Rowan, M.P., Cancio, L.C., Elster, E.A., Burmeister, D.M., Rose, L.F., Natesan, S., Chan, R.K., Christy, R.J., Chung, K.K.J.C.: Burn wound healing and treatment: review and advancements. Crit. Care. 19(1), 243 (2015)
Google Scholar
Barrientos, S., Stojadinovic, O., Golinko, M.S., Brem, H., Tomic-Canic, M.J.W.: Growth factors and cytokines in wound healing. Wound. Repair. Regen. 16(5), 585–601 (2008)
Google Scholar
Gosain, A., DiPietro, L.A.J.W.: Aging and wound healing. World. J. Surg. 28(3), 321–326 (2004)
Google Scholar
Aljabali, A.A., Obeid, M.A.J.N.: Inorganic-organic nanomaterials for therapeutics and molecular imaging applications. Nanotechnology-Asia. 10(6), 748–765 (2020)
CAS
CrossRef
Google Scholar
Mathieu, D.: Handbook on hyperbaric medicine, vol. 27. Springer (2006)
Google Scholar
George Broughton, I., Janis, J.E., Attinger, C.E.J.P.: The basic science of wound healing. Plast. Reconstr. Surg. 117(7S), 12S–34S (2006)
Google Scholar
Campos, A.C., Groth, A.K., Branco, A.B..J.C.O.I.C.N., Care, M.: Assessment and nutritional aspects of wound healing. Curr. Opin. Clin. Nutr. Metab. Care. 11(3), 281–288 (2008)
Google Scholar
Guo, S.A., DiPietro, L.A.J.J.O.D.R.: Factors affecting wound healing. J. Dent. Res. 89(3), 219–229 (2010)
Google Scholar
Ennab, R.M., Al-Omari, M.H., Jaradat, I.I., Aljabali, A.A.J.I.J.O.S.C.R.: Endovascular management of acute mesenteric ischemia in a young patient with thyrotoxicosis and atrial fibrillation: a case report and review of the literature. Int. J. Surg. Case Rep. (2020)
Google Scholar
D’Errico, M., Lemma, T., Calcagnile, A., De Santis, L.P., Dogliotti, E.J.M.R.F., Mutagenesis, M.M.: Cell type and DNA damage specific response of human skin cells to environmental agents. Mutat. Res-Fund. Mol. M. 614(1–2), 37–47 (2007)
Google Scholar
Nelson, W.G., Sun, T.-T.J.T.J.: The 50-and 58-kdalton keratin classes as molecular markers for stratified squamous epithelia: cell culture studies. J. Cell Biol. 97(1), 244–251 (1983)
Google Scholar
Ehrhardt, P., Brandner Johanna, M., Jens-Michael, J.J.E.D.: The skin: an indispensable barrier. Exp. Dermatol. 17, 1063–1072 (2008)
Google Scholar
Madison, K.C.J.J.: Barrier function of the skin:“la raison d’etre” of the epidermis. J. Invest. Dermatol. 121(2), 231–241 (2003)
Google Scholar
Bollag, W.B., Dodd, M.E., Shapiro, B.A.J.: Protein kinase D and keratinocyte proliferation. Drug News Perspect. 17(2), 117–126 (2004)
Google Scholar
Briggaman, R.A., Wheeler Jr., C.E.J.J.: The epidermal-dermal junction. J. Invest. Dermatol. 65(1), 71–84 (1975)
Google Scholar
Ramshaw, J.A., Shah, N.K., Brodsky, B.J.J.: Gly-XY tripeptide frequencies in collagen: a context for host–guest triple-helical peptides. J. Struct. Biol. 122(1–2), 86–91 (1998)
Google Scholar
Brodsky, B., Ramshaw, J.A.J.M.B.: The collagen triple-helix structure. Matrix Biol. 15(8–9), 545–554 (1997)
Google Scholar
Dölz, R., Engel, J., Kühn, K.J.E.: Folding of collagen IV. Eur. J. Biochem. 178(2), 357–366 (1988)
Google Scholar
Boateng, J.S., Matthews, K.H., Stevens, H.N., Eccleston, G.M.J.J.: Wound healing dressings and drug delivery systems: a review. J. Pharm. Sci. 97(8), 2892–2923 (2008)
Google Scholar
Kyriacos, D.S., Mtshali, K., van Heerden, D.: Fresh perspectives: fundamentals of nursing. Pearson South Africa (2008)
Google Scholar
Patrulea, V., Ostafe, V., Borchard, G., Jordan, O.J.E.J.: Chitosan as a starting material for wound healing applications. Eur. J. Pharm. Biopharm. 97, 417–426 (2015)
Google Scholar
Maver, T., Maver, U., Kleinschek, K.S., Raščan, I.M., Smrke, D.M.J.W.K.W.: Advanced therapies of skin injuries. 127(5), 187–198 (2015)
CAS
Google Scholar
Bertone, A.L.J.V.C.O.N.A.E.P.: Principles of wound healing. Surg. Clin. North Am. 5(3), 449–463 (1989)
Google Scholar
Kirsner, R.S., Eaglstein, W.H.J.D.: The wound healing process. 11(4), 629–640 (1993)
Google Scholar
Harding, K.G., Moore, K., Phillips, T.J.J.I.: Wound chronicity and fibroblast senescence–implications for treatment. Int. Wound J. 2(4), 364–368 (2005)
Google Scholar
Yamaguchi, Y., Yoshikawa, K.J.T.J.: Cutaneous wound healing: an update. J. Dermatol. 28(10), 521–534 (2001)
Google Scholar
Braiman-Wiksman, L., Solomonik, I., Spira, R., Tennenbaum, T.J.T.: Novel insights into wound healing sequence of events. Toxicol. Pathol. 35(6), 767–779 (2007)
Google Scholar
Jones, S.G., Edwards, R., Thomas, D.W.J.T.I.J.O.L.E.W.: Inflammation and wound healing: the role of bacteria in the immuno-regulation of wound healing. J. Low. Extrem. Wounds. 3(4), 201–208 (2004)
Google Scholar
Richardson, M.J.N.: Acute wounds: an overview of the physiological healing process. Nurs. Times. 100(4), 50 (2004)
Google Scholar
Seror, D., Nissan, A., Spira, R.M., Feigin, E.J.T.A.S.: Comparison of bursting pressure of abdominal wall defects repaired by three conventional techniques. Am. Surg. 69(11), 978 (2003)
Google Scholar
Fan, Z., Liu, B., Wang, J., Zhang, S., Lin, Q., Gong, P., Ma, L., Yang, S.J.A.F.M.: A novel wound dressing based on Ag/graphene polymer hydrogel: effectively kill bacteria and accelerate wound healing. Adv. Func. Mater. 24(25), 3933–3943 (2014)
Google Scholar
Pal, K., Aljabali, A.A.A., Kralj, S., Thomas, S., Gomes de Souza, F.: Graphene-assembly liquid crystalline and nanopolymer hybridization: a review on switchable device implementations. Chemosphere. 263, 128104 (2021)
CAS
CrossRef
Google Scholar
Domb, A.J., Khan, W.: Focal controlled drug delivery. Springer (2014)
Google Scholar
Kokabi, M., Sirousazar, M., Hassan, Z.M.J.E.: PVA–clay nanocomposite hydrogels for wound dressing. Eur. Polym. J. 43(3), 773–781 (2007)
Google Scholar
Morgado, P.I., Lisboa, P.F., Ribeiro, M.P., Miguel, S.P., Simões, P.C., Correia, I.J., Aguiar-Ricardo, A.J.J.: Poly (vinyl alcohol)/chitosan asymmetrical membranes: highly controlled morphology toward the ideal wound dressing. J. Membr. Sci. 469, 262–271 (2014)
Google Scholar
Watson, N.F., Hodgkin, W.J.S.: Wound dressings. Bmj 23(2), 52–55 (2005)
Google Scholar
Rakhorst, G., Ploeg, R.J.: Biomaterials in modern medicine: the Groningen perspective. World Scientific (2008)
CrossRef
Google Scholar
Tabata, Y.: Biomaterial technology for tissue engineering applications. J. R. Soc. Interface 6(suppl_3), S311–S324 (2009)
Google Scholar
Altman, G.H., Diaz, F., Jakuba, C., Calabro, T., Horan, R.L., Chen, J., Lu, H., Richmond, J., Kaplan, D.L.J.B.: Silk-based biomaterials. Biomater. 24(3), 401–416 (2003)
Google Scholar
Minoura, N., Aiba, S.I., Gotoh, Y., Tsukada, M., Imai, Y.J.J.: Attachment and growth of cultured fibroblast cells on silk protein matrices. J. Biomed. Mater. Res. 29(10), 1215–1221 (1995)
Google Scholar
Kanokpanont, S., Damrongsakkul, S., Ratanavaraporn, J., Aramwit, P.J.I.J.: An innovative bi-layered wound dressing made of silk and gelatin for accelerated wound healing. Int. J. Pharm. 436(1–2), 141–153 (2012)
Google Scholar
Sofia, S., McCarthy, M.B., Gronowicz, G., Kaplan, D.L.J.J.: Functionalized silk-based biomaterials for bone formation. J. Biomed. Mater. Res. 54(1), 139–148 (2001)
Google Scholar
Morley, E.L., Gorham, P.W.: Evidence for nanocoulomb charges on spider ballooning silk. Phys. Rev. E. 102(1–1), 012403 (2020)
CAS
CrossRef
Google Scholar
Yang, W.T., Lee, K.S., Hur, Y.J., Kim, B.Y., Li, J., Yu, S., Jin, B.R., Kim, D.H.: Spider silk fibroin protein heterologously produced in rice seeds reduce diabetes and hypercholesterolemia in mice. Plants (Basel). 9(10), 1282 (2020)
Google Scholar
DeBari, M.K., Keyser, M.N., Bai, M.A., Abbott, R.D.: 3D printing with silk: considerations and applications. Connect. Tissue Res. 61(2), 163–173 (2020)
CAS
CrossRef
Google Scholar
Huang, T., Kumari, S., Herold, H., Bargel, H., Aigner, T.B., Heath, D.E., O’Brien-Simpson, N.M., O’Connor, A.J., Scheibel, T.: Enhanced antibacterial activity of se nanoparticles upon coating with recombinant spider silk protein eADF4(kappa16). Int. J. Nanomedicine. 15, 4275–4288 (2020)
CAS
CrossRef
Google Scholar
Kono, N., Nakamura, H., Mori, M., Tomita, M., Arakawa, K.: Spidroin profiling of cribellate spiders provides insight into the evolution of spider prey capture strategies. Sci. Rep. 10(1), 15721 (2020)
CAS
CrossRef
Google Scholar
Kumari, S., Bargel, H., Scheibel, T.: Recombinant Spider silk-silica hybrid scaffolds with drug-releasing properties for tissue engineering applications. Macromol. Rapid Commun. 41(1), e1900426 (2020)
CrossRef
Google Scholar
Chouhan, D., Mandal, B.B.: Silk biomaterials in wound healing and skin regeneration therapeutics: from bench to bedside. Acta Biomater. 103, 24–51 (2020)
CAS
CrossRef
Google Scholar
Atala, A., Mooney, D.J.: Synthetic biodegradable polymer scaffolds. Springer Science & Business Media (1997)
CrossRef
Google Scholar
Kennedy, J.F., Knill, C.J., Thorley, M.: Natural polymers for healing wounds. In: Recent advances in environmentally compatible polymers, pp. 97–104. Elsevier (2001)
CrossRef
Google Scholar
Obara, K., Ishihara, M., Ishizuka, T., Fujita, M., Ozeki, Y., Maehara, T., Saito, Y., Yura, H., Matsui, T., Hattori, H.J.B.: Photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 stimulates wound healing in healing-impaired db/db mice. Biomater. 24(20), 3437–3444 (2003)
Google Scholar
Howling, G.I., Dettmar, P.W., Goddard, P.A., Hampson, F.C., Dornish, M., Wood, E.J.J.B.: The effect of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro. Biomater. 22(22), 2959–2966 (2001)
Google Scholar
Baxter, R.M., Dai, T., Kimball, J., Wang, E., Hamblin, M.R., Wiesmann, W.P., McCarthy, S.J., Baker, S.M.J.J.: Chitosan dressing promotes healing in third degree burns in mice: gene expression analysis shows biphasic effects for rapid tissue regeneration and decreased fibrotic signaling. J. Biomed. Mater. Res. Part A 101(2), 340–348 (2013)
Google Scholar
Fontana, J., De Souza, A., Fontana, C., Torriani, I., Moreschi, J., Gallotti, B., De Souza, S., Narcisco, G., Bichara, J., Farah, L.J.A.B..: Acetobacter cellulose pellicle as a temporary skin substitute. Biotechnology. 24(1), 253–264 (1990)
Google Scholar
Portela, R., Leal, C.R., Almeida, P.L., Sobral, R.G.J.M.b.: Bacterial cellulose: a versatile biopolymer for wound dressing applications. Microb. Biotechnol. 12(4), 586–610 (2019)
Google Scholar
Khazeni, S., Hatamian-Zarmi, A., Yazdian, F., Mokhtari-Hosseini, Z.B., Ebrahimi-Hosseinzadeh, B., Noorani, B., Amoabedini, G., Soudi, M.R.J.P.B.: Biotechnology. Production of nanocellulose in miniature-bioreactor: Optimization and characterization. Prep. Biochem. Biotechnol. 47(4), 371–378 (2017)
Google Scholar
Chan, C.K., Shin, J., Jiang, S.X.K.J.C., Journal, T.R.: Development of tailor-shaped bacterial cellulose textile cultivation techniques for zero-waste design. Cloth. Text. Res. J. 36(1), 33–44 (2018)
Google Scholar
Rebelo, R., Archer, A.J., Chen, X., Liu, C., Yang, G., Liu, Y.J.S.: Dehydration of bacterial cellulose and the water content effects on its viscoelastic and electrochemical properties. Sci. Technol. Adv. Mater. 19(1), 203–211 (2018)
Google Scholar
Seifert, M., Hesse, S., Kabrelian, V., Klemm, D.J.J.: Controlling the water content of never dried and reswollen bacterial cellulose by the addition of water-soluble polymers to the culture medium. J. Polym. Sci. Part A: Polym. Chem. 42(3), 463–470 (2004)
Google Scholar
Mishra, V., Nayak, P., Yadav, N., Singh, M., Tambuwala, M.M., Aljabali, A.A.J.E.O.: Orally administered self-emulsifying drug delivery system in disease management: advancement and patents. Exp. Opin. Drug Deliv. 18(3), 1–18 (2020)
Google Scholar
Bottan, S., Robotti, F., Jayathissa, P., Hegglin, A., Bahamonde, N., Heredia-Guerrero, J.A., Bayer, I.S., Scarpellini, A., Merker, H., Lindenblatt, N.J.A.N.: Surface-structured bacterial cellulose with guided assembly-based biolithography (GAB). Acs Nano 9(1), 206–219 (2015)
Google Scholar
Gelin, K., Bodin, A., Gatenholm, P., Mihranyan, A., Edwards, K., Strømme, M.J.P.: Characterization of water in bacterial cellulose using dielectric spectroscopy and electron microscopy. Polym. 48(26), 7623–7631 (2007)
Google Scholar
Shah, N., Ul-Islam, M., Khattak, W.A., Park, J.K.J.C.: Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr. Polym. 98(2), 1585–1598 (2013)
Google Scholar
Agarwal, A., McAnulty, J., Schurr, M., Murphy, C., Abbott, N.: Polymeric materials for chronic wound and burn dressings. In: Advanced Wound Repair Therapies, pp. 186–208. Elsevier (2011)
CrossRef
Google Scholar
Kazemi, D., Doustar, Y., Assadnassab, G.J.C.R.: Surgical treatment of a chronically recurring case of cervical mucocele in a German shepherd dog. (2012)
Google Scholar
Ul-Islam, M., Khan, T., Park, J.K.J.C.P.: Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr. Polym. 88(2), 596–603 (2012)
Google Scholar
Saibuatong, O.-A., Phisalaphong, M.J.C.P.: Novo aloe vera–bacterial cellulose composite film from biosynthesis. Carbohydr. Polym. 79(2), 455–460 (2010)
Google Scholar
Chang, W.-S., Chen, H.-H.J.F.H.: Physical properties of bacterial cellulose composites for wound dressings. Food Hydrocoll. 53, 75–83 (2016)
Google Scholar
Almeida, I., Pereira, T., Silva, N., Gomes, F., Silvestre, A., Freire, C., Lobo, J.S., Costa, P.J.E.J.: Bacterial cellulose membranes as drug delivery systems: an in vivo skin compatibility study. Eur. J. Pharm. Biopharm. 86(3), 332–336 (2014)
Google Scholar
Qiu, Y., Qiu, L., Cui, J., Wei, Q.J.M.S.: Bacterial cellulose and bacterial cellulose-vaccarin membranes for wound healing. Mater. Sci. Eng. C 59, 303–309 (2016)
Google Scholar
Moraes, P.R.F.D.S., Saska, S., Barud, H., Lima, L.R.D., Martins, V.D.C.A., Plepis, A.M.D.G., Ribeiro, S.J.L., Gaspar, A.M.M.J.M.R.: Bacterial cellulose/collagen hydrogel for wound healing. Mater. Res. 19(1), 106–116 (2016)
Google Scholar
Pourali, P., Yahyaei, B.J.B.: The healing property of a bioactive wound dressing prepared by the combination of bacterial cellulose (BC) and Zingiber officinale root aqueous extract in rats. 3 Biotech. 9(2), 59 (2019)
Google Scholar
Lin, S.-P., Kung, H.-N., Tsai, Y.-S., Tseng, T.-N., Hsu, K.-D., Cheng, K.-C.J.C.: Novel dextran modified bacterial cellulose hydrogel accelerating cutaneous wound healing. Cellul. 24(11), 4927–4937 (2017)
Google Scholar
Loh, E.Y.X., Mohamad, N., Fauzi, M.B., Ng, M.H., Ng, S.F., Amin, M.C.I.M.J.S.: Development of a bacterial cellulose-based hydrogel cell carrier containing keratinocytes and fibroblasts for full-thickness wound healing. Scient. Rep. 8(1), 1–12 (2018)
Google Scholar
Yu, J., Huang, T.R., Lim, Z.H., Luo, R., Pasula, R.R., Liao, L.D., Lim, S., Chen, C.H.J.A.H.M.: Wound healing: production of hollow bacterial cellulose microspheres using microfluidics to form an injectable porous scaffold for wound healing. Adv. Healthcare Mater. 5(23), 2961–2961 (2016)
CAS
CrossRef
Google Scholar
Napavichayanun, S., Ampawong, S., Harnsilpong, T., Angspatt, A., Aramwit, P.J.A.: Inflammatory reaction, clinical efficacy, and safety of bacterial cellulose wound dressing containing silk sericin and polyhexamethylene biguanide for wound treatment. 310(10), 795–805 (2018)
Google Scholar
Carvalho, T., Guedes, G., Sousa, F.L., Freire, C.S., Santos, H.A.J.B.J.: Latest advances on bacterial cellulose-based materials for wound healing, delivery systems, and tissue engineering. 14(12), 1900059 (2019)
Google Scholar
Pandey, M., Mohamad, N., Low, W.-L., Martin, C., Amin, M.C.I.M.J.D.: Microwaved bacterial cellulose-based hydrogel microparticles for the healing of partial thickness burn wounds. 7(1), 89–99 (2017)
Google Scholar
Napavichayanun, S., Yamdech, R., Aramwit, P.J.A.: The safety and efficacy of bacterial nanocellulose wound dressing incorporating sericin and polyhexamethylene biguanide: in vitro, in vivo and clinical studies. Arch. Dermatol. Res. 308(2), 123–132 (2016)
Google Scholar
Ye, S., Jiang, L., Wu, J., Su, C., Huang, C., Liu, X., Shao, W.J.A.: Flexible amoxicillin-grafted bacterial cellulose sponges for wound dressing: in vitro and in vivo evaluation. Arch. Dermatol. Res. 10(6), 5862–5870 (2018)
Google Scholar
Khalid, A., Ullah, H., Ul-Islam, M., Khan, R., Khan, S., Ahmad, F., Khan, T., Wahid, F.J.R.: Bacterial cellulose–TiO2 nanocomposites promote healing and tissue regeneration in burn mice model. RSC Adv. 7(75), 47662–47668 (2017)
Google Scholar
Jiji, S., Udhayakumar, S., Rose, C., Muralidharan, C., Kadirvelu, K.J.I.: Thymol enriched bacterial cellulose hydrogel as effective material for third degree burn wound repair. Int. J. Biol. Macromol. 122, 452–460 (2019)
Google Scholar
Zhang, F., Tuck, C., Hague, R., He, Y., Saleh, E., Li, Y., Sturgess, C., Wildman, R.J.J.: Inkjet printing of polyimide insulators for the 3 D printing of dielectric materials for microelectronic applications. J. Appl. Polym. Sci. 133(18), (2016)
Google Scholar
Karahaliloğlu, Z., Demirbilek, M., Ulusoy, İ., Gümüşkaya, B., Denkbaş, E.B.J.J.: Active nano/microbilayer hemostatic agents for diabetic rat bleeding model. J. Biomed. Mater. Res. Part B Appl. Biomater. 105(6), 1573–1585 (2017)
Google Scholar
Jin, M., Chen, W., Li, Z., Zhang, Y., Zhang, M., Chen, S.J.C.: Patterned bacterial cellulose wound dressing for hypertrophic scar inhibition behavior. Patterned bacterial cellulose wound dressing for hypertrophic scar inhibition behavior. 25(11), 6705–6717 (2018)
Google Scholar
Pourali, P., Razavianzadeh, N., Khojasteh, L., Yahyaei, B.J.J.: Assessment of the cutaneous wound healing efficiency of acidic, neutral and alkaline bacterial cellulose membrane in rat. J. Mater. Sci. Mater. Med. 29(7), 90 (2018)
Google Scholar
Sajjad, W., Khan, T., Ul-Islam, M., Khan, R., Hussain, Z., Khalid, A., Wahid, F.J.C.: Development of modified montmorillonite-bacterial cellulose nanocomposites as a novel substitute for burn skin and tissue regeneration. Carbohydr. Polym. 206, 548–556 (2019)
Google Scholar
Kaminagakura, K.L.N., Sue Sato, S., Sugino, P., de Oliveira, K., Veloso, L., dos Santos, D.C., Padovani, C.R., Basmaji, P., Olyveira, G., Schellini, S.A.J.J.: Nanoskin® to treat full thickness skin wounds. J. Biomed. Mater. Res. Part B Appl. Biomater. 107(3), 724–732 (2019)
Google Scholar
Ranby, B.J.A.C.S.: Aqueous colloidal solutions of cellulose micelles, vol. 3, pp. 649–650. Munksgaard Int Publ Ltd, Copenhagen (1949)
Google Scholar
Habibi, Y., Lucia, L.A., Rojas, O.J.J.C.: Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 110(6), 3479–3500 (2010)
Google Scholar
Chang, C.-W., Wang, M.-J.J.A.S.C.: Preparation of microfibrillated cellulose composites for sustained release of H2O2 or O2 for biomedical applications. ACS Sust. Chem. Eng. 1(9), 1129–1134 (2013)
Google Scholar
Ni, H., Zeng, S., Wu, J., Cheng, X., Luo, T., Wang, W., Zeng, W., Chen, Y.J.B.-M.M.: Cellulose nanowhiskers: preparation, characterization and cytotoxicity evaluation. Bio-med. Mater. Eng. 22(1–3), 121–127 (2012)
Google Scholar
Pereira, M.M., Raposo, N., Brayner, R., Teixeira, E., Oliveira, V., Quintão, C.C.R., Camargo, L., Mattoso, L., Brandão, H.J.N.: Cytotoxicity and expression of genes involved in the cellular stress response and apoptosis in mammalian fibroblast exposed to cotton cellulose nanofibers. Nanotechnol. 24(7), 075103 (2013)
Google Scholar
Chen, Q., Garcia, R.P.R., Munoz, J., Pérez de Larraya, U., Garmendia, N., Yao, Q., Boccaccini, A.R.J.A.A.M.: Cellulose nanocrystals bioactive glass hybrid coating as bone substitutes by electrophoretic co-deposition: in situ control of mineralization of bioactive glass and enhancement of osteoblastic performance. ACS Appl. Mater. Interface. 7(44), 24715–24725 (2015)
Google Scholar
Kataria, K., Gupta, A., Rath, G., Mathur, R., Dhakate, S.J.I.: In vivo wound healing performance of drug loaded electrospun composite nanofibers transdermal patch. Int. J. Pharm. 469(1), 102–110 (2014)
Google Scholar
Mendes, A.C., Gorzelanny, C., Halter, N., Schneider, S.W., Chronakis, I.S.J.I.: Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery. Int. J. Pharm. 510(1), 48–56 (2016)
Google Scholar
Khalid, A., Khan, R., Ul-Islam, M., Khan, T., Wahid, F.J.C.: Bacterial cellulose-zinc oxide nanocomposites as a novel dressing system for burn wounds. Carbohydr. Polym. 164, 214–221 (2017)
Google Scholar
Mo, Y., Guo, R., Zhang, Y., Xue, W., Cheng, B., Zhang, Y.J.T.E.P.A.: Controlled dual delivery of angiogenin and curcumin by electrospun nanofibers for skin regeneration. Tissue Eng. Part A 23(13–14), 597–608 (2017)
Google Scholar
Guo, R., Lan, Y., Xue, W., Cheng, B., Zhang, Y., Wang, C., Ramakrishna, S.J.J.: Collagen-cellulose nanocrystal scaffolds containing curcumin-loaded microspheres on infected full-thickness burns repair. J. Tissue Eng. Regen. Med. 11(12), 3544–3555 (2017)
Google Scholar
Alkhatib, Y., Dewaldt, M., Moritz, S., Nitzsche, R., Kralisch, D., Fischer, D.J.E.J.: Controlled extended octenidine release from a bacterial nanocellulose/Poloxamer hybrid system. Eur. J. Pharm. Biopharm. 112, 164–176 (2017)
Google Scholar
Sun, F., Nordli, H.R., Pukstad, B., Gamstedt, E.K., Chinga-Carrasco, G.J.J.: Mechanical characteristics of nanocellulose-PEG bionanocomposite wound dressings in wet conditions. J. Mech. Behav. Biomed. Mater. 69, 377–384 (2017)
Google Scholar
Skogberg, A., Mäki, A.-J., Mettänen, M., Lahtinen, P., Kallio, P.J.B.: Cellulose nanofiber alignment using evaporation-induced droplet-casting, and cell alignment on aligned nanocellulose surfaces. Biomacromol. 18(12), 3936–3953 (2017)
Google Scholar
Bacakova, L., Pajorova, J., Bacakova, M., Skogberg, A., Kallio, P., Kolarova, K., Svorcik, V.J.N.: Versatile application of nanocellulose: from industry to skin tissue engineering and wound healing. Nanomater. 9(2), 164 (2019)
Google Scholar
Hakkarainen, T., Koivuniemi, R., Kosonen, M., Escobedo-Lucea, C., Sanz-Garcia, A., Vuola, J., Valtonen, J., Tammela, P., Mäkitie, A., Luukko, K.J.J.: Nanofibrillar cellulose wound dressing in skin graft donor site treatment. J. Control. Release 244, 292–301 (2016)
Google Scholar
Basu, A., Lindh, J., Ålander, E., Strømme, M., Ferraz, N.J.C.P.: On the use of ion-crosslinked nanocellulose hydrogels for wound healing solutions: physicochemical properties and application-oriented biocompatibility studies. Carbohydr. Polym. 174, 299–308 (2017)
Google Scholar
Sharma, A.K., Prasher, P., Aljabali, A.A., Mishra, V., Gandhi, H., Kumar, S., Mutalik, S., Chellappan, D.K., Tambuwala, M.M., Dua, K., Kapoor, D.N.: Emerging era of “somes”: polymersomes as versatile drug delivery carrier for cancer diagnostics and therapy. Drug Deliv. Transl. Res. 10(5), 1171–1190 (2020)
CAS
CrossRef
Google Scholar
Vosmanska, V., Kolarova, K., Rimpelova, S., Svorcik, V.J.C.: Surface modification of oxidized cellulose haemostat by argon plasma treatment. Cellulose 21(4), 2445–2456 (2014)
Google Scholar
Powell, L.C., Khan, S., Chinga-Carrasco, G., Wright, C.J., Hill, K.E., Thomas, D.W.J.C.: An investigation of Pseudomonas aeruginosa biofilm growth on novel nanocellulose fibre dressings. Carbohydr. Polym. 137, 191–197 (2016)
Google Scholar
Jack, A.A., Nordli, H.R., Powell, L.C., Powell, K.A., Kishnani, H., Johnsen, P.O., Pukstad, B., Thomas, D.W., Chinga-Carrasco, G., Hill, K.E.J.C.: The interaction of wood nanocellulose dressings and the wound pathogen P. aeruginosa. Carbohydr. Polym. 157, 1955–1962 (2017)
Google Scholar
Poonguzhali, R., Basha, S.K., Kumari, V.S.J.I.: Novel asymmetric chitosan/PVP/nanocellulose wound dressing: in vitro and in vivo evaluation. Int. J. Biol. Macromol. 112, 1300–1309 (2018)
Google Scholar
Xiao, Y., Rong, L., Wang, B., Mao, Z., Xu, H., Zhong, Y., Zhang, L., Sui, X.J.C.: A light-weight and high-efficacy antibacterial nanocellulose-based sponge via covalent immobilization of gentamicin. Carbohydr. Polym. 200, 595–601 (2018)
Google Scholar
Kontogiannopoulos, K.N., Assimopoulou, A.N., Tsivintzelis, I., Panayiotou, C., Papageorgiou, V.P.J.I.: Electrospun fiber mats containing shikonin and derivatives with potential biomedical applications. Int. J. Pharm. 409(1–2), 216–228 (2011)
Google Scholar
Ng, V.W., Chan, J.M., Sardon, H., Ono, R.J., García, J.M., Yang, Y.Y., Hedrick, J.L.J.A.D.D.R.: Antimicrobial hydrogels: a new weapon in the arsenal against multidrug-resistant infections. Adv. Drug Deliv. Rev. 78, 46–62 (2014)
Google Scholar
Chai, Q., Jiao, Y., Yu, X.J.G.: Hydrogels for biomedical applications: their characteristics and the mechanisms behind them. Gels 3(1), 6 (2017)
Google Scholar
Helenius, G., Bäckdahl, H., Bodin, A., Nannmark, U., Gatenholm, P., Risberg, B.J.J.: In vivo biocompatibility of bacterial cellulose. J. Biomed. Mater. Res. Part A 76(2), 431–438 (2006)
Google Scholar
Lin, Y.-K., Chen, K.-H., Ou, K.-L., Liu, M.J.J.: Effects of different extracellular matrices and growth factor immobilization on biodegradability and biocompatibility of macroporous bacterial cellulose. J. Bioact. Compat. Polym. 26(5), 508–518 (2011)
Google Scholar
Awadhiya, A., Kumar, D., Rathore, K., Fatma, B., Verma, V.J.P.B.: Synthesis and characterization of agarose–bacterial cellulose biodegradable composites. Polym. Bull. 74(7), 2887–2903 (2017)
Google Scholar
Mekkawy, A.I., El-Mokhtar, M.A., Nafady, N.A., Yousef, N., Hamad, M.A., El-Shanawany, S.M., Ibrahim, E.H., Elsabahy, M.J.I.: In vitro and in vivo evaluation of biologically synthesized silver nanoparticles for topical applications: effect of surface coating and loading into hydrogels. Int. J. Nanomed. 12, 759 (2017)
Google Scholar
DeBoer, T., Chakraborty, I., Mascharak, P.J.J.: Design and construction of a silver (I)-loaded cellulose-based wound dressing: trackable and sustained release of silver for controlled therapeutic delivery to wound sites. J. Mater. Sci. Mater. Med. 26(10), 243 (2015)
Google Scholar
Colò, F., Bella, F., Nair, J.R., Destro, M., Gerbaldi, C.J.E.A.: Cellulose-based novel hybrid polymer electrolytes for green and efficient Na-ion batteries. Electrochim. Acta 174, 185–190 (2015)
Google Scholar