagnetics. Sov. Phys. JETP. 11(3), 708–709 (1960)

    Google Scholar 

  10. Folen, V.J., Rado, G.T., Stalder, E.W.: Anisotropy of the magnetoelectric effect in Cr2O3. Phys. Rev. Lett. 6(11), 607–608 (1961)

    Article  ADS  Google Scholar 

  11. Rado, G.T., Folen, V.J.: Observation of the magnetically induced magnetoelectric effect and evidence for antiferromagnetic domains. Phys. Rev. Lett. 7(8), 310–311 (1961)

    Article  ADS  Google Scholar 

  12. Shtrikman, S., Treves, D.: Observation of the magnetoelectric effect in Cr2O3 powders. Phys. Rev. 130(3), 986–988 (1963)

    Article  ADS  Google Scholar 

  13. Al’Shin, B., Astrov, D.: Magnetoelectric effect in titanium oxide Ti2O3. Sov. Phys. JETP. 17(4), 809–811 (1963)

    Google Scholar 

  14. Rado, G.T.: Observation and possible mechanisms of magnetoelectric effects in a ferromagnet. Phys. Rev. Lett. 13(10), 335–337 (1964)

    Article  ADS  Google Scholar 

  15. Ascher, E., Rieder, H., Schmid, H., Stössel, H.: Some properties of ferromagnetoelectric nickel-iodine boracite, Ni3B7O13I. J. Appl. Phys. 37(3), 1404–1405 (1966)

    Article  ADS  Google Scholar 

  16. Mercier, M., Gareyte, J., Bertaut, E.: Une nouvelle famille de corps magnetoelectriques-LiMPO4 (M= Mn, Co, Ni). Comptes Rendus. 264(13), 979 (1967)

    Google Scholar 

  17. Rivera, J.-P.: The linear magnetoelectric effect in LiCoPO4 revisited. Ferroelectrics. 161(1), 147–164 (1994)

    Article  Google Scholar 

  18. Fischer, E., Gorodetsky, G., Hornreich, R.M.: A new family of magnetoelectric materials: A2M4O9(A=Ta, Nb; M=Mn, Co). Solid State Commun. 10(12), 1127–1132 (1972)

    Article  ADS  Google Scholar 

  19. Watanabe, T., Kohn, K.: Magnetoelectric effect and low temperature transition of PbFe0. 5Nb0. 5O3 single crystal. Phase Transit. Multinatl. J. 15(1), 57–68 (1989)

    Article  Google Scholar 

  20. Schmid, H.: On a magnetoelectric classification of materials. Int. J. Magnetism. 4(4), 337–361 (1973)

    Google Scholar 

  21. Fiebig, M.: Revival of the magnetoelectric effect. J. Phys. D. Appl. Phys. 38(8), R123–R152 (2005)

    Article  ADS  Google Scholar 

  22. Brown, W.F.: Micromagnetics: Interscience Tracts on Physics and Astronomy, 18. J. Wiley, New York, London (1963)

    Google Scholar 

  23. Brown, W.F., Hornreich, R.M., Shtrikman, S.: Upper bound on the magnetoelectric susceptibility. Phys. Rev. 168(2), 574–577 (1968)

    Article  ADS  Google Scholar 

  24. Schmid, H.: Multi-ferroic magnetoelectrics. Ferroelectrics. 162(1–4), 317–338 (1994)

    Article  Google Scholar 

  25. Borisov, P., Ashida, T., Nozaki, T., Sahashi, M., Lederman, D.: Magnetoelectric properties of 500-nm Cr2O3 films. Phys. Rev. B. 93(17), 174415 (2016)

    Article  ADS  Google Scholar 

  26. Rado, G.T., Ferrari, J.M., Maisch, W.G.: Magnetoelectric susceptibility and magnetic symmetry of magnetoelectrically annealed TbPO4. Phys. Rev. B. 29(7), 4041–4048 (1984)

    Article  ADS  Google Scholar 

  27. Chun, S.H., Chai, Y.S., Jeon, B.-G., Kim, H.J., Oh, Y.S., Kim, I., Kim, H., Jeon, B.J., Haam, S.Y., Park, J.-Y., Lee, S.H., Chung, J.-H., Park, J.-H., Kim, K.H.: Electric field control of nonvolatile four-state magnetization at room temperature. Phys. Rev. Lett. 108(17), 177201 (2012)

    Article  ADS  Google Scholar 

  28. Tokunaga, M., Akaki, M., Ito, T., Miyahara, S., Miyake, A., Kuwahara, H., Furukawa, N.: Magnetic control of transverse electric polarization in BiFeO3. Nat. Commun. 6, 5878 (2015)

    Article  ADS  Google Scholar 

  29. Kimura, T., Goto, T., Shintani, H., Ishizaka, K., Arima, T., Tokura, Y.: Magnetic control of ferroelectric polarization. Nature. 426(6962), 55–58 (2003)

    Article  ADS  Google Scholar 

  30. Hur, N., Park, S., Sharma, P.A., Ahn, J.S., Guha, S., Cheong, S.W.: Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature. 429(6990), 392–395 (2004)

    Article  ADS  Google Scholar 

  31. Eerenstein, W., Mathur, N.D., Scott, J.F.: Multiferroic and magnetoelectric materials. Nature. 442(7104), 759–765 (2006)

    Article  ADS  Google Scholar 

  32. Dong, S., Liu, J.-M., Cheong, S.-W., Ren, Z.: Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology. Adv. Phys. 64(5–6), 519–626 (2015)

    Article  ADS  Google Scholar 

  33. Fiebig, M., Lottermoser, T., Meier, D., Trassin, M.: The evolution of multiferroics. Nat. Rev. Mater. 1, 16046 (2016)

    Article  ADS  Google Scholar 

  34. Scott, J.F.: Applications of magnetoelectrics. J. Mater. Chem. 22(11), 4567–4574 (2012)

    Article  Google Scholar 

  35. Aizu, K.: Possible species of ferromagnetic, ferroelectric, and ferroelastic crystals. Phys. Rev. B. 2(3), 754–772 (1970)

    Article  ADS  Google Scholar 

  36. Aizu, K.: Possible species of “ferroelastic” crystals and of simultaneously ferroelectric and ferroelastic crystals. J. Phys. Soc. Jpn. 27(2), 387–396 (1969)

    Article  ADS  Google Scholar 

  37. Newnham, R.E.: Domains in minerals. Am. Miner. 59(9–10), 906–918 (1974)

    Google Scholar 

  38. Cheong, S.W., Mostovoy, M.: Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6(1), 13–20 (2007)

    Article  ADS  Google Scholar 

  39. Ramesh, R., Spaldin, N.A.: Multiferroics: progress and prospects in thin films. Nat. Mater. 6(1), 21–29 (2007)

    Article  ADS  Google Scholar 

  40. Tokura, Y.: Multiferroics – toward strong coupling between magnetization and polarization in a solid. J. Magn. Magn. Mater. 310(2), 1145–1150 (2007)

    Article  ADS  Google Scholar 

  41. Martin, L., Crane, S.P., Chu, Y.H., Holcomb, M.B., Gajek, M., Huijben, M., Yang, C.H., Balke, N., Ramesh, R.: Multiferroics and magnetoelectrics: thin films and nanostructures. J. Phys. Condens. Matter. 20(43), 434220 (2008)

    Google Scholar 

  42. Spaldin, N.A., Cheong, S.-W., Ramesh, R.: Multiferroics: past, present, and future. Phys. Today. 63(10), 38–43 (2010)

    Article  Google Scholar 

  43. Lawes, G., Srinivasan, G.: Introduction to magnetoelectric coupling and multiferroic films. J. Phys. D. Appl. Phys. 44(24), 243001 (2011)

    Article  ADS  Google Scholar 

  44. Spaldin, N.A., Ramesh, R.: Advances in magnetoelectric multiferroics. Nat. Mater. 18(3), 203–212 (2019)

    Article  Google Scholar 

  45. Khomskii, D.: Classifying multiferroics: mechanisms and effects. Physics. 2(20) (2009)

    Google Scholar 

  46. Kimura, T., Lawes, G., Ramirez, A.P.: Electric polarization rotation in a hexaferrite with long-wavelength magnetic structures. Phys. Rev. Lett. 94(13), 137201 (2005)

    Article  ADS  Google Scholar 

  47. Ishiwata, S., Taguchi, Y., Murakawa, H., Onose, Y., Tokura, Y.: Low-magnetic-field control of electric polarization vector in a helimagnet. Science. 319(5870), 1643–1646 (2008)

    Article  ADS  Google Scholar 

  48. Chun, S.H., Chai, Y.S., Oh, Y.S., Jaiswal-Nagar, D., Haam, S.Y., Kim, I., Lee, B., Nam, D.H., Ko, K.-T., Park, J.-H., Chung, J.-H., Kim, K.H.: Realization of giant magnetoelectricity in helimagnets. Phys. Rev. Lett. 104(3), 037204 (2010)

    Article  ADS  Google Scholar 

  49. Kitagawa, Y., Hiraoka, Y., Honda, T., Ishikura, T., Nakamura, H., Kimura, T.: Low-field magnetoelectric effect at room temperature. Nat. Mater. 9(10), 797–802 (2010)

    Article  ADS  Google Scholar 

  50. Wang, F., Zou, T., Yan, L.-Q., Liu, Y., Sun, Y.: Low magnetic field reversal of electric polarization in a Y-type hexaferrite. Appl. Phys. Lett. 100(12), 122901 (2012)

    Article  ADS  Google Scholar 

  51. Okumura, K., Haruki, K., Ishikura, T., Hirose, S., Kimura, T.: Multilevel magnetization switching by electric field in c-axis oriented polycrystalline Z-type hexaferrite. Appl. Phys. Lett. 103(3), 032906 (2013)

    Article  ADS  Google Scholar 

  52. Chai, Y.S., Kwon, S., Chun, S.H., Kim, I., Jeon, B.-G., Kim, K.H., Lee, S.: Electrical control of large magnetization reversal in a helimagnet. Nat. Commun. 5, 4208 (2014)

    Google Scholar 

  53. Hirose, S., Haruki, K., Ando, A., Kimura, T.: Mutual control of magnetization and electrical polarization by electric and magnetic fields at room temperature in Y-type BaSrCo2−xZnxFe11AlO22 ceramics. Appl. Phys. Lett. 104(2), 022907 (2014)

    Article  ADS  Google Scholar 

  54. Shen, S., Chai, Y., Sun, Y.: Nonvolatile electric-field control of magnetization in a Y-type hexaferrite. Sci. Rep. 5, 8254 (2015)

    Google Scholar 

  55. Kimura, T.: Magnetoelectric hexaferrites. Annu. Rev. Condens. Matter Phys. 3(1), 93–110 (2012)

    Article  Google Scholar 

  56. Hill, N.A.: Why are there so few magnetic ferroelectrics? J. Phys. Chem. B. 104(29), 6694–6709 (2000)

    Article  Google Scholar 

  57. Sugawara, F., Iiida, S., Syono, Y., Akimoto, S.-I.: Magnetic properties and crystal distortions of BiMnO3 and BiCrO3. J. Phys. Soc. Jpn. 25(6), 1553–1558 (1968)

    Article  ADS  Google Scholar 

  58. Moreira dos Santos, A., Parashar, S., Raju, A.R., Zhao, Y.S., Cheetham, A.K., Rao, C.N.R.: Evidence for the likely occurrence of magnetoferroelectricity in the simple perovskite, BiMnO3. Solid State Commun. 122(1), 49–52 (2002)

    Article  ADS  Google Scholar 

  59. Kimura, T., Kawamoto, S., Yamada, I., Azuma, M., Takano, M., Tokura, Y.: Magnetocapacitance effect in multiferroic BiMnO3. Phys. Rev. B. 67(18), 180401 (2003)

    Article  ADS  Google Scholar 

  60. Eerenstein, W., Morrison, F.D., Scott, J.F., Mathur, N.D.: Growth of highly resistive BiMnO3 films. Appl. Phys. Lett. 87(10), 101906 (2005)

    Article  ADS  Google Scholar 

  61. Gajek, M., Bibes, M., Fusil, S., Bouzehouane, K., Fontcuberta, J., Barthelemy, A.E., Fert, A.: Tunnel junctions with multiferroic barriers. Nat. Mater. 6(4), 296–302 (2007)

    Article  ADS  Google Scholar 

  62. Shvartsman, V.V., Borisov, P., Kleemann, W., Kamba, S., Katsufuji, T.: Large off-diagonal magnetoelectric coupling in the quantum paraelectric antiferromagnet EuTiO3. Phys. Rev. B. 81(6), 064426 (2010)

    Article  ADS  Google Scholar 

  63. Lee, J.H., Fang, L., Vlahos, E., Ke, X., Jung, Y.W., Kourkoutis, L.F., Kim, J.-W., Ryan, P.J., Heeg, T., Roeckerath, M., Goian, V., Bernhagen, M., Uecker, R., Hammel, P.C., Rabe, K.M., Kamba, S., Schubert, J., Freeland, J.W., Muller, D.A., Fennie, C.J., Schiffer, P., Gopalan, V., Johnston-Halperin, E., Schlom, D.G.: A strong ferroelectric ferromagnet created by means of spin-lattice coupling. Nature. 466(7309), 954–958 (2010)

    Article  ADS  Google Scholar 

  64. Fennie, C.J., Rabe, K.M.: Magnetic and electric phase control in epitaxial EuTiO3 from first principles. Phys. Rev. Lett. 97(26), 267602 (2006)

    Article  ADS  Google Scholar 

  65. von Wartburg, W.: The magnetic structure of magnetoelectric nickel–iodine boracite Ni3B7O13I. Phys. Status Solidi A. 21(2), 557–568 (1974)

    Article  ADS  Google Scholar 

  66. Chiba, H., Atou, T., Syono, Y.: Magnetic and electrical properties of Bi1−xSrxMnO3: hole-doping effect on ferromagnetic perovskite BiMnO3. J. Solid State Chem. 132(1), 139–143 (1997)

    Article  ADS  Google Scholar 

  67. Chi, Z.H., Xiao, C.J., Feng, S.M., Li, F.Y., Jin, C.Q., Wang, X.H., Chen, R.Z., Li, L.T.: Manifestation of ferroelectromagnetism in multiferroic BiMnO3. J. Appl. Phys. 98(10), 103519 (2005)

    Article  ADS  Google Scholar 

  68. Smolenskii, G., Agranovskaya, A., Popov, S., Isupov, V.: New ferroelectrics of complex composition. 2. Pb2Fe3+NbO6 and Pb2YbNbO6. Soviet physics Tech. Phys. 3, 1981–1982 (1958)

    Google Scholar 

  69. Catalan, G., Scott, J.F.: Physics and applications of bismuth ferrite. Adv. Mater. 21(24), 2463–2485 (2009)

    Article  Google Scholar 

  70. Fiebig, M., Lottermoser, T., Frohlich, D., Goltsev, A.V., Pisarev, R.V.: Observation of coupled magnetic and electric domains. Nature. 419(6909), 818–820 (2002)

    Article  ADS  Google Scholar 

  71. Wang, W., Zhao, J., Wang, W., Gai, Z., Balke, N., Chi, M., Lee, H.N., Tian, W., Zhu, L., Cheng, X., Keavney, D.J., Yi, J., Ward, T.Z., Snijders, P.C., Christen, H.M., Wu, W., Shen, J., Xu, X.: Room-temperature multiferroic hexagonal LuFeO3 films. Phys. Rev. Lett. 110(23), 237601 (2013)

    Article  ADS  Google Scholar 

  72. Eibschütz, M., Guggenheim, H.J., Wemple, S.H., Camlibel, I., DiDomenico, M.: Ferroelectricity in BaM2+F4. Phys. Lett. A. 29(7), 409–410 (1969)

    Article  ADS  Google Scholar 

  73. Fox, D.L., Scott, J.F.: Ferroelectrically induced ferromagnetism. J. Phys. C: Solid State Phys. 10(11), L329 (1977)

    Article  ADS  Google Scholar 

  74. Fox, D.L., Tilley, D.R., Scott, J.F., Guggenheim, H.J.: Magnetoelectric phenomena in BaMnF4 and BaMn0.99Co0.01F4. Phys. Rev. B. 21(7), 2926–2936 (1980)

    Article  ADS  Google Scholar 

  75. Scott, J.F., Blinc, R.: Multiferroic magnetoelectric fluorides: why are there so many magnetic ferroelectrics? J. Phys. Condens. Matter. 23(11) (2011)

    Google Scholar 

  76. Yoshinori, T., Shinichiro, S., Naoto, N.: Multiferroics of spin origin. Rep. Prog. Phys. 77(7), 076501 (2014)

    Article  Google Scholar 

  77. Tokura, Y., Seki, S.: Multiferroics with spiral spin orders. Adv. Mater. 22(14), 1554–1565 (2010)

    Article  Google Scholar 

  78. Kimura, T.: Spiral magnets as magnetoelectrics. Annu. Rev. Mater. Res. 37(1), 387–413 (2007)

    Article  ADS  Google Scholar 

  79. Katsura, H., Nagaosa, N., Balatsky, A.V.: Spin current and magnetoelectric effect in noncollinear magnets. Phys. Rev. Lett. 95(5), 057205 (2005)

    Article  ADS  Google Scholar 

  80. Mostovoy, M.: Ferroelectricity in spiral magnets. Phys. Rev. Lett. 96(6), 067601 (2006)

    Article  ADS  Google Scholar 

  81. Newnham, R.E., Kramer, J.J., Schulze, W.A., Cross, L.E.: Magnetoferroelectricity in Cr2BeO4. J. Appl. Phys. 49(12), 6088–6091 (1978)

    Article  ADS  Google Scholar 

  82. Johnson, R.D., Chapon, L.C., Khalyavin, D.D., Manuel, P., Radaelli, P.G., Martin, C.: Giant improper ferroelectricity in the ferroaxial magnet CaMn7O12. Phys. Rev. Lett. 108(6), 067201 (2012)

    Article  ADS  Google Scholar 

  83. Terada, N., Glazkova, Y.S., Belik, A.A.: Differentiation between ferroelectricity and thermally stimulated current in pyrocurrent measurements of multiferroic MMn7O12 (M=Ca, Sr, Cd, Pb). Phys. Rev. B. 93(15), 155127 (2016)

    Article  ADS  Google Scholar 

  84. Kagomiya, I., Matsumoto, S., Kohn, K., Fukuda, Y., Shoubu, T., Kimura, H., Noda, Y., Ikeda, N.: Lattice distortion at ferroelectric transition of YMn 2 O 5. Ferroelectrics. 286(1), 167–174 (2003)

    Article  Google Scholar 

  85. Chapon, L.C., Blake, G.R., Gutmann, M.J., Park, S., Hur, N., Radaelli, P.G., Cheong, S.W.: Structural anomalies and multiferroic behavior in magnetically frustrated TbMn2O5. Phys. Rev. Lett. 93(17), 177402 (2004)

    Article  ADS  Google Scholar 

  86. Lee, N., Vecchini, C., Choi, Y.J., Chapon, L.C., Bombardi, A., Radaelli, P.G., Cheong, S.W.: Giant tunability of ferroelectric polarization in GdMn2O5. Phys. Rev. Lett. 110(13), 137203 (2013)

    Article  ADS  Google Scholar 

  87. Yahia, G., Damay, F., Chattopadhyay, S., Balédent, V., Peng, W., Elkaim, E., Whitaker, M., Greenblatt, M., Lepetit, M.B., Foury-Leylekian, P.: Recognition of exchange striction as the origin of magnetoelectric coupling in multiferroics. Phys. Rev. B. 95(18), 184112 (2017)

    Article  ADS  Google Scholar 

  88. Choi, Y.J., Yi, H.T., Lee, S., Huang, Q., Kiryukhin, V., Cheong, S.W.: Ferroelectricity in an ising chain magnet. Phys. Rev. Lett. 100(4), 047601 (2008)

    Article  ADS  Google Scholar 

  89. Aoyama, T., Yamauchi, K., Iyama, A., Picozzi, S., Shimizu, K., Kimura, T.: Giant spin-driven ferroelectric polarization in TbMnO3 under high pressure. Nat. Commun. 5, 4927 (2014)

    Article  ADS  Google Scholar 

  90. Arima, T.-h.: Ferroelectricity induced by proper-screw type magnetic order. J. Phys. Soc. Jpn. 76(7), 073702 (2007)

    Article  ADS  Google Scholar 

  91. Kimura, T., Lashley, J.C., Ramirez, A.P.: Inversion-symmetry breaking in the noncollinear magnetic phase of the triangular-lattice antiferromagnet CuFeO2. Phys. Rev. B. 73(22), 220401 (2006)

    Article  ADS  Google Scholar 

  92. Seki, S., Onose, Y., Tokura, Y.: Spin-driven ferroelectricity in triangular lattice antiferromagnets ACrO2 (A=Cu, Ag, Li, or Na). Phys. Rev. Lett. 101(6), 067204 (2008)

    Article  ADS  Google Scholar 

  93. Murakawa, H., Onose, Y., Miyahara, S., Furukawa, N., Tokura, Y.: Ferroelectricity induced by spin-dependent metal-ligand hybridization in Ba2CoGe2O7. Phys. Rev. Lett. 105(13), 137202 (2010)

    Article  ADS  Google Scholar 

  94. Gao, X.S., Chen, X.Y., Yin, J., Wu, J., Liu, Z.G., Wang, M.: Ferroelectric and dielectric properties of ferroelectromagnet Pb(Fe1/2Nb1/2)O3 ceramics and thin films. J. Mater. Sci. 35(21), 5421–5425 (2000)

    Article  ADS  Google Scholar 

  95. Howes, B., Pelizzone, M., Fischer, P., Tabares-munoz, C., Rivera, J.-P., Schmid, H.: Characterisation of some magnetic and magnetoelectric properties of ferroelectric Pb(Fe1/2Nb1/2)O3. Ferroelectrics. 54(1), 317–320 (1984)

    Article  Google Scholar 

  96. Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D.G., Waghmare, U.V., Spaldin, N.A., Rabe, K.M., Wuttig, M., Ramesh, R.: Epitaxial BiFeO3 multiferroic thin film heterostructures. Science. 299(5613), 1719–1722 (2003)

    Article  ADS  Google Scholar 

  97. Lebeugle, D., Colson, D., Forget, A., Viret, M.: Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields. Appl. Phys. Lett. 91(2), 022907–022903 (2007)

    Article  ADS  Google Scholar 

  98. Yakel Jr., H.L., Koehler, W.C., Bertaut, E.F., Forrat, E.F.: On the crystal structure of the manganese(III) trioxides of the heavy lanthanides and yttrium. Acta Crystallogr. 16(10), 957–962 (1963)

    Article  Google Scholar 

  99. Bertaut, E.F., Mercier, M.: Structure magnetique de MnYO3. Phys. Lett. 5(1), 27–29 (1963)

    Article  ADS  Google Scholar 

  100. Magome, E., Moriyoshi, C., Kuroiwa, Y., Masuno, A., Inoue, H.: Noncentrosymmetric structure of LuFeO3 in metastable state. Jpn. J. Appl. Phys. 49(9S), 09ME06 (2010)

    Google Scholar 

  101. Disseler, S.M., Borchers, J.A., Brooks, C.M., Mundy, J.A., Moyer, J.A., Hillsberry, D.A., Thies, E.L., Tenne, D.A., Heron, J., Holtz, M.E., Clarkson, J.D., Stiehl, G.M., Schiffer, P., Muller, D.A., Schlom, D.G., Ratcliff, W.D.: Magnetic structure and ordering of multiferroic hexagonal LuFeO3. Phys. Rev. Lett. 114(21), 217602 (2015)

    Article  ADS  Google Scholar 

  102. Cox, D.E., Eibschütz, M., Guggenheim, H.J., Holmes, L.: Neutron diffraction study of the magnetic structure of BaNiF4. J. Appl. Phys. 41(3), 943–945 (1970)

    Article  ADS  Google Scholar 

  103. Kato, K., Iida, S., Yanai, K., Mizushima, K.: Ferrimagnetic ferroelectricity of Fe3O4. J. Magn. Magn. Mater. 31, 783–784 (1983)

    Article  ADS  Google Scholar 

  104. Alexe, M., Ziese, M., Hesse, D., Esquinazi, P., Yamauchi, K., Fukushima, T., Picozzi, S., Gösele, U.: Ferroelectric switching in multiferroic magnetite (Fe3O4) thin films. Adv. Mater. 21(44), 4452–4455 (2009)

    Article  Google Scholar 

  105. Ikeda, N., Ohsumi, H., Ohwada, K., Ishii, K., Inami, T., Kakurai, K., Murakami, Y., Yoshii, K., Mori, S., Horibe, Y., Kito, H.: Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4. Nature. 436(7054), 1136–1138 (2005)

    Article  ADS  Google Scholar 

  106. Lopes, A.M.L., Araújo, J.P., Amaral, V.S., Correia, J.G., Tomioka, Y., Tokura, Y.: New phase transition in the Pr1−xCaxMnO3 system: evidence for electrical polarization in charge ordered manganites. Phys. Rev. Lett. 100(15), 155702 (2008)

    Article  ADS  Google Scholar 

  107. van den Brink, J., Khomskii, D.I.: Multiferroicity due to charge ordering. J. Phys. Condens. Matter. 20(43), 434217 (2008)

    Article  Google Scholar 

  108. de Groot, J., Mueller, T., Rosenberg, R.A., Keavney, D.J., Islam, Z., Kim, J.W., Angst, M.: Charge order in LuFe2O4: an unlikely route to ferroelectricity. Phys. Rev. Lett. 108(18), 187601 (2012)

    Article  ADS  Google Scholar 

  109. Niermann, D., Waschkowski, F., de Groot, J., Angst, M., Hemberger, J.: Dielectric properties of charge-ordered LuFe2O4 revisited: the apparent influence of contacts. Phys. Rev. Lett. 109(1), 016405 (2012)

    Article  ADS  Google Scholar 

  110. Lafuerza, S., García, J., Subías, G., Blasco, J., Conder, K., Pomjakushina, E.: Intrinsic electrical properties of LuFe2O4. Phys. Rev. B. 88(8), 085130 (2013)

    Article  ADS  Google Scholar 

  111. Mundy, J.A., Brooks, C.M., Holtz, M.E., Moyer, J.A., Das, H., Rébola, A.F., Heron, J.T., Clarkson, J.D., Disseler, S.M., Liu, Z., Farhan, A., Held, R., Hovden, R., Padgett, E., Mao, Q., Paik, H., Misra, R., Kourkoutis, L.F., Arenholz, E., Scholl, A., Borchers, J.A., Ratcliff, W.D., Ramesh, R., Fennie, C.J., Schiffer, P., Muller, D.A., Schlom, D.G.: Atomically engineered ferroic layers yield a room-temperature magnetoelectric multiferroic. Nature. 537(7621), 523–527 (2016)

    Article  ADS  Google Scholar 

  112. Liu, M., Hoffman, J., Wang, J., Zhang, J., Nelson-Cheeseman, B., Bhattacharya, A.: Non-volatile ferroelastic switching of the Verwey transition and resistivity of epitaxial Fe3O4/PMN-PT (011). Sci. Rep. 3, 1876 (2013)

    Article  ADS  Google Scholar 

  113. Eerenstein, W., Morrison, F.D., Dho, J., Blamire, M.G., Scott, J.F., Mathur, N.D.: Comment on “Epitaxial BiFeO3 multiferroic thin film heterostructures”. Science. 307(5713), 1203 (2005)

    Article  Google Scholar 

  114. Zavaliche, F., Yang, S.Y., Zhao, T., Chu, Y.H., Cruz, M.P., Eom, C.B., Ramesh, R.: Multiferroic BiFeO3 films: domain structure and polarization dynamics. Phase Transit. 79(12), 991–1017 (2006)

    Article  Google Scholar 

  115. Chu, Y.H., Martin, L.W., Zhan, Q., Yang, P.L., Cruz, M.P., Lee, K., Barry, M., Yang, S.Y., Ramesh, R.: Epitaxial multiferroic BiFeO3 thin films: progress and future directions. Ferroelectrics. 354(1), 167–177 (2007)

    Article  Google Scholar 

  116. Silva, J., Reyes, A., Esparza, H., Camacho, H., Fuentes, L.: BiFeO3: a review on synthesis, doping and crystal structure. Integr. Ferroelectr. 126(1), 47–59 (2011)

    Article  Google Scholar 

  117. Heron, J.T., Schlom, D.G., Ramesh, R.: Electric field control of magnetism using BiFeO3-based heterostructures. Appl. Phys. Rev. 1(2), 021303 (2014)

    Article  ADS  Google Scholar 

  118. Sando, D., Barthélémy, A., Bibes, M.: BiFeO3 epitaxial thin films and devices: past, present and future. J. Phys. Condens. Matter. 26(47), 473201 (2014)

    Article  ADS  Google Scholar 

  119. Yang, J.-C., He, Q., Yu, P., Chu, Y.-H.: BiFeO3 thin films: a playground for exploring electric-field control of multifunctionalities. Annu. Rev. Mater. Res. 45(1), 249–275 (2015)

    Article  ADS  Google Scholar 

  120. Wu, J., Fan, Z., Xiao, D., Zhu, J., Wang, J.: Multiferroic bismuth ferrite-based materials for multifunctional applications: ceramic bulks, thin films and nanostructures. Prog. Mater. Sci. 84, 335–402 (2016)

    Article  Google Scholar 

  121. Sosnowska, I., Neumaier, T.P., Steichele, E.: Spiral magnetic ordering in bismuth ferrite. J. Phys. C: Solid State Phys. 15(23), 4835 (1982)

    Article  ADS  Google Scholar 

  122. Sosnowska, I., Zvezdin, A.K.: Origin of the long period magnetic ordering in BiFeO3. J. Magn. Magn. Mater. 140, 167–168 (1995)

    Article  ADS  Google Scholar 

  123. Lebeugle, D., Colson, D., Forget, A., Viret, M., Bataille, A.M., Gukasov, A.: Electric-field-induced spin flop in BiFeO3 single crystals at room temperature. Phys. Rev. Lett. 100(22), 227602 (2008)

    Article  ADS  Google Scholar 

  124. Ederer, C., Spaldin, N.A.: Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B. 71(6), 060401 (2005)

    Article  ADS  Google Scholar 

  125. Dzialoshinskii, I.E.: Thermodynamic theory of weak ferromagnetism in antiferromagnetic substances. Sov. Phys. JETP. 5(6), 1259–1272 (1957)

    MATH  Google Scholar 

  126. Moriya, T.: Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120(1), 91–98 (1960)

    Article  ADS  Google Scholar 

  127. Dmitrienko, V.E., Ovchinnikova, E.N., Collins, S.P., Nisbet, G., Beutier, G., Kvashnin, Y.O., Mazurenko, V.V., Lichtenstein, A.I., Katsnelson, M.I.: Measuring the Dzyaloshinskii-Moriya interaction in a weak ferromagnet. Nat. Phys. 10(3), 202–206 (2014)

    Article  Google Scholar 

  128. Lebeugle, D., Mougin, A., Viret, M., Colson, D., Ranno, L.: Electric field switching of the magnetic anisotropy of a ferromagnetic layer exchange coupled to the multiferroic compound BiFeO3. Phys. Rev. Lett. 103(25), 257601–257604 (2009)

    Article  ADS  Google Scholar 

  129. Lee, S., Ratcliff II, W., Cheong, S.-W., Kiryukhin, V.: Electric field control of the magnetic state in BiFeO3 single crystals. Appl. Phys. Lett. 92(19), 192906 (2008)

    Article  ADS  Google Scholar 

  130. Popov, Y.F., Zvezdin, A., Vorob’Ev, G., Kadomtseva, A., Murashev, V., Rakov, D.: Linear magnetoelectric effect and phase transitions in bismuth ferrite BiFeO3. JETP Lett. 57, 69 (1993)

    ADS  Google Scholar 

  131. Ruette, B., Zvyagin, S., Pyatakov, A.P., Bush, A., Li, J.F., Belotelov, V.I., Zvezdin, A.K., Viehland, D.: Magnetic-field-induced phase transition in BiFeO3 observed by high-field electron spin resonance: cycloidal to homogeneous spin order. Phys. Rev. B. 69(6), 064114 (2004)

    Article  ADS  Google Scholar 

  132. Tokunaga, M., Azuma, M., Shimakawa, Y.: High-field study of strong magnetoelectric coupling in single-domain crystals of BiFeO3. J. Phys. Soc. Jpn. 79(6), 064713 (2010)

    Article  ADS  Google Scholar 

  133. Bai, F., Wang, J., Wuttig, M., Li, J., Wang, N., Pyatakov, A.P., Zvezdin, A.K., Cross, L.E., Viehland, D.: Destruction of spin cycloid in (111)c-oriented BiFeO3 thin films by epitiaxial constraint: enhanced polarization and release of latent magnetization. Appl. Phys. Lett. 86(3), 032511–032513 (2005)

    Article  ADS  Google Scholar 

  134. Sando, D., Agbelele, A., Rahmedov, D., Liu, J., Rovillain, P., Toulouse, C., Infante, I.C., Pyatakov, A.P., Fusil, S., Jacquet, E., Carrétéro, C., Deranlot, C., Lisenkov, S., Wang, D., Le Breton, J.M., Cazayous, M., Sacuto, A., Juraszek, J., Zvezdin, A.K., Bellaiche, L., Dkhil, B., Barthélémy, A., Bibes, M.: Crafting the magnonic and spintronic response of BiFeO3 films by epitaxial strain. Nat. Mater. 12(7), 641–646 (2013)

    Article  ADS  Google Scholar 

  135. Zhao, T., Scholl, A., Zavaliche, F., Lee, K., Barry, M., Doran, A., Cruz, M.P., Chu, Y.H., Ederer, C., Spaldin, N.A., Das, R.R., Kim, D.M., Baek, S.H., Eom, C.B., Ramesh, R.: Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nat. Mater. 5(10), 823–829 (2006)

    Article  ADS  Google Scholar 

  136. Chu, Y.-H., Martin, L.W., Holcomb, M.B., Gajek, M., Han, S.-J., He, Q., Balke, N., Yang, C.-H., Lee, D., Hu, W., Zhan, Q., Yang, P.-L., Fraile-Rodriguez, A., Scholl, A., Wang, S.X., Ramesh, R.: Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater. 7(6), 478–482 (2008)

    Article  ADS  Google Scholar 

  137. Heron, J.T., Trassin, M., Ashraf, K., Gajek, M., He, Q., Yang, S.Y., Nikonov, D.E., Chu, Y.H., Salahuddin, S., Ramesh, R.: Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. Phys. Rev. Lett. 107(21), 217202 (2011)

    Article  ADS  Google Scholar 

  138. Heron, J.T., Bosse, J.L., He, Q., Gao, Y., Trassin, M., Ye, L., Clarkson, J.D., Wang, C., Liu, J., Salahuddin, S., Ralph, D.C., Schlom, D.G., Iniguez, J., Huey, B.D., Ramesh, R.: Deterministic switching of ferromagnetism at room temperature using an electric field. Nature. 516(7531), 370–373 (2014)

    Article  ADS  Google Scholar 

  139. Zhou, Z., Trassin, M., Gao, Y., Gao, Y., Qiu, D., Ashraf, K., Nan, T., Yang, X., Bowden, S.R., Pierce, D.T., Stiles, M.D., Unguris, J., Liu, M., Howe, B.M., Brown, G.J., Salahuddin, S., Ramesh, R., Sun, N.X.: Probing electric field control of magnetism using ferromagnetic resonance. Nat. Commun. 6, 6082 (2015)

    Article  ADS  Google Scholar 

  140. Bibes, M., Barthélémy, A.: Multiferroics: towards a magnetoelectric memory. Nat. Mater. 7(6), 425–426 (2008)

    Article  ADS  Google Scholar 

  141. Fusil, S., Garcia, V., Barthélémy, A., Bibes, M.: Magnetoelectric devices for spintronics. Annu. Rev. Mater. Res. 44(1), 91–116 (2014)

    Article  ADS  Google Scholar 

  142. Popkov, A.F., Kulagin, N.E., Soloviov, S.V., Sukmanova, K.S., Gareeva, Z.V., Zvezdin, A.K.: Cycloid manipulation by electric field in BiFeO3: coupling between polarization, octahedral rotation, and antiferromagnetic order. Phys. Rev. B. 92(14), 140414 (2015)

    Article  ADS  Google Scholar 

  143. Xue, F., Li, L., Britson, J., Hong, Z., Heikes, C.A., Adamo, C., Schlom, D.G., Pan, X., Chen, L.-Q.: Switching the curl of polarization vectors by an irrotational electric field. Phys. Rev. B. 94(10), 100103 (2016)

    Article  ADS  Google Scholar 

  144. Rovillain, P., de Sousa, R., Gallais, Y., Sacuto, A., Méasson, M.A., Colson, D., Forget, A., Bibes, M., Barthélémy, A., Cazayous, M.: Electric-field control of spin waves at room temperature in multiferroic BiFeO3. Nat. Mater. 9(12), 975–979 (2010)

    Article  ADS  Google Scholar 

  145. Kundys, B.: Photostrictive materials. Appl. Phys. Rev. 2(1), 011301 (2015)

    Article  ADS  Google Scholar 

  146. Kittel, C.: Domain boundary motion in ferroelectric crystals and the dielectric constant at high frequency. Phys. Rev. 83(2), 458–458 (1951)

    Article  ADS  Google Scholar 

  147. Qi, T., Shin, Y.-H., Yeh, K.-L., Nelson, K.A., Rappe, A.M.: Collective coherent control: synchronization of polarization in ferroelectric PbTiO3 by shaped THz fields. Phys. Rev. Lett. 102(24), 247603 (2009)

    Article  ADS  Google Scholar 

  148. Wen, H., Chen, P., Cosgriff, M.P., Walko, D.A., Lee, J.H., Adamo, C., Schaller, R.D., Ihlefeld, J.F., Dufresne, E.M., Schlom, D.G., Evans, P.G., Freeland, J.W., Li, Y.: Electronic origin of ultrafast photoinduced strain in BiFeO3. Phys. Rev. Lett. 110(3), 037601 (2013)

    Article  ADS  Google Scholar 

  149. Daranciang, D., Highland, M.J., Wen, H., Young, S.M., Brandt, N.C., Hwang, H.Y., Vattilana, M., Nicoul, M., Quirin, F., Goodfellow, J., Qi, T., Grinberg, I., Fritz, D.M., Cammarata, M., Zhu, D., Lemke, H.T., Walko, D.A., Dufresne, E.M., Li, Y., Larsson, J., Reis, D.A., Sokolowski-Tinten, K., Nelson, K.A., Rappe, A.M., Fuoss, P.H., Stephenson, G.B., Lindenberg, A.M.: Ultrafast photovoltaic response in ferroelectric nanolayers. Phys. Rev. Lett. 108(8), 087601 (2012)

    Article  ADS  Google Scholar 

  150. Iurchuk, V., Schick, D., Bran, J., Colson, D., Forget, A., Halley, D., Koc, A., Reinhardt, M., Kwamen, C., Morley, N.A., Bargheer, M., Viret, M., Gumeniuk, R., Schmerber, G., Doudin, B., Kundys, B.: Optical writing of magnetic properties by remanent photostriction. Phys. Rev. Lett. 117(10), 107403 (2016)

    Article  ADS  Google Scholar 

  151. Hu, J.-M., Duan, C.-G., Nan, C.-W., Chen, L.-Q.: Understanding and designing magnetoelectric heterostructures guided by computation: progresses, remaining questions, and perspectives. npj Comput. Mater. 3(1), 18 (2017)

    Article  ADS  Google Scholar 

  152. Rivera, J.P.: A short review of the magnetoelectric effect and relatedexperimental techniques on single phase (multi-) ferroics. Eur. Phys. J. B. 71(3), 299 (2009)

    Article  ADS  Google Scholar 

  153. Nan, C.W., Bichurin, M.I., Dong, S.X., Viehland, D., Srinivasan, G.: Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103(3), 031101 (2008)

    Article  ADS  Google Scholar 

  154. Wang, Y., Hu, J., Lin, Y., Nan, C.-W.: Multiferroic magnetoelectric composite nanostructures. NPG Asia Mater. 2(2), 61–68 (2010)

    Article  Google Scholar 

  155. Srinivasan, G.: Magnetoelectric composites. Annu. Rev. Mater. Res. 40(1), 153–178 (2010)

    Article  ADS  Google Scholar 

  156. Vaz, C.A.F., Hoffman, J., Ahn, C.H., Ramesh, R.: Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv. Mater. 22(26–27), 2900–2918 (2010)

    Article  Google Scholar 

  157. Ma, J., Hu, J., Li, Z., Nan, C.-W.: Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv. Mater. 23(9), 1062–1087 (2011)

    Article  Google Scholar 

  158. Sun, N.X., Srinivasan, G.: Voltage control of magnetism in multiferroic heterostructures and devices. Spine. 02(03), 1240004 (2012)

    Article  Google Scholar 

  159. Hu, J.-M., Chen, L.-Q., Nan, C.-W.: Multiferroic heterostructures integrating ferroelectric and magnetic materials. Adv. Mater. 28(1), 15–39 (2016)

    Article  Google Scholar 

  160. Velev, J.P., Jaswal, S.S., Tsymbal, E.Y.: Multi-ferroic and magnetoelectric materials and interfaces. Phil. Trans. R. Soc. A. 369(1948), 3069–3097 (2011)

    Article  ADS  Google Scholar 

  161. Yu, P., Chu, Y.H., Ramesh, R.: Oxide interfaces: pathways to novel phenomena. Mater. Today. 15(7–8), 320–327 (2012)

    Article  Google Scholar 

  162. Bibes, M.: Nanoferronics is a winning combination. Nat. Mater. 11(5), 354–357 (2012)

    Article  ADS  Google Scholar 

  163. Vaz, C.A.F., Urs, S.: Artificial multiferroic heterostructures. J. Mater. Chem. C. 1(41), 6731 (2013)

    Article  Google Scholar 

  164. Hu, J.-M., Shu, L., Li, Z., Gao, Y., Shen, Y., Lin, Y.-H., Chen, L.-Q., Nan, C.-W.: Film size-dependent voltage-modulated magnetism in multiferroic heterostructures. Phil. Trans. R. Soc. A. 372(2009), 20120444 (2014)

    Article  ADS  Google Scholar 

  165. Hu, J.-M., Nan, C.-W., Chen, L.-Q.: Perspective: voltage control of magnetization in multiferroic heterostructures. Natl. Sci. Rev. (2019). https://doi.org/10.1093/nsr/nwz047

  166. Vaz, C.A.F.: Electric field control of magnetism in multiferroic heterostructures. J. Phys. Condens. Matter. 24(33), 333201 (2012)

    Article  Google Scholar 

  167. Liu, M., Sun, N.X.: Voltage control of magnetism in multiferroic heterostructures. Phil. Trans. R. Soc. A. 372(2009), 20120439 (2014)

    Article  ADS  Google Scholar 

  168. Ramesh, R.: Electric field control of ferromagnetism using multi-ferroics: the bismuth ferrite story. Phil. Trans. R. Soc. A. 372(2009), 20120437 (2014)

    Google Scholar 

  169. Matsukura, F., Tokura, Y., Ohno, H.: Control of magnetism by electric fields. Nat. Nanotechnol. 10(3), 209–220 (2015)

    Article  ADS  Google Scholar 

  170. Taniyama, T.: Electric-field control of magnetism via strain transfer across ferromagnetic/ferroelectric interfaces. J. Phys. Condens. Matter. 27(50), 504001 (2015)

    Article  Google Scholar 

  171. Wang, Y., Li, J., Viehland, D.: Magnetoelectrics for magnetic sensor applications: status, challenges and perspectives. Mater. Today. 17(6), 269–275 (2014)

    Article  Google Scholar 

  172. Nikonov, D.E., Young, I.A.: Benchmarking spintronic logic devices based on magnetoelectric oxides. J. Mater. Res. 29(18), 2109–2115 (2014)

    Article  ADS  Google Scholar 

  173. Ortega, N., Ashok, K., Scott, J.F., Ram, S.K.: Multifunctional magnetoelectric materials for device applications. J. Phys. Condens. Matter. 27(50), 504002 (2015)

    Article  Google Scholar 

  174. Hu, J.-M., Nan, T., Sun, N.X., Chen, L.-Q.: Multiferroic magnetoelectric nanostructures for novel device applications. MRS Bull. 40(09), 728–735 (2015)

    Article  ADS  Google Scholar 

  175. Newnham, R.E., Skinner, D.P., Cross, L.E.: Connectivity and piezoelectric-pyroelectric composites. MRS Bull. 13(5), 525–536 (1978)

    Article  Google Scholar 

  176. Lage, E., Kirchhof, C., Hrkac, V., Kienle, L., Jahns, R., Knochel, R., Quandt, E., Meyners, D.: Exchange biasing of magnetoelectric composites. Nat. Mater. 11(6), 523–529 (2012)

    Article  ADS  Google Scholar 

  177. Hu, J.-M., Li, Z., Wang, J., Nan, C.W.: Electric-field control of strain-mediated magnetoelectric random access memory. J. Appl. Phys. 107(9), 093912 (2010)

    Article  ADS  Google Scholar 

  178. Pertsev, N.A., Kohlstedt, H.: Resistive switching via the converse magnetoelectric effect in ferromagnetic multilayers on ferroelectric substrates. Nanotechnology. 21(47), 475202 (2010)

    Article  ADS  Google Scholar 

  179. Hu, J.-M., Li, Z., Chen, L.-Q., Nan, C.-W.: High-density magnetoresistive random access memory operating at ultralow voltage at room temperature. Nat. Commun. 2, 553 (2011)

    Article  ADS  Google Scholar 

  180. Binek, C., Doudin, B.: Magnetoelectronics with magnetoelectrics. J. Phys. Condens. Matter. 17(2), L39 (2005)

    Article  ADS  Google Scholar 

  181. Chen, X., Hochstrat, A., Borisov, P., Kleemann, W.: Magnetoelectric exchange bias systems in spintronics. Appl. Phys. Lett. 89(20), 202508–202503 (2006)

    Article  ADS  Google Scholar 

  182. Hu, J.-M., Li, Z., Lin, Y.H., Nan, C.W.: A magnetoelectric logic gate. Phys. Status Solidi RRL. 4(5–6), 106–108 (2010)

    Article  Google Scholar 

  183. Hrkac, G., Dean, J., Allwood, D.A.: Nanowire spintronics for storage class memories and logic. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369(1948), 3214–3228 (2011)

    Article  ADS  Google Scholar 

  184. Lei, N., Devolder, T., Agnus, G., Aubert, P., Daniel, L., Kim, J.-V., Zhao, W., Trypiniotis, T., Cowburn, R.P., Chappert, C., Ravelosona, D., Lecoeur, P.: Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures. Nat. Commun. 4, 1378 (2013)

    Article  ADS  Google Scholar 

  185. Kanai, S., Yamanouchi, M., Ikeda, S., Nakatani, Y., Matsukura, F., Ohno, H.: Electric field-induced magnetization reversal in a perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. Appl. Phys. Lett. 101(12), 122403 (2012)

    Article  ADS  Google Scholar 

  186. Wang, W.-G., Li, M., Hageman, S., Chien, C.L.: Electric-field-assisted switching in magnetic tunnel junctions. Nat. Mater. 11(1), 64–68 (2012)

    Article  ADS  Google Scholar 

  187. Shiota, Y., Nozaki, T., Bonell, F., Murakami, S., Shinjo, T., Suzuki, Y.: Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. Nat. Mater. 11(1), 39–43 (2012)

    Article  ADS  Google Scholar 

  188. Grezes, C., Ebrahimi, F., Alzate, J.G., Cai, X., Katine, J.A., Langer, J., Ocker, B., Khalili Amiri, P., Wang, K.L.: Ultra-low switching energy and scaling in electric-field-controlled nanoscale magnetic tunnel junctions with high resistance-area product. Appl. Phys. Lett. 108(1), 012403 (2016)

    Article  ADS  Google Scholar 

  189. Miwa, S., Suzuki, M., Tsujikawa, M., Matsuda, K., Nozaki, T., Tanaka, K., Tsukahara, T., Nawaoka, K., Goto, M., Kotani, Y., Ohkubo, T., Bonell, F., Tamura, E., Hono, K., Nakamura, T., Shirai, M., Yuasa, S., Suzuki, Y.: Voltage controlled interfacial magnetism through platinum orbits. Nat. Commun. 8, 15848 (2017)

    Article  ADS  Google Scholar 

  190. Bauer, U., Emori, S., Beach, G.S.D.: Voltage-controlled domain wall traps in ferromagnetic nanowires. Nat. Nanotechnol. 8(6), 411–416 (2013)

    Article  ADS  Google Scholar 

  191. Bi, C., Liu, Y., Newhouse-Illige, T., Xu, M., Rosales, M., Freeland, J.W., Mryasov, O., Zhang, S., te Velthuis, S.G.E., Wang, W.G.: Reversible control of co magnetism by voltage-induced oxidation. Phys. Rev. Lett. 113(26), 267202 (2014)

    Article  ADS  Google Scholar 

  192. Bauer, U., Yao, L., Tan, A.J., Agrawal, P., Emori, S., Tuller, H.L., van Dijken, S., Beach, G.S.D.: Magneto-ionic control of interfacial magnetism. Nat. Mater. 14, 174–181 (2015)

    Article  ADS  Google Scholar 

  193. Gilbert, D.A., Grutter, A.J., Arenholz, E., Liu, K., Kirby, B.J., Borchers, J.A., Maranville, B.B.: Structural and magnetic depth profiles of magneto-ionic heterostructures beyond the interface limit. Nat. Commun. 7, 12264 (2016)

    Article  ADS  Google Scholar 

  194. Hu, J.-M., Yang, T., Wang, J., Huang, H., Zhang, J., Chen, L.-Q., Nan, C.-W.: Purely electric-field-driven perpendicular magnetization reversal. Nano Lett. 15(1), 616–622 (2015)

    Article  ADS  Google Scholar 

  195. Wang, J.J., Hu, J.M., Ma, J., Zhang, J.X., Chen, L.Q., Nan, C.W.: Full 180° magnetization reversal with electric fields. Sci. Rep. 4, 7507 (2014)

    Article  ADS  Google Scholar 

  196. Hu, J.-M., Yang, T., Momeni, K., Cheng, X., Chen, L., Lei, S., Zhang, S., Trolier-McKinstry, S., Gopalan, V., Carman, G.P., Nan, C.-W., Chen, L.-Q.: Fast magnetic domain-wall motion in a ring-shaped nanowire driven by a voltage. Nano Lett. 16(4), 2341–2348 (2016)

    Article  ADS  Google Scholar 

  197. He, X., Wang, Y., Wu, N., Caruso, A.N., Vescovo, E., Belashchenko, K.D., Dowben, P.A., Binek, C.: Robust isothermal electric control of exchange bias at room temperature. Nat. Mater. 9(7), 579–585 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by a start-up fund from the University of Wisconsin-Madison (J.-M.H.) and partially by the National Science Foundation under the grant no. DMR-1744213 (Chen) and partially by the Army Research Office under the grant number W911NF-17-1-0462 (J.-M.H. and L.-Q.C.). The authors acknowledge Xin Zou for helping draw some of the schematics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Mian Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hu, JM., Chen, LQ. (2021). Magnetoelectrics and Multiferroics. In: Coey, M., Parkin, S. (eds) Handbook of Magnetism and Magnetic Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-63101-7_12-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63101-7_12-1

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63101-7

  • Online ISBN: 978-3-030-63101-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics