Skip to main content

Nanocelluloses in Wound Healing Applications

  • 17 Accesses

Abstract

Wound healing involves three distinct but related stages: inflammation, tissue development, and restructuring. While injury repair is an inherent capacity of any multicellular organism, special safeguards are required in some instances. Autolytic debridement of necrotic tissue may be allowed using highly hydrated hydrogels where surgical excision is not conceivable. Such products are used as legitimate substitutes for wound healing applications because they can trap water until a thousand times by their dry weight. Due to their high biocompatibility, biodegradability, and is relatively inexpensive, the use of cellulose-based hydrogels is now widely known. Experimental methods toward producing more functional wound dressings have lately been tested, such as adding antimicrobial characteristics using a mixture of antibiotics and/or antibacterial polymers.

Keywords

  • Nanocellulose
  • Wound healing
  • Dressings
  • Nanomedicine

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Rowan, M.P., Cancio, L.C., Elster, E.A., Burmeister, D.M., Rose, L.F., Natesan, S., Chan, R.K., Christy, R.J., Chung, K.K.J.C.: Burn wound healing and treatment: review and advancements. Crit. Care. 19(1), 243 (2015)

    Google Scholar 

  2. Barrientos, S., Stojadinovic, O., Golinko, M.S., Brem, H., Tomic-Canic, M.J.W.: Growth factors and cytokines in wound healing. Wound. Repair. Regen. 16(5), 585–601 (2008)

    Google Scholar 

  3. Gosain, A., DiPietro, L.A.J.W.: Aging and wound healing. World. J. Surg. 28(3), 321–326 (2004)

    Google Scholar 

  4. Aljabali, A.A., Obeid, M.A.J.N.: Inorganic-organic nanomaterials for therapeutics and molecular imaging applications. Nanotechnology-Asia. 10(6), 748–765 (2020)

    CAS  CrossRef  Google Scholar 

  5. Mathieu, D.: Handbook on hyperbaric medicine, vol. 27. Springer (2006)

    Google Scholar 

  6. George Broughton, I., Janis, J.E., Attinger, C.E.J.P.: The basic science of wound healing. Plast. Reconstr. Surg. 117(7S), 12S–34S (2006)

    Google Scholar 

  7. Campos, A.C., Groth, A.K., Branco, A.B..J.C.O.I.C.N., Care, M.: Assessment and nutritional aspects of wound healing. Curr. Opin. Clin. Nutr. Metab. Care. 11(3), 281–288 (2008)

    Google Scholar 

  8. Guo, S.A., DiPietro, L.A.J.J.O.D.R.: Factors affecting wound healing. J. Dent. Res. 89(3), 219–229 (2010)

    Google Scholar 

  9. Ennab, R.M., Al-Omari, M.H., Jaradat, I.I., Aljabali, A.A.J.I.J.O.S.C.R.: Endovascular management of acute mesenteric ischemia in a young patient with thyrotoxicosis and atrial fibrillation: a case report and review of the literature. Int. J. Surg. Case Rep. (2020)

    Google Scholar 

  10. D’Errico, M., Lemma, T., Calcagnile, A., De Santis, L.P., Dogliotti, E.J.M.R.F., Mutagenesis, M.M.: Cell type and DNA damage specific response of human skin cells to environmental agents. Mutat. Res-Fund. Mol. M. 614(1–2), 37–47 (2007)

    Google Scholar 

  11. Nelson, W.G., Sun, T.-T.J.T.J.: The 50-and 58-kdalton keratin classes as molecular markers for stratified squamous epithelia: cell culture studies. J. Cell Biol. 97(1), 244–251 (1983)

    Google Scholar 

  12. Ehrhardt, P., Brandner Johanna, M., Jens-Michael, J.J.E.D.: The skin: an indispensable barrier. Exp. Dermatol. 17, 1063–1072 (2008)

    Google Scholar 

  13. Madison, K.C.J.J.: Barrier function of the skin:“la raison d’etre” of the epidermis. J. Invest. Dermatol. 121(2), 231–241 (2003)

    Google Scholar 

  14. Bollag, W.B., Dodd, M.E., Shapiro, B.A.J.: Protein kinase D and keratinocyte proliferation. Drug News Perspect. 17(2), 117–126 (2004)

    Google Scholar 

  15. Briggaman, R.A., Wheeler Jr., C.E.J.J.: The epidermal-dermal junction. J. Invest. Dermatol. 65(1), 71–84 (1975)

    Google Scholar 

  16. Ramshaw, J.A., Shah, N.K., Brodsky, B.J.J.: Gly-XY tripeptide frequencies in collagen: a context for host–guest triple-helical peptides. J. Struct. Biol. 122(1–2), 86–91 (1998)

    Google Scholar 

  17. Brodsky, B., Ramshaw, J.A.J.M.B.: The collagen triple-helix structure. Matrix Biol. 15(8–9), 545–554 (1997)

    Google Scholar 

  18. Dölz, R., Engel, J., Kühn, K.J.E.: Folding of collagen IV. Eur. J. Biochem. 178(2), 357–366 (1988)

    Google Scholar 

  19. Boateng, J.S., Matthews, K.H., Stevens, H.N., Eccleston, G.M.J.J.: Wound healing dressings and drug delivery systems: a review. J. Pharm. Sci. 97(8), 2892–2923 (2008)

    Google Scholar 

  20. Kyriacos, D.S., Mtshali, K., van Heerden, D.: Fresh perspectives: fundamentals of nursing. Pearson South Africa (2008)

    Google Scholar 

  21. Patrulea, V., Ostafe, V., Borchard, G., Jordan, O.J.E.J.: Chitosan as a starting material for wound healing applications. Eur. J. Pharm. Biopharm. 97, 417–426 (2015)

    Google Scholar 

  22. Maver, T., Maver, U., Kleinschek, K.S., Raščan, I.M., Smrke, D.M.J.W.K.W.: Advanced therapies of skin injuries. 127(5), 187–198 (2015)

    CAS  Google Scholar 

  23. Bertone, A.L.J.V.C.O.N.A.E.P.: Principles of wound healing. Surg. Clin. North Am. 5(3), 449–463 (1989)

    Google Scholar 

  24. Kirsner, R.S., Eaglstein, W.H.J.D.: The wound healing process. 11(4), 629–640 (1993)

    Google Scholar 

  25. Harding, K.G., Moore, K., Phillips, T.J.J.I.: Wound chronicity and fibroblast senescence–implications for treatment. Int. Wound J. 2(4), 364–368 (2005)

    Google Scholar 

  26. Yamaguchi, Y., Yoshikawa, K.J.T.J.: Cutaneous wound healing: an update. J. Dermatol. 28(10), 521–534 (2001)

    Google Scholar 

  27. Braiman-Wiksman, L., Solomonik, I., Spira, R., Tennenbaum, T.J.T.: Novel insights into wound healing sequence of events. Toxicol. Pathol. 35(6), 767–779 (2007)

    Google Scholar 

  28. Jones, S.G., Edwards, R., Thomas, D.W.J.T.I.J.O.L.E.W.: Inflammation and wound healing: the role of bacteria in the immuno-regulation of wound healing. J. Low. Extrem. Wounds. 3(4), 201–208 (2004)

    Google Scholar 

  29. Richardson, M.J.N.: Acute wounds: an overview of the physiological healing process. Nurs. Times. 100(4), 50 (2004)

    Google Scholar 

  30. Seror, D., Nissan, A., Spira, R.M., Feigin, E.J.T.A.S.: Comparison of bursting pressure of abdominal wall defects repaired by three conventional techniques. Am. Surg. 69(11), 978 (2003)

    Google Scholar 

  31. Fan, Z., Liu, B., Wang, J., Zhang, S., Lin, Q., Gong, P., Ma, L., Yang, S.J.A.F.M.: A novel wound dressing based on Ag/graphene polymer hydrogel: effectively kill bacteria and accelerate wound healing. Adv. Func. Mater. 24(25), 3933–3943 (2014)

    Google Scholar 

  32. Pal, K., Aljabali, A.A.A., Kralj, S., Thomas, S., Gomes de Souza, F.: Graphene-assembly liquid crystalline and nanopolymer hybridization: a review on switchable device implementations. Chemosphere. 263, 128104 (2021)

    CAS  CrossRef  Google Scholar 

  33. Domb, A.J., Khan, W.: Focal controlled drug delivery. Springer (2014)

    Google Scholar 

  34. Kokabi, M., Sirousazar, M., Hassan, Z.M.J.E.: PVA–clay nanocomposite hydrogels for wound dressing. Eur. Polym. J. 43(3), 773–781 (2007)

    Google Scholar 

  35. Morgado, P.I., Lisboa, P.F., Ribeiro, M.P., Miguel, S.P., Simões, P.C., Correia, I.J., Aguiar-Ricardo, A.J.J.: Poly (vinyl alcohol)/chitosan asymmetrical membranes: highly controlled morphology toward the ideal wound dressing. J. Membr. Sci. 469, 262–271 (2014)

    Google Scholar 

  36. Watson, N.F., Hodgkin, W.J.S.: Wound dressings. Bmj 23(2), 52–55 (2005)

    Google Scholar 

  37. Rakhorst, G., Ploeg, R.J.: Biomaterials in modern medicine: the Groningen perspective. World Scientific (2008)

    CrossRef  Google Scholar 

  38. Tabata, Y.: Biomaterial technology for tissue engineering applications. J. R. Soc. Interface 6(suppl_3), S311–S324 (2009)

    Google Scholar 

  39. Altman, G.H., Diaz, F., Jakuba, C., Calabro, T., Horan, R.L., Chen, J., Lu, H., Richmond, J., Kaplan, D.L.J.B.: Silk-based biomaterials. Biomater. 24(3), 401–416 (2003)

    Google Scholar 

  40. Minoura, N., Aiba, S.I., Gotoh, Y., Tsukada, M., Imai, Y.J.J.: Attachment and growth of cultured fibroblast cells on silk protein matrices. J. Biomed. Mater. Res. 29(10), 1215–1221 (1995)

    Google Scholar 

  41. Kanokpanont, S., Damrongsakkul, S., Ratanavaraporn, J., Aramwit, P.J.I.J.: An innovative bi-layered wound dressing made of silk and gelatin for accelerated wound healing. Int. J. Pharm. 436(1–2), 141–153 (2012)

    Google Scholar 

  42. Sofia, S., McCarthy, M.B., Gronowicz, G., Kaplan, D.L.J.J.: Functionalized silk-based biomaterials for bone formation. J. Biomed. Mater. Res. 54(1), 139–148 (2001)

    Google Scholar 

  43. Morley, E.L., Gorham, P.W.: Evidence for nanocoulomb charges on spider ballooning silk. Phys. Rev. E. 102(1–1), 012403 (2020)

    CAS  CrossRef  Google Scholar 

  44. Yang, W.T., Lee, K.S., Hur, Y.J., Kim, B.Y., Li, J., Yu, S., Jin, B.R., Kim, D.H.: Spider silk fibroin protein heterologously produced in rice seeds reduce diabetes and hypercholesterolemia in mice. Plants (Basel). 9(10), 1282 (2020)

    Google Scholar 

  45. DeBari, M.K., Keyser, M.N., Bai, M.A., Abbott, R.D.: 3D printing with silk: considerations and applications. Connect. Tissue Res. 61(2), 163–173 (2020)

    CAS  CrossRef  Google Scholar 

  46. Huang, T., Kumari, S., Herold, H., Bargel, H., Aigner, T.B., Heath, D.E., O’Brien-Simpson, N.M., O’Connor, A.J., Scheibel, T.: Enhanced antibacterial activity of se nanoparticles upon coating with recombinant spider silk protein eADF4(kappa16). Int. J. Nanomedicine. 15, 4275–4288 (2020)

    CAS  CrossRef  Google Scholar 

  47. Kono, N., Nakamura, H., Mori, M., Tomita, M., Arakawa, K.: Spidroin profiling of cribellate spiders provides insight into the evolution of spider prey capture strategies. Sci. Rep. 10(1), 15721 (2020)

    CAS  CrossRef  Google Scholar 

  48. Kumari, S., Bargel, H., Scheibel, T.: Recombinant Spider silk-silica hybrid scaffolds with drug-releasing properties for tissue engineering applications. Macromol. Rapid Commun. 41(1), e1900426 (2020)

    CrossRef  Google Scholar 

  49. Chouhan, D., Mandal, B.B.: Silk biomaterials in wound healing and skin regeneration therapeutics: from bench to bedside. Acta Biomater. 103, 24–51 (2020)

    CAS  CrossRef  Google Scholar 

  50. Atala, A., Mooney, D.J.: Synthetic biodegradable polymer scaffolds. Springer Science & Business Media (1997)

    CrossRef  Google Scholar 

  51. Kennedy, J.F., Knill, C.J., Thorley, M.: Natural polymers for healing wounds. In: Recent advances in environmentally compatible polymers, pp. 97–104. Elsevier (2001)

    CrossRef  Google Scholar 

  52. Obara, K., Ishihara, M., Ishizuka, T., Fujita, M., Ozeki, Y., Maehara, T., Saito, Y., Yura, H., Matsui, T., Hattori, H.J.B.: Photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 stimulates wound healing in healing-impaired db/db mice. Biomater. 24(20), 3437–3444 (2003)

    Google Scholar 

  53. Howling, G.I., Dettmar, P.W., Goddard, P.A., Hampson, F.C., Dornish, M., Wood, E.J.J.B.: The effect of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro. Biomater. 22(22), 2959–2966 (2001)

    Google Scholar 

  54. Baxter, R.M., Dai, T., Kimball, J., Wang, E., Hamblin, M.R., Wiesmann, W.P., McCarthy, S.J., Baker, S.M.J.J.: Chitosan dressing promotes healing in third degree burns in mice: gene expression analysis shows biphasic effects for rapid tissue regeneration and decreased fibrotic signaling. J. Biomed. Mater. Res. Part A 101(2), 340–348 (2013)

    Google Scholar 

  55. Fontana, J., De Souza, A., Fontana, C., Torriani, I., Moreschi, J., Gallotti, B., De Souza, S., Narcisco, G., Bichara, J., Farah, L.J.A.B..: Acetobacter cellulose pellicle as a temporary skin substitute. Biotechnology. 24(1), 253–264 (1990)

    Google Scholar 

  56. Portela, R., Leal, C.R., Almeida, P.L., Sobral, R.G.J.M.b.: Bacterial cellulose: a versatile biopolymer for wound dressing applications. Microb. Biotechnol. 12(4), 586–610 (2019)

    Google Scholar 

  57. Khazeni, S., Hatamian-Zarmi, A., Yazdian, F., Mokhtari-Hosseini, Z.B., Ebrahimi-Hosseinzadeh, B., Noorani, B., Amoabedini, G., Soudi, M.R.J.P.B.: Biotechnology. Production of nanocellulose in miniature-bioreactor: Optimization and characterization. Prep. Biochem. Biotechnol. 47(4), 371–378 (2017)

    Google Scholar 

  58. Chan, C.K., Shin, J., Jiang, S.X.K.J.C., Journal, T.R.: Development of tailor-shaped bacterial cellulose textile cultivation techniques for zero-waste design. Cloth. Text. Res. J. 36(1), 33–44 (2018)

    Google Scholar 

  59. Rebelo, R., Archer, A.J., Chen, X., Liu, C., Yang, G., Liu, Y.J.S.: Dehydration of bacterial cellulose and the water content effects on its viscoelastic and electrochemical properties. Sci. Technol. Adv. Mater. 19(1), 203–211 (2018)

    Google Scholar 

  60. Seifert, M., Hesse, S., Kabrelian, V., Klemm, D.J.J.: Controlling the water content of never dried and reswollen bacterial cellulose by the addition of water-soluble polymers to the culture medium. J. Polym. Sci. Part A: Polym. Chem. 42(3), 463–470 (2004)

    Google Scholar 

  61. Mishra, V., Nayak, P., Yadav, N., Singh, M., Tambuwala, M.M., Aljabali, A.A.J.E.O.: Orally administered self-emulsifying drug delivery system in disease management: advancement and patents. Exp. Opin. Drug Deliv. 18(3), 1–18 (2020)

    Google Scholar 

  62. Bottan, S., Robotti, F., Jayathissa, P., Hegglin, A., Bahamonde, N., Heredia-Guerrero, J.A., Bayer, I.S., Scarpellini, A., Merker, H., Lindenblatt, N.J.A.N.: Surface-structured bacterial cellulose with guided assembly-based biolithography (GAB). Acs Nano 9(1), 206–219 (2015)

    Google Scholar 

  63. Gelin, K., Bodin, A., Gatenholm, P., Mihranyan, A., Edwards, K., Strømme, M.J.P.: Characterization of water in bacterial cellulose using dielectric spectroscopy and electron microscopy. Polym. 48(26), 7623–7631 (2007)

    Google Scholar 

  64. Shah, N., Ul-Islam, M., Khattak, W.A., Park, J.K.J.C.: Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr. Polym. 98(2), 1585–1598 (2013)

    Google Scholar 

  65. Agarwal, A., McAnulty, J., Schurr, M., Murphy, C., Abbott, N.: Polymeric materials for chronic wound and burn dressings. In: Advanced Wound Repair Therapies, pp. 186–208. Elsevier (2011)

    CrossRef  Google Scholar 

  66. Kazemi, D., Doustar, Y., Assadnassab, G.J.C.R.: Surgical treatment of a chronically recurring case of cervical mucocele in a German shepherd dog. (2012)

    Google Scholar 

  67. Ul-Islam, M., Khan, T., Park, J.K.J.C.P.: Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr. Polym. 88(2), 596–603 (2012)

    Google Scholar 

  68. Saibuatong, O.-A., Phisalaphong, M.J.C.P.: Novo aloe vera–bacterial cellulose composite film from biosynthesis. Carbohydr. Polym. 79(2), 455–460 (2010)

    Google Scholar 

  69. Chang, W.-S., Chen, H.-H.J.F.H.: Physical properties of bacterial cellulose composites for wound dressings. Food Hydrocoll. 53, 75–83 (2016)

    Google Scholar 

  70. Almeida, I., Pereira, T., Silva, N., Gomes, F., Silvestre, A., Freire, C., Lobo, J.S., Costa, P.J.E.J.: Bacterial cellulose membranes as drug delivery systems: an in vivo skin compatibility study. Eur. J. Pharm. Biopharm. 86(3), 332–336 (2014)

    Google Scholar 

  71. Qiu, Y., Qiu, L., Cui, J., Wei, Q.J.M.S.: Bacterial cellulose and bacterial cellulose-vaccarin membranes for wound healing. Mater. Sci. Eng. C 59, 303–309 (2016)

    Google Scholar 

  72. Moraes, P.R.F.D.S., Saska, S., Barud, H., Lima, L.R.D., Martins, V.D.C.A., Plepis, A.M.D.G., Ribeiro, S.J.L., Gaspar, A.M.M.J.M.R.: Bacterial cellulose/collagen hydrogel for wound healing. Mater. Res. 19(1), 106–116 (2016)

    Google Scholar 

  73. Pourali, P., Yahyaei, B.J.B.: The healing property of a bioactive wound dressing prepared by the combination of bacterial cellulose (BC) and Zingiber officinale root aqueous extract in rats. 3 Biotech. 9(2), 59 (2019)

    Google Scholar 

  74. Lin, S.-P., Kung, H.-N., Tsai, Y.-S., Tseng, T.-N., Hsu, K.-D., Cheng, K.-C.J.C.: Novel dextran modified bacterial cellulose hydrogel accelerating cutaneous wound healing. Cellul. 24(11), 4927–4937 (2017)

    Google Scholar 

  75. Loh, E.Y.X., Mohamad, N., Fauzi, M.B., Ng, M.H., Ng, S.F., Amin, M.C.I.M.J.S.: Development of a bacterial cellulose-based hydrogel cell carrier containing keratinocytes and fibroblasts for full-thickness wound healing. Scient. Rep. 8(1), 1–12 (2018)

    Google Scholar 

  76. Yu, J., Huang, T.R., Lim, Z.H., Luo, R., Pasula, R.R., Liao, L.D., Lim, S., Chen, C.H.J.A.H.M.: Wound healing: production of hollow bacterial cellulose microspheres using microfluidics to form an injectable porous scaffold for wound healing. Adv. Healthcare Mater. 5(23), 2961–2961 (2016)

    CAS  CrossRef  Google Scholar 

  77. Napavichayanun, S., Ampawong, S., Harnsilpong, T., Angspatt, A., Aramwit, P.J.A.: Inflammatory reaction, clinical efficacy, and safety of bacterial cellulose wound dressing containing silk sericin and polyhexamethylene biguanide for wound treatment. 310(10), 795–805 (2018)

    Google Scholar 

  78. Carvalho, T., Guedes, G., Sousa, F.L., Freire, C.S., Santos, H.A.J.B.J.: Latest advances on bacterial cellulose-based materials for wound healing, delivery systems, and tissue engineering. 14(12), 1900059 (2019)

    Google Scholar 

  79. Pandey, M., Mohamad, N., Low, W.-L., Martin, C., Amin, M.C.I.M.J.D.: Microwaved bacterial cellulose-based hydrogel microparticles for the healing of partial thickness burn wounds. 7(1), 89–99 (2017)

    Google Scholar 

  80. Napavichayanun, S., Yamdech, R., Aramwit, P.J.A.: The safety and efficacy of bacterial nanocellulose wound dressing incorporating sericin and polyhexamethylene biguanide: in vitro, in vivo and clinical studies. Arch. Dermatol. Res. 308(2), 123–132 (2016)

    Google Scholar 

  81. Ye, S., Jiang, L., Wu, J., Su, C., Huang, C., Liu, X., Shao, W.J.A.: Flexible amoxicillin-grafted bacterial cellulose sponges for wound dressing: in vitro and in vivo evaluation. Arch. Dermatol. Res. 10(6), 5862–5870 (2018)

    Google Scholar 

  82. Khalid, A., Ullah, H., Ul-Islam, M., Khan, R., Khan, S., Ahmad, F., Khan, T., Wahid, F.J.R.: Bacterial cellulose–TiO2 nanocomposites promote healing and tissue regeneration in burn mice model. RSC Adv. 7(75), 47662–47668 (2017)

    Google Scholar 

  83. Jiji, S., Udhayakumar, S., Rose, C., Muralidharan, C., Kadirvelu, K.J.I.: Thymol enriched bacterial cellulose hydrogel as effective material for third degree burn wound repair. Int. J. Biol. Macromol. 122, 452–460 (2019)

    Google Scholar 

  84. Zhang, F., Tuck, C., Hague, R., He, Y., Saleh, E., Li, Y., Sturgess, C., Wildman, R.J.J.: Inkjet printing of polyimide insulators for the 3 D printing of dielectric materials for microelectronic applications. J. Appl. Polym. Sci. 133(18), (2016)

    Google Scholar 

  85. Karahaliloğlu, Z., Demirbilek, M., Ulusoy, İ., Gümüşkaya, B., Denkbaş, E.B.J.J.: Active nano/microbilayer hemostatic agents for diabetic rat bleeding model. J. Biomed. Mater. Res. Part B Appl. Biomater. 105(6), 1573–1585 (2017)

    Google Scholar 

  86. Jin, M., Chen, W., Li, Z., Zhang, Y., Zhang, M., Chen, S.J.C.: Patterned bacterial cellulose wound dressing for hypertrophic scar inhibition behavior. Patterned bacterial cellulose wound dressing for hypertrophic scar inhibition behavior. 25(11), 6705–6717 (2018)

    Google Scholar 

  87. Pourali, P., Razavianzadeh, N., Khojasteh, L., Yahyaei, B.J.J.: Assessment of the cutaneous wound healing efficiency of acidic, neutral and alkaline bacterial cellulose membrane in rat. J. Mater. Sci. Mater. Med. 29(7), 90 (2018)

    Google Scholar 

  88. Sajjad, W., Khan, T., Ul-Islam, M., Khan, R., Hussain, Z., Khalid, A., Wahid, F.J.C.: Development of modified montmorillonite-bacterial cellulose nanocomposites as a novel substitute for burn skin and tissue regeneration. Carbohydr. Polym. 206, 548–556 (2019)

    Google Scholar 

  89. Kaminagakura, K.L.N., Sue Sato, S., Sugino, P., de Oliveira, K., Veloso, L., dos Santos, D.C., Padovani, C.R., Basmaji, P., Olyveira, G., Schellini, S.A.J.J.: Nanoskin® to treat full thickness skin wounds. J. Biomed. Mater. Res. Part B Appl. Biomater. 107(3), 724–732 (2019)

    Google Scholar 

  90. Ranby, B.J.A.C.S.: Aqueous colloidal solutions of cellulose micelles, vol. 3, pp. 649–650. Munksgaard Int Publ Ltd, Copenhagen (1949)

    Google Scholar 

  91. Habibi, Y., Lucia, L.A., Rojas, O.J.J.C.: Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 110(6), 3479–3500 (2010)

    Google Scholar 

  92. Chang, C.-W., Wang, M.-J.J.A.S.C.: Preparation of microfibrillated cellulose composites for sustained release of H2O2 or O2 for biomedical applications. ACS Sust. Chem. Eng. 1(9), 1129–1134 (2013)

    Google Scholar 

  93. Ni, H., Zeng, S., Wu, J., Cheng, X., Luo, T., Wang, W., Zeng, W., Chen, Y.J.B.-M.M.: Cellulose nanowhiskers: preparation, characterization and cytotoxicity evaluation. Bio-med. Mater. Eng. 22(1–3), 121–127 (2012)

    Google Scholar 

  94. Pereira, M.M., Raposo, N., Brayner, R., Teixeira, E., Oliveira, V., Quintão, C.C.R., Camargo, L., Mattoso, L., Brandão, H.J.N.: Cytotoxicity and expression of genes involved in the cellular stress response and apoptosis in mammalian fibroblast exposed to cotton cellulose nanofibers. Nanotechnol. 24(7), 075103 (2013)

    Google Scholar 

  95. Chen, Q., Garcia, R.P.R., Munoz, J., Pérez de Larraya, U., Garmendia, N., Yao, Q., Boccaccini, A.R.J.A.A.M.: Cellulose nanocrystals bioactive glass hybrid coating as bone substitutes by electrophoretic co-deposition: in situ control of mineralization of bioactive glass and enhancement of osteoblastic performance. ACS Appl. Mater. Interface. 7(44), 24715–24725 (2015)

    Google Scholar 

  96. Kataria, K., Gupta, A., Rath, G., Mathur, R., Dhakate, S.J.I.: In vivo wound healing performance of drug loaded electrospun composite nanofibers transdermal patch. Int. J. Pharm. 469(1), 102–110 (2014)

    Google Scholar 

  97. Mendes, A.C., Gorzelanny, C., Halter, N., Schneider, S.W., Chronakis, I.S.J.I.: Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery. Int. J. Pharm. 510(1), 48–56 (2016)

    Google Scholar 

  98. Khalid, A., Khan, R., Ul-Islam, M., Khan, T., Wahid, F.J.C.: Bacterial cellulose-zinc oxide nanocomposites as a novel dressing system for burn wounds. Carbohydr. Polym. 164, 214–221 (2017)

    Google Scholar 

  99. Mo, Y., Guo, R., Zhang, Y., Xue, W., Cheng, B., Zhang, Y.J.T.E.P.A.: Controlled dual delivery of angiogenin and curcumin by electrospun nanofibers for skin regeneration. Tissue Eng. Part A 23(13–14), 597–608 (2017)

    Google Scholar 

  100. Guo, R., Lan, Y., Xue, W., Cheng, B., Zhang, Y., Wang, C., Ramakrishna, S.J.J.: Collagen-cellulose nanocrystal scaffolds containing curcumin-loaded microspheres on infected full-thickness burns repair. J. Tissue Eng. Regen. Med. 11(12), 3544–3555 (2017)

    Google Scholar 

  101. Alkhatib, Y., Dewaldt, M., Moritz, S., Nitzsche, R., Kralisch, D., Fischer, D.J.E.J.: Controlled extended octenidine release from a bacterial nanocellulose/Poloxamer hybrid system. Eur. J. Pharm. Biopharm. 112, 164–176 (2017)

    Google Scholar 

  102. Sun, F., Nordli, H.R., Pukstad, B., Gamstedt, E.K., Chinga-Carrasco, G.J.J.: Mechanical characteristics of nanocellulose-PEG bionanocomposite wound dressings in wet conditions. J. Mech. Behav. Biomed. Mater. 69, 377–384 (2017)

    Google Scholar 

  103. Skogberg, A., Mäki, A.-J., Mettänen, M., Lahtinen, P., Kallio, P.J.B.: Cellulose nanofiber alignment using evaporation-induced droplet-casting, and cell alignment on aligned nanocellulose surfaces. Biomacromol. 18(12), 3936–3953 (2017)

    Google Scholar 

  104. Bacakova, L., Pajorova, J., Bacakova, M., Skogberg, A., Kallio, P., Kolarova, K., Svorcik, V.J.N.: Versatile application of nanocellulose: from industry to skin tissue engineering and wound healing. Nanomater. 9(2), 164 (2019)

    Google Scholar 

  105. Hakkarainen, T., Koivuniemi, R., Kosonen, M., Escobedo-Lucea, C., Sanz-Garcia, A., Vuola, J., Valtonen, J., Tammela, P., Mäkitie, A., Luukko, K.J.J.: Nanofibrillar cellulose wound dressing in skin graft donor site treatment. J. Control. Release 244, 292–301 (2016)

    Google Scholar 

  106. Basu, A., Lindh, J., Ålander, E., Strømme, M., Ferraz, N.J.C.P.: On the use of ion-crosslinked nanocellulose hydrogels for wound healing solutions: physicochemical properties and application-oriented biocompatibility studies. Carbohydr. Polym. 174, 299–308 (2017)

    Google Scholar 

  107. Sharma, A.K., Prasher, P., Aljabali, A.A., Mishra, V., Gandhi, H., Kumar, S., Mutalik, S., Chellappan, D.K., Tambuwala, M.M., Dua, K., Kapoor, D.N.: Emerging era of “somes”: polymersomes as versatile drug delivery carrier for cancer diagnostics and therapy. Drug Deliv. Transl. Res. 10(5), 1171–1190 (2020)

    CAS  CrossRef  Google Scholar 

  108. Vosmanska, V., Kolarova, K., Rimpelova, S., Svorcik, V.J.C.: Surface modification of oxidized cellulose haemostat by argon plasma treatment. Cellulose 21(4), 2445–2456 (2014)

    Google Scholar 

  109. Powell, L.C., Khan, S., Chinga-Carrasco, G., Wright, C.J., Hill, K.E., Thomas, D.W.J.C.: An investigation of Pseudomonas aeruginosa biofilm growth on novel nanocellulose fibre dressings. Carbohydr. Polym. 137, 191–197 (2016)

    Google Scholar 

  110. Jack, A.A., Nordli, H.R., Powell, L.C., Powell, K.A., Kishnani, H., Johnsen, P.O., Pukstad, B., Thomas, D.W., Chinga-Carrasco, G., Hill, K.E.J.C.: The interaction of wood nanocellulose dressings and the wound pathogen P. aeruginosa. Carbohydr. Polym. 157, 1955–1962 (2017)

    Google Scholar 

  111. Poonguzhali, R., Basha, S.K., Kumari, V.S.J.I.: Novel asymmetric chitosan/PVP/nanocellulose wound dressing: in vitro and in vivo evaluation. Int. J. Biol. Macromol. 112, 1300–1309 (2018)

    Google Scholar 

  112. Xiao, Y., Rong, L., Wang, B., Mao, Z., Xu, H., Zhong, Y., Zhang, L., Sui, X.J.C.: A light-weight and high-efficacy antibacterial nanocellulose-based sponge via covalent immobilization of gentamicin. Carbohydr. Polym. 200, 595–601 (2018)

    Google Scholar 

  113. Kontogiannopoulos, K.N., Assimopoulou, A.N., Tsivintzelis, I., Panayiotou, C., Papageorgiou, V.P.J.I.: Electrospun fiber mats containing shikonin and derivatives with potential biomedical applications. Int. J. Pharm. 409(1–2), 216–228 (2011)

    Google Scholar 

  114. Ng, V.W., Chan, J.M., Sardon, H., Ono, R.J., García, J.M., Yang, Y.Y., Hedrick, J.L.J.A.D.D.R.: Antimicrobial hydrogels: a new weapon in the arsenal against multidrug-resistant infections. Adv. Drug Deliv. Rev. 78, 46–62 (2014)

    Google Scholar 

  115. Chai, Q., Jiao, Y., Yu, X.J.G.: Hydrogels for biomedical applications: their characteristics and the mechanisms behind them. Gels 3(1), 6 (2017)

    Google Scholar 

  116. Helenius, G., Bäckdahl, H., Bodin, A., Nannmark, U., Gatenholm, P., Risberg, B.J.J.: In vivo biocompatibility of bacterial cellulose. J. Biomed. Mater. Res. Part A 76(2), 431–438 (2006)

    Google Scholar 

  117. Lin, Y.-K., Chen, K.-H., Ou, K.-L., Liu, M.J.J.: Effects of different extracellular matrices and growth factor immobilization on biodegradability and biocompatibility of macroporous bacterial cellulose. J. Bioact. Compat. Polym. 26(5), 508–518 (2011)

    Google Scholar 

  118. Awadhiya, A., Kumar, D., Rathore, K., Fatma, B., Verma, V.J.P.B.: Synthesis and characterization of agarose–bacterial cellulose biodegradable composites. Polym. Bull. 74(7), 2887–2903 (2017)

    Google Scholar 

  119. Mekkawy, A.I., El-Mokhtar, M.A., Nafady, N.A., Yousef, N., Hamad, M.A., El-Shanawany, S.M., Ibrahim, E.H., Elsabahy, M.J.I.: In vitro and in vivo evaluation of biologically synthesized silver nanoparticles for topical applications: effect of surface coating and loading into hydrogels. Int. J. Nanomed. 12, 759 (2017)

    Google Scholar 

  120. DeBoer, T., Chakraborty, I., Mascharak, P.J.J.: Design and construction of a silver (I)-loaded cellulose-based wound dressing: trackable and sustained release of silver for controlled therapeutic delivery to wound sites. J. Mater. Sci. Mater. Med. 26(10), 243 (2015)

    Google Scholar 

  121. Colò, F., Bella, F., Nair, J.R., Destro, M., Gerbaldi, C.J.E.A.: Cellulose-based novel hybrid polymer electrolytes for green and efficient Na-ion batteries. Electrochim. Acta 174, 185–190 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alaa A. A. Aljabali or Murtaza M. Tambuwala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Verify currency and authenticity via CrossMark

Cite this entry

Ennab, R.M., Aljabali, A.A.A., Charbe, N.B., Barhoum, A., Alqudah, A., Tambuwala, M.M. (2021). Nanocelluloses in Wound Healing Applications. In: Barhoum, A. (eds) Handbook of Nanocelluloses. Springer, Cham. https://doi.org/10.1007/978-3-030-62976-2_41-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62976-2_41-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62976-2

  • Online ISBN: 978-3-030-62976-2

  • eBook Packages: Springer Reference Chemistry & Mat. ScienceReference Module Physical and Materials Science