Skip to main content

Size Effect on Damage Response of Triangular Flexural Test Method

  • Reference work entry
  • First Online:
Handbook of Damage Mechanics

Abstract

The size effect is an important application of concrete fracture mechanics. Many studies have been done on the size effect in recent years. Most of studies carried out by using specimens under uniaxial tensile stress. In this study, the size effect on the tensile strength of mortar mixtures was investigated. The triangular plate method was used to find size effect on the tensile strength of the mortar mixtures. In the study, the mortar mixtures specimens having two different water-cement ratios and various sizes in the absence and presence of steel fibers were prepared. For this purpose, two classes of mortar having water-cement ratios of 0.42 without steel fiber and containing 1% steel fibers were designed. By adding 1%, steel fiber by a total of 30 triangular plate specimens with five different sizes was prepared. The size effect analyses were made on the data obtained from the experiments and size effect curves were established. Classical Type I size effect analyses of peak loads obtained from these tests are performed. The Microplane Model M7 is used to predict the peak loads and fracture patterns, size effect, and the load-deflection curves of both the geometrically similar triangular test specimens. As a result of this study, it is concluded that the triangular plates testing method can be used as an alternative test to determine the size effect on the tensile strength and fracture behavior of the mortar mixture in both presence and absence of steel fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • B. E. Barragán, R. Gettu, M.A. Martín, R. L. Zerbino, Uniaxial tension test for steel fibre reinforced concrete–a parametric study, Cement and Concrete Composites, Volume 25, Issue 7, 2003

    Google Scholar 

  • Bazant, Z. P., Caner, F. C., Carol, I., Adley, M. D., Akers, S. A. Microplane model M4 for concrete I: Formulation with work-conjugate deviatoric stress. Journal of Engineering Mechanics, 126(9): 944–953. 93, (2000)

    Google Scholar 

  • Z.P. Bažant, B.H. Oh Microplane model for progressive fracture of concrete and rock J Engng Mech, ASCE, 111, pp. 559–582,1985

    Google Scholar 

  • Bažant, Z.P., Kazemi, M.T. Size dependence of concrete fracture energy determined by RILEM work-of-fracture method. Int J Fract 51, 121–138 (1991)

    Google Scholar 

  • Caner, F. C., Bažant, Z. P., Hoover, C. G., Waas, A. M., Shahwan, K. W. Microplane model for fracturing damage of triaxially braided fiber-polymer composites. Journal of Engineering Materials and Technology, Transactions of the ASME, 133(2): 021024–12, 2011

    Google Scholar 

  • Caner, F.C., ve Bazant, Z.P., Microplane model M7 for plain concrete. I: Formulation. Journal of Engineering Mechanics, 139(12), 1714–1723. 2012

    Google Scholar 

  • F. C. Caner and Z. P. Bazant Mıcroplane Model M4 For Concrete. II: Algorıthm And Calıbratıon., 126(12): 954–961, 2000

    Google Scholar 

  • Carmona, S. Efecto del tamaño de la probeta y condiciones de carga en el ensayo de tracción indirecta. Materiales de Construcción, 59(294): 7–18., 2009

    Google Scholar 

  • Cusatis, G. and Figni., A. M. Lattice Discrete Particle Model (LDPM) for Fracture Dynamics and Rate Effect in Concrete. Proceedings of 18th Analysis and Computation Speciality Conference –Structures Congress 2008

    Google Scholar 

  • X. Chen, S. Wu, and J. Zhou, “Analysis of mechanical properties of concrete cores using statistical approach,” Magazine of Concrete Research, vol. 65, pp. 1463–1471, 2013.

    Google Scholar 

  • X. Chen, S. Wu, and J. Zhou, “Strength values of cementitious materials in bending and in tension test methods,” Journal of Materials in Civil Engineering, vol. 26, pp. 484–490, 2014.

    Google Scholar 

  • R. Danzer, W. Harrer, P. Supancic, T. lubea, Z. Wang, A. Borger, The ball on three balls test strength And failure analysis of different materials. J. Eur. Ceram. Soc. 27(2–3), 1481–1485 (2007)

    Google Scholar 

  • H. Dabbagh, S. Akbarpour, K. Amoorezaei, Effect of geometric characteristics of steel fiber on the mechanical properties of structural lightweight aggregate concrete, 9th National Congress on Civil Engineering, Ferdowsi university of Mashhad, Iran (2016).

    Google Scholar 

  • M. E. Eren, Betonun küp yarmada çekme dayanımuı üzerine malzeme ve boyut etkisi. Yüksek Lisans Tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, Elâzığ, 07115101(2015)

    Google Scholar 

  • Ö.F. Eser, Betonun kırılma parametrelerinin değişik yöntemlere belirlenmesi (Doktora Lisans Tezi, İTÜ, Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, İstanbul, 2002)

    Google Scholar 

  • Hussein, A. and Marzouk, H., “Behavior of high-strength concrete under biaxial stresses”, ACI Mater. J., 97(1), pp. 27–36. 2000

    Google Scholar 

  • C.G. Hoover, Z.P. Bazant, Comprehensive concrete fracture tests: Size effects of types 1 & 2, crack length effect and post peak. Eng. Fract. Mech. 110, 281–289 (2013)

    Article  Google Scholar 

  • Ince, R., Yilmaz S., Gör, M. Size Effect in Splitting Diagonal Cubes. International Balkans Conferance on Challenges of Civil Engineering, BCCCE, 23–25 May, 2013, EPOKA University, Tirana / ALBANIA. 2013

    Google Scholar 

  • R. Ince, Determination of concrete fracture parameters based on peak-load method with diagonal split-tension cubes. Eng. Fract. Mech. 80, 100–114 (2012a)

    Article  Google Scholar 

  • R. Ince, Determination of the fracture parameters of the double-k model using weigth functions of split-tension specimens. Eng. Fract. Mech. 96, 416–432 (2012b)

    Article  Google Scholar 

  • V. Kankov, Çelik Kılıflı Beton Kolonlarda Boyut Etkisi. Yüksek Lisans Tezi, Gazi Üni Fen Bilimleri Enstitüsü, İnşaat Mühendisliği Anabilim Dalı, Ankara (2007)

    Google Scholar 

  • G. Kennedy, C.H. Goodchild, Practical Yield Line Design (Concrete Centre, Surrey, 2004)

    Google Scholar 

  • J. Kim, C. Thanh, Zi, G., The Characteristics of the Biaxial Flexure Test for Concrete (Korea Concrete Institute, Seoul, 2010), pp. 5–7

    Google Scholar 

  • J. Kim, Y. Kwak, G. Zi, The experimental comparison of the uniaxial and biaxial flexural tensile strengths according to the size of specimens. Procedia Eng. 14, 662–666 (2011)

    Article  Google Scholar 

  • J. Kim, D.J. Kim, G. Zi, Improvement of the biaxial flexure test method for concrete. Cem. Concr. Compos. 37, 154–160 (2013)

    Article  Google Scholar 

  • J. Kim, C. Yi, G. Zi, Biaxial flexural strength of concrete by two different methods. Mag. Conr. Res. 64(12), 1057–1065 (2012)

    Google Scholar 

  • K. Kirane, P.Z. Bazant, G. Zi, Fracture and size effect on strength of plain concrete disks under biaxial flexure analyzed by microplane model M7. J. Eng. Mech. 140, 604–613 (2014)

    Article  Google Scholar 

  • H. Kupfer, K.H. Hubert, R. Hubert, Behavior of concrete under biaxial stresses. ACI J. 66(8), 656–666 (1969)

    Google Scholar 

  • Lemnitzer, L.; Eckfeldt, L.; Lindorf, A.; Curbach, M. Biaxial tensile strength of concrete – answers from statistics, in Proc. of the International fib Symposium Tailor Made Concrete Structures: New Solutions for Our Society, Amsterdam, The Nederland, 2008. UK: CRC Press/Balkema, 1101–1102.2008

    Google Scholar 

  • A. Mallat, A. Alliche, A modified tensile test to study the behaviour of cementitious materials. Strain: An Int. J. Exp. Mech. 47, 499–504 (2011)

    Article  Google Scholar 

  • P. Marti, Size effect in double-punch test on concrete sylinders. ACI Mater. J. 86, 597–601 (1989)

    Google Scholar 

  • H. Mirkheel, Lifli Betonlardaki Boyut Etkisinin Deneysel Ve Anal İtik Yöntemler İle Belirlenmesi, Yüksek Lisans Tezi, Bursa uludağ üniversitesi, İnşaat Mühendisliği Bölümü, Bursa,2018

    Google Scholar 

  • N.R. Muzyka, Equipment for testing sheet structural materials under biaxial loading. Part 2. Testing by biaxial loading in the plane of the sheet. Str. Mat. 34, 206–212 (2002)

    Google Scholar 

  • Naaman AE, Reinhardt HW (Co-Editors, high performance fiber reinforced cement composites: HPFRCC 2, RILEM, No. 31, E. & FN Spon, London,1996

    Google Scholar 

  • A.M. Neville, Properties of Concrete, 5th edn. (Pearson Education Limited, England, 2011), pp. 169–174

    Google Scholar 

  • K.S. Prebhakumari, P. Jayakumar, High strength concrete by size effect method. Int. J. Sci. Eng. Res. 4(5), 2229–5518 (2013)

    Google Scholar 

  • Tang, T., Bažant, Z. P., Yang, S., and Zollinger, D. “Variablenotch one-size test method for fracture energy and process zone length.” Eng. Fract. Mech., 5503, 383–404 (1996).

    Google Scholar 

  • H.T. Türker, Çimento Esaslı Malzemelerin Çekme Dayanımlarını Bulabilmek İçin Yeni Bir Yöntem Önerisi ÜÇGEN PLAKA YÖNTEMI. Gazi Üniversitesi Müh. Mim. Fakültesi Dergisi 30, 693–699 (2015)

    Google Scholar 

  • Türkmenoğlu, Z. F. and Varol, O. (2014). Lifli Beton Türleri ve Kullanım Alanları. International Mediterranean Science and Engineering Congress Center, Adana, 3792–3795

    Google Scholar 

  • H. Yazici, Özel Betonlar. Dokuz Eylül Üniversitesi İnşaat Mühendisliği Bölümü Ders notları (2010)

    Google Scholar 

  • S. Yin, R. Tuladhar, M. Sheehan, M. Combe, T. Collister, A life cycle assessment of recycled polypropylene fibre in concrete footpaths. J. Clean. Prod. 112(Part 4), 2231–2242 (2016)

    Google Scholar 

  • G. Zi, H. Oh, S.K. Park, A novel indirect tensile test method to measure the biaxial tensile strength of concretes and other Quasibrittle materials. Cem. Concr. Res. 38, 751–756 (2008)

    Article  Google Scholar 

  • G. Zi, J. Kim, P.Z. Bazant, Size effect on biaxial flexural strength of Concrete. ACI Mater. J. 111, 319–326 (2014a)

    Google Scholar 

  • Zi, G., Kim, J. and, Bažant, Z. P.(2014b). “Size effect on biaxial flexural strength of concrete, ACI Mater. J., 111, 3, 319–326

    Google Scholar 

  • X. X. Zhang, G. Ruiz, and R. C. Yu, “Experimental study of combined size and strain rate effects on the fracture of reinforced concrete,” Journal of Materials in Civil Engineering, vol. 20, no. 8, pp. 544–551, 2008.

    Google Scholar 

  • Zi, G., Kim, J., and Bazant, Z. P., “Size Effect on Biaxial Flexural Strength of Concrete”, ACI Materials Journal, 111: 3, 2014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babür Deliktaş .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Deliktaş, B., Türker, H.T., Shareef, F.A., Caner, F.C. (2022). Size Effect on Damage Response of Triangular Flexural Test Method. In: Voyiadjis, G.Z. (eds) Handbook of Damage Mechanics . Springer, Cham. https://doi.org/10.1007/978-3-030-60242-0_89

Download citation

Publish with us

Policies and ethics