Skip to main content

Neutron Resonance Analysis Methods for Archaeological and Cultural Heritage Applications

  • Reference work entry
  • First Online:
Handbook of Cultural Heritage Analysis

Abstract

The use of neutron resonance analysis (NRA) as a nondestructive analysis (NDA) method to determine the overall (bulk) composition of materials is discussed. This can be done by detecting prompt γ-rays, which are emitted after a neutron capture reaction in the object being studied. This technique, known as neutron resonance capture analysis (NRCA), is sensitive to almost all stable nuclides and can be applied to determine the elemental and isotopic composition including trace elements and impurities. It is extensively applied at the time-of-flight (TOF) facilities GELINA and ISIS to study objects and artifacts of archaeological and cultural heritage interest. Another technique, referred to as neutron transmission analysis (NRTA), is based on a measurement of the transmission of neutrons through the object. This is an absolute method that works well for the main elements present in the sample. It is shown that both NRCA and NRTA give consistent and accurate results of bulk compositions.

Hans Postma: deceased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ANNRI:

Accurate neutron-nucleus reaction measurement instruments

BGO:

Bismuth germanium oxide

CENDL:

Chinese evaluated nuclear data library

CERN:

Conseil européen pour la recherche nucléaire (european organisation for nuclear research)

CSNS:

China spallation neutron source

ENDF:

Evaluated nuclear data file

FGM:

Free gas model

FWHM:

Full width at half maximum

GELINA:

Geel linear accelerator

ICPS:

Inductively coupled plasma spectrometry

INES:

(The) Italian neutron experimental station

JANIS:

Java-based nuclear data information system

JEFF:

Joint evaluated fission and fusion nuclear data library

JENDL:

Japanese evaluated nuclear data library

J-PARC:

Japan proton accelerator research complex

JRC:

Joint research centre

KURRI:

Kyoto university research reactor institute

LANSCE:

Los alamos neutron science center

MLF:

Materials and life science experimental facility

NAA:

Neutron activation analysis

ND:

Neutron diffraction

NDA:

Nondestructive analysis

NEA:

Nuclear energy agency

NMA:

National museum of antiquities (RMO)

NOBORU:

Neutron beam-line for observation and research use

NRA:

Neutron resonance analysis

NRCA:

Neutron resonance capture analysis

NRTA:

Neutron resonance transmission analysis

OECD:

Organisation for economic co-operation and development

PGA:

Prompt gamma-ray analysis

PMT:

Photomultiplier

PSND:

Position sensitive neutron detector

REFIT:

Resonance fit

ROSFOND:

Russian national library of neutron data

RPI:

Rensselaer polytechnic institute

SLBW:

Single-level breit-wigner

TOF:

Time of flight

YAP:

Yttrium aluminum perovskite

YSO:

Yttrium oxyorthosilicate

B:

Background

Bin:

Background corresponding to a sample-in TOF spectrum

Bout:

Background corresponding to a sample-out TOF spectrum

Cin:

Sample-in TOF spectrum

Cout:

Sample-out TOF spectrum

ΔD:

Doppler width

εc:

Efficiency to detect a capture event

εγ:

Efficiency to detect a γ-ray

En:

Incident neutron energy

Eμ:

Resonance energy

F:

Self-shielding factor

Fμ:

Self-shielding correction factor for resonance μ

φ:

Neutron fluence rate

gJ:

Spin factor

Γ:

Total resonance width

Γγ:

Capture (or radiation) width

Γn:

Neutron width

I:

Spin of target nucleus

J:

Total angular momentum

:

Orbital angular momentum

λ:

Wavelength

L:

Flight path distance

Ld:

Equivalent distance due to neutron transport in target/moderator

Lt:

Equivalent distance due to neutron transport in the detector

mn:

Neutron rest mass

mX:

Rest mass of nucleus X

nj:

Areal number density

Nμ:

Net area of resonance μ in a capture spectrum

ηc:

Ratio of efficiencies to detect a capture event

R:

Scattering radius

R(tm,En):

Response function for neutron TOF measurements

R(Lt,En):

Response function for neutron TOF measurements expressed in equivalent distance Lt

Sn:

Neutron separation energy

σ:

Cross section

\( \overline{\sigma} \) :

Doppler broadened cross section

σγ:

Neutron induced capture cross section

\( {\overline{\sigma}}_{\gamma } \) :

Doppler broadened capture cross section

σn:

Neutron elastic scattering cross section

\( {\overline{\sigma}}_n \) :

Doppler broadened elastic scattering cross section

σtot:

Total cross section

\( {\overline{\sigma}}_{tot} \) :

Doppler broadened total cross section

td:

Time difference between the moment of detection and the moment the neutron enters the detector or sample

tt:

Time that a neutron spends in the target/moderator assembly

tm:

Experimentally observed time difference between stop and start signal

T:

Target temperature

Teff:

Effective temperature (FGM)

θD:

Debye temperature

T0:

Stop signal (TOF measurements)

Ts:

Start signal (TOF measurements)

TLB :

Transmission based on Lambert-Beer law

Texp:

Experimentally observed transmission

TM:

Theoretical (model) transmission

Yc:

Capture yield

Yexp:

Experimentally observed capture yield

YM:

Theoretical (model) capture yield

Y0:

Primary capture yield

Ym:

Yield due to scattering followed by neutron capture

vn:

Neutron velocity

Ψ:

Voigt function

WX:

Weight of nucleus X

References

  1. Postma H, Schillebeeckx P (2009) Neutron resonance capture and transmission analysis. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Leiden Wiley. New York. Chapter a9070

    Google Scholar 

  2. Postma H, Schillebeeckx P (2017) Neutron resonance analysis. In: Kardjilov N, Festa G (eds) Neutron methods for archaeology and cultural heritage. Springer International, Cham, pp 235–283

    Chapter  Google Scholar 

  3. Schillebeeckx P, Becker B, Harada H, Kopecky S (2014) Neutron resonance spectroscopy for the characterisation of materials and objects. JRC science and policy reports. Report EUR 26848-EN

    Google Scholar 

  4. Bohr N (1936) Neutron capture and nuclear constitution. Nature 137:344–348

    Article  Google Scholar 

  5. Postma H, Blaauw M, Bode P, Mutti P, Corvi F, Siegler P (2001) Neutron resonance capture analysis of materials. J Radioanal Nucl Chem 248:113–120

    Article  Google Scholar 

  6. Postma H, Blaauw M, Schillebeeckx P, Lobo G, Halbertsma RB, Nijboer AJ (2003) Non-destructive elemental analysis of copper-alloy artefacts with epithermal neutron resonance capture. Czechoslov J Phys 53:A233–A240

    Article  Google Scholar 

  7. Postma H, Schillebeeckx P, Halbertsma RB (2004) Neutron resonance capture analysis of some genuine and fake Etruscan copper alloy statuettes. Archaeometry 46:635–646

    Article  Google Scholar 

  8. Blaauw M, Postma H, Mutti P (2005) An attempt to data an antique Benin bronze using neutron resonance capture analysis. Appl Radiat Isot 62:429–433

    Article  Google Scholar 

  9. Postma H, Schillebeeckx P (2005) Non-destructive analysis of objects using neutron resonance capture. J Radioanal Nucl Chem 265(2):297–302

    Article  Google Scholar 

  10. Postma H, Butler JJ, Schillebeeckx P, van Eijk CWE (2007) Neutron resonance capture applied to some prehistoric bronze axes. Il Nuovo Cimento C 30:105–112

    Google Scholar 

  11. Schut PAC, Kockelmann W, Postma H, Visser D, Schillebeeckx P, Wynants R (2008) Neutron resonance capture and neutron diffraction analysis of Roman bronze water taps. J Radioanal Nucl Chem 278:151–164

    Article  Google Scholar 

  12. Postma H, Amkreutz L, Borella A, Clarijs M, Kamermans H, Kockelmann W, Paradowska A, Schillebeeckx P, Visser D (2010) Non-destructive bulk analysis of the Buggenum sword by neutron resonance capture analysis and neutron diffraction. J Radioanal Nucl Chem 283:641–652

    Article  Google Scholar 

  13. Postma H, Schillebeeckx P, Kockelmann W (2011) The metal compositions of a series of Geistingen-type socketed axes. J Archaeol Sci 38:1810–1817

    Article  Google Scholar 

  14. Postma H, Armkreutz L, Fontijn D, Kamermans H, Kockelmann WA, Schillebeeckx P, Visser D (2017) Neutron based analyses of three Bronze age metal objects. In: Kamermans H, Bakels C (eds) Analecta Praehistorica Leidensia II. Leiden University, Leiden, pp 37–58

    Google Scholar 

  15. Pietropaolo A, Festa G, Grazzi F, Barzagli E, Scherillo A, Schooneveld EM, Civita F (2011) A multitask neutron beam line for spallation neutron sources. Eur Phys Lett 95:48007

    Article  Google Scholar 

  16. Festa G, Cippo EP, Di Martino D, Cattaneo R, Senesi R, Andreani C, Schooneveld E, Kockelmann W, Rhodes N, Scherillo A, Kudejova P, Biro K, Duzs K, Hajnal Z, Gorini G (2015) Neutron resonance transmission imaging for 3D elemental mapping at the ISIS spallation neutron source. J Anal At Spectrom 30:745–750

    Article  Google Scholar 

  17. Agresti J, Osticoli I, Guidotti MC, Kardjilov N, Siano S (2016) Non-invasive archaeometallurgical approach to the investigations of bronze figurines using neutron, laser, and X-ray techniques. Microchem J 124:765–774

    Article  Google Scholar 

  18. Schillebeeckx P, Borella A, Drohe JC, Eykens R, Kopecky S, Massimi C, Mihailescu LC, Moens A, Moxon M, Siegler P, Wynants R (2010) Target requirements for neutron induced cross section measurements in the resonance region. Nucl Instrum Methods Phys Res A 613:378–385

    Article  Google Scholar 

  19. Priesmeyer HG, Harz U (1975) Isotope content determination in irradiated fuel by neutron transmission analysis. Atomenergy 25:109–113

    Google Scholar 

  20. Behrens JW, Johnson RG, Schrack RA (1984) Neutron resonance transmission analysis of reactor fuel samples. Nucl Technol 67:162–168

    Article  Google Scholar 

  21. Schrack RA (1984) Uranium-235 measurements in waste material by resonance neutron radiography. Nucl Technol 67:326–332

    Article  Google Scholar 

  22. Noguere G, Cserpak F, Ingelbrecht C, Plompen AJM, Quetel CR, Schillebeeckx P (2007) Non-destructive analysis of materials by neutron resonance transmission. Nucl Instrum Methods Phys Res A 575:476–488

    Article  Google Scholar 

  23. Schillebeeckx P, Abousahl S, Becker B, Borella A, Harada H, Kauwenberghs K, Kitatani F, Koizumi M, Kopecky S, Moens A, Sibbens G, Tsuchiya H (2013) Development of neutron resonance densitometry at the GELINA TOF facility. ESARDA Bull 50:9–17

    Google Scholar 

  24. Miller TG, Van Staagen PK, Gibson BC, Orthel JL, Kraus RA (1997) Contraband detection using neutron transmission. Proc SPIE 2936:102–111

    Article  Google Scholar 

  25. Chen C, Lanza RC (2002) Fast neutron resonance radiography for elemental imaging: theory and applications. IEEE Trans Nucl Sci 49:1919–1924

    Article  Google Scholar 

  26. Overley JC, Chmelik MS, Rasmussen RJ, Schofield RMS, Sieger GE, Lefevre HW (2006) Explosives detection via fast neutron transmission spectroscopy. Nucl Instrum Methods Phys Res B 251:470–478

    Article  Google Scholar 

  27. Brandis M, Vartsky D, Dangendorf V, Bromberger B, Bar D, Goldberg MB, Tittelmeier K, Friedman E, Czasch A, Mardor I, Mor I, Weierganz M (2012) Neutron measurements with Time-Resolved Event-Counting Optical Radiation (TRECOR) detector. J Instrum 7:C04003

    Article  Google Scholar 

  28. Mor I, Vartsky D, Dangendorf V, Bar D, Feldman G, Goldberg MB, Tittelmeier K, Broomberger B, Brandis M, Weierganz W (2013) Parameters affecting temporal resolution of Time-Resolved Optical Integrative Detector (TRION). J Instrum 8:P11012

    Article  Google Scholar 

  29. Frost JC, Meehan P, Morris SR, Ward RC, Mayers J (1989) Non-intrusive temperature measurement of the components of a working catalyst by neutron radiography. Catal Lett 2:97–104

    Article  Google Scholar 

  30. Stone HJ, Tucker MG, Le Godec Y, Méducin FE, Cope ER, Hayward SA, Ferlat GPJ, Marschall WG, Manolopoulos S, Redfern SAT, Dove MT (2005) Remote determination of sample temperature by neutron resonance spectroscopy. Nucl Instrum Methods Phys Res A 547:601–615

    Article  Google Scholar 

  31. Stone HJ, Tucker MG, Méducin FE, Dove MT, Redfern SAT, Le Godec Y, Marshal WG (2005) Temperature measurements in a Paris-Edinburgh cell by neutron resonance spectroscopy. J Appl Phys 98:064905

    Article  Google Scholar 

  32. Kamiyama T, Ito J, Noda H, Iwasa H, Kiyanagi Y, Ikeda S (2005) Computer tomography thermometry – an application of neutron resonance absorption spectrometry. Nucl Instrum Methods Phys Res A 542:258–263

    Article  Google Scholar 

  33. Yuan VW, Bowman JD, Funk DJ, Morgan GL, Rabic RL, Ragan CE, Quintana JP, Stacy HL (2005) Shock temperature measurement using neutron resonance spectroscopy. Phys Rev Lett 94:125504

    Article  Google Scholar 

  34. Mook HA, Harvey JA, Hill NW (1990) Measurement of Teff for Cu in YBa2Cu3O7 by neutron resonance absorption. Phys Rev B 41:764–765

    Article  Google Scholar 

  35. Hecker NE, Mook HA, Harvey JA, Hill NW, Moxon M, Golovchenko JA (1994) Absence of anomalous vibrations in YBa2Cu3O7-δ. Phys Rev B 50:16129–16132

    Article  Google Scholar 

  36. Tokuda K, Kamiyama T, Kiyanagi Y, Moreh R, Ikeda S (2001) Direct observation of effective temperature of Ta atom in layer compound TaS2 by neutron resonance absorption spectrometer. Jpn J Appl Phys 40:1504–1507

    Article  Google Scholar 

  37. Ikeda S, Misawa M, Tomiyoshi S, Omori M, Suzuki T (1988) Copper and oxygen vibrations in La2CuO4 and YBa2Cu3O7. Phys Lett 134:191–195

    Article  Google Scholar 

  38. Block RC, Bollinger LM, Firk FWK, Good WM, Melkonian E, Moore MS, Rae ER (1970) Experimental neutron resonance spectroscopy. In: Harvey JA (ed). Academic Press, New York/London

    Google Scholar 

  39. Schillebeeckx P, Becker B, Danon Y, Guber K, Harada H, Heyse J, Junghans AR, Kopecky S, Massimi C, Moxon MC, Otuka N, Sirakov I, Volev K (2012) Determination of resonance parameters and their covariances from neutron induced reaction cross section data. Nucl Data Sheets 113:3054–3100

    Article  Google Scholar 

  40. Lane AM, Thomas RG (1958) R-matrix theory of nuclear reactions. Rev Mod Phys 30:257–353

    Article  Google Scholar 

  41. Fröhner FH (2000) Evaluation and analysis of nuclear resonance data. JEFF report 18, Nuclear Energy Agency (OECD)

    Google Scholar 

  42. Breit G, Wigner EP (1936) Capture of slow neutrons. Phys Rev 49:519–531

    Article  Google Scholar 

  43. https://www.oecd-nea.org/jans/. 13 Apr 2019

  44. Bethe HA, Placzek G (1937) Resonance effects in nuclear processes. Phys Rev 51:450–484

    Article  Google Scholar 

  45. Lamb WE (1939) Capture of neutrons by atoms in a crystal. Phys Rev 55:190–197

    Article  Google Scholar 

  46. Ashcroft NW, Mermin ND (1976) Solid state physics. Holt Rinehart and Winston, New York

    Google Scholar 

  47. Seidl FGP, Hughes DJ, Palevsky H, Levi JS, Kato WY, Sjöstrand NG (1954) Fast chopper time-of-flight measurement of neutron resonances. Phys Rev 95:476–499

    Article  Google Scholar 

  48. Röttger S, Böttger R, Brooks FD, Buffler A, Meulders J-P, Nolte R, Smit FD, Wissmann F (2004) The PTB Neutron Reference Fields (PIAF) – quasi-monoenergetic neutron reference fields in the energy range from thermal to 200 MeV. Radiat Prot Dosimetry 110:97–102

    Article  Google Scholar 

  49. Nolte R, Thomas D (2011) Monoenergetic fast neutron reference fields: I. Neutron production. Metrologia 48:S263–S273

    Article  Google Scholar 

  50. Paradela C, Alaerts G, Heyse J, Kopecky S, Šalamon L, Schillebeeckx P, Wynants R, Harada H, Kitatani F, Koizumi M, Kureta M, Tsuchiya H (2016) Neutron resonance analysis system requirements, JRC technical reports, EUR 28239 EN

    Google Scholar 

  51. Böckhoff KH, Carlson AD, Wasson OA, Harvey JA, Larson DC (1990) Electron linear accelerators for fast neutron data measurements in support of fusion energy applications. Nucl Sci Eng 106:192–207

    Article  Google Scholar 

  52. Maekawa F, Harada M, Oikawa K, Teshigawara M, Kai T, Meigo S-i, Ooi M, Sakamoto S, Takada H, Futakawa M, Kato T, Ikeda Y, Watanabe N, Kamiyama T, Torii S (2010) First neutron production utilizing J-PARC pulsed spallation neutron source JSNS and neutronic demonstrated. Nucl Instrum Methods Phys Res A 620:159–165

    Article  Google Scholar 

  53. Thomason JWG (2019) The ISIS Spallation neutron and Muon source – the first thirty-three years. Nucl Instrum Methods Phys Res A 917:61–67

    Article  Google Scholar 

  54. Jing HT, Tang JY, Tang HQ, Xi HH, Liang TJ, Zhou ZY, Zhong QP, Ruan XC (2010) Studies of back-streaming white neutrons at CSNS. Nucl Instrum Methods Phys Res A 621:91–96

    Article  Google Scholar 

  55. Guerrero C et al (2013) Performance of the neutron time-of-flight facility n_TOF at CERN. Eur Phys J A 49:27

    Article  Google Scholar 

  56. Nowicki SF, Wender SA, Mocko M (2017) The Los Alamos Neutron Science Center Spallation neutron sources. Phys Procedia 90:374–380

    Article  Google Scholar 

  57. Firk FWK (1979) Neutron time-of-flight spectrometers. Nucl Instrum Methods 162:539–563

    Article  Google Scholar 

  58. Mondelaers W, Schillebeeckx P (2006) GELINA, A neutron time-of-flight facility for high-resolution neutron data measurements. Notiziario Neutroni e Luce di Sincrotrone 11:19–25

    Google Scholar 

  59. Ikeda Y (2009) J-PARC status update. Nucl Instrum Methods Phys Res A 600:1–4

    Article  Google Scholar 

  60. Kai T, Segawa M, Ooi M, Hashimoto E, Shinohara T, Harada M, Maekawa F, Oikawa K, Sakai T, Matsubayashi M, Kureta M (2011) First demonstration of neutron resonance absorption imaging using a high-speed video camera in J-PARC. Nucl Instrum Methods Phys Res A 651:126–130

    Article  Google Scholar 

  61. Ooi M, Teshigawara M, Kai T, Harada M, Maekawa F, Futakawa M, Hashimoto E, Segawa M, Kureta M, Tremsin A, Kamiyama T, Kiyanagi Y (2013) Neutron resonance imaging of a Au-In-Cd alloy for the JSNS. Phys Procedia 43:337–342

    Article  Google Scholar 

  62. Tremsin AS, Shinohara T, Kai T, Ooi M, Kamiyama T, Kiyanagi Y, Shiota Y, McPhate JB, Vallerga JV, Siegmund OHW, Feller WB (2014) Neutron resonance transmission spectroscopy with high spatial and energy resolution at the J-PARC pulsed neutron source. Nucl Instrum Methods Phys Res A 746:47–58

    Article  Google Scholar 

  63. Toh Y, Ebihara M, Kimura A, Nakamura S, Harada H, Hara KY, Koizumi M, Kitatani F, Furutak K (2014) Synergistic effect of combining two nondestructive analytical methods for multielemental analysis. Anal Chem 86:12030–12036

    Article  Google Scholar 

  64. Perelli Cippo E, Borella A, Gorini G, Kockelmann W, Pietropaolo A, Postma H, Rhodes NJ, Schillebeeckx P, Schooneveld EM, Tardocchi M, Wynants R (2010) A detector system for neutron resonance capture imaging. Nucl Instrum Methods Phys Res A 623:693–698

    Article  Google Scholar 

  65. Perelli Cippo E, Borella A, Gorini G, Kockelmann W, Moxon M, Postma H, Rhodes NJ, Schillebeeck P, Schoonenveld EM, Tardocchi M, Dusz K, Hajnal Z, Biro K, Porcinai S, Andreani C, Festa G (2011) Imaging of cultural heritage objects using neutron resonances. J Anal At Spectrom 26:992–999

    Article  Google Scholar 

  66. Gorini G et al (2007) Ancient Charm: a research project for neutron-based investigation of cultural-heritage objects. Il Nuovo Cimento C 30:47–58

    Google Scholar 

  67. Salomé JM, Cools R (1981) Neutron producing target at GELINA. Nucl Instrum Methods 179:13–19

    Article  Google Scholar 

  68. Tronc D, Salomé JM, Böckhof K (1985) A new pulse compression system for intense relativistic electron beams. Nucl Instrum Methods 228:217–227

    Article  Google Scholar 

  69. Kobayashi K, Lee S, Yamamoto S, Kawano T (2004) Neutron capture cross-section measurement of 99Tc by linac time-of-flight and the resonance analysis. Nucl Sci Eng 146:209–220

    Article  Google Scholar 

  70. Overberg E, Moretti BE, Slovacek RE, Block RC (1999) Photoneutron target development for the RPI linear accelerator. Nucl Instrum Methods Phys Res A 438:253–264

    Article  Google Scholar 

  71. Michaudon A (1963) The production of moderated neutron beams from pulsed accelerators. J Nucl Energy 17(Part A/B):165–186

    Google Scholar 

  72. Kiyanagi Y (2006) Experimental studies on neutronic performance of various cold-neutron moderators for the pulsed neutron sources. Nucl Instrum Methods Phys Res A 562:561–564

    Article  Google Scholar 

  73. Harada M, Watanabe N, Maekawa F, Futakawa M (2008) Pulse characteristics of epithermal neutrons from a spallation source. Nucl Instrum Methods Phys Res A 597:242–256

    Article  Google Scholar 

  74. Škoro G, Lilley S, Bewley R (2018) Neutronics analysis of target, moderators and reflector design for the ISIS TS-1 project. Phys B Condens Matter 551:381–385

    Article  Google Scholar 

  75. Kimura A, Fujii T, Fukutani S, Furutaka K, Goko S, Hara KY, Harada H, Hirose K, Hori J-i, Igashira M, Kamiyama T, Katabuchi T, Kina T, Kino K, Kitatani F, Kiyanagi Y, Koizumi M, Mizumoto M, Nakamura S, Ohta M, Oshima M, Takamiya K, Toh Y (2012) Neutron-capture cross-sections of 244Cm and 246Cm measured with an array of large germanium detectors in the ANNRI at J-PARC/MLF. J Nucl Sci Technol 47:708–724

    Article  Google Scholar 

  76. Kino K, Furusaka M, Hiraga F, Kamiyama T, Kiyanagi Y, Furutaka K, Goko S, Harada H, Harada M, Kai T, Kimura A, Kin T, Kitatani F, Koizumi M, Maekawa F, Meigo S, Nakamura S, Ooi M, Ohta M, Oshima M, Toh Y, Igashira M, Katabuchi T, Mizumoto M (2011) Measurement of energy spectra and spatial distributions of neutron beams provided by the ANNRI beam line for capture cross-section measurements at the J-PARC/MLF. Nucl Instrum Methods Phys Res A 626–627:58–66

    Article  Google Scholar 

  77. Maekawa F, Oikawa K, Harada M, Kai T, Meigo S, Kasugai Y, Ooi M, Sakai K, Teshigawara M, Hasegawa S, Ikeda Y, Watanabe N (2009) NOBORU: J-PARC BL10 for facility diagnostics and its possible extension to innovative instruments. Nucl Instrum Methods Phys Res A 600:335–337

    Article  Google Scholar 

  78. Hasemi H, Harada M, Kai T, Shinohara T, Ooi M, Sato H, Kino K, Segawa M, Kamiyama T, Kiyanagi Y (2015) Evaluation of nuclide density by neutron transmission at the NOBORU instrument in J-PARC/MLF. Nucl Instrum Methods Phys Res A 773:137–149

    Article  Google Scholar 

  79. Ene D, Borcea C, Flaska M, Kopecky S, Negret A, Mondelaers W, Plompen AJM (2010) Global characterisation of the GELINA facility for high-resolution neutron time-of-flight measurements by Monte Carlo simulations. Nucl Instrum Methods Phys Res A 618:54–68

    Article  Google Scholar 

  80. Šalamon L, Geslot B, Heyse J, Kopecky S, Leconte P, Noguere G, Paradela C, Schillebeeckx P, Snoj L (2019) 107Ag and 109Ag resonance parameters for neutron induced reactions below, 1 keV. Nucl Instrum Methods Phys Res B 446:19–28

    Google Scholar 

  81. Sirakov I, Becker B, Capote R, Dupont E, Kopecky S, Massimi C, Schillebeeckx P (2013) Results of total cross section measurements for 197Au in the neutron energy region from 4 to 108 keV at GELINA. Eur Phys J A 49:144–153

    Article  Google Scholar 

  82. Tsuchiya H, Harada H, Koizumi M, Kitatani F, Takamine J, Kureta M, Iimura H, Kimura A, Becker B, Kopecky S, Kauwenberghs K, Mondelaers W, Schillebeeckx P (2014) Impact of systematic effects on results of neutron transmission analysis. Nucl Instrum Methods Phys Res A 767:364–371

    Article  Google Scholar 

  83. Moxon MC (1989) REFIT2: a least squares fitting program for resonance analysis of neutron transmission and capture data, NEA-0914/02, July

    Google Scholar 

  84. Moxon MC, Brisland JB (1991) GEEL REFIT, A least squares fitting program for resonance analysis of neutron transmission and capture data computer code. AEA-InTec-0630, AEA Technology, October

    Google Scholar 

  85. Paradela C, Alaerts G, Becker B, Heyse J, Kopecky S, Moens A, Mondelaers W, Schillebeeckx P, Wynants R, Harada H, Kitatani F, Koizumi M, Tsuchiya H (2015) Characterization of nuclear material by neutron resonance transmission analysis. Il Nuovo Cimento C 38:176

    Google Scholar 

  86. Becker B, Kopecky S, Schillebeeckx P (2015) On the methodology to calculate the covariance of estimated resonance parameters. Nucl Data Sheets 123:171–177

    Article  Google Scholar 

  87. Schillebeeckx P, Postma H (2018) Neutron resonance analysis. In: López Varela SL (ed) The encyclopedia of archaeological sciences eMRW. Wiley. https://www.onlinelibrary.wiley.com/doi/book/10.1002/9781119188230

    Google Scholar 

  88. Harada H, Kimura A, Kitatani F, Koizumi M, Tsuchiya H, Becker B, Kopecky S, Schillebeeckx P (2015) Generalized analysis method for neutron resonance transmission analysis. J Nucl Sci Technol 52:837–843

    Article  Google Scholar 

  89. Becker B, Kopecky S, Harada H, Schillebeeckx P (2014) Measurement of the direct particle transport through stochastic media using neutron resonance transmission analysis. Eur Phys J Plus 129:58–59

    Article  Google Scholar 

  90. Kopecky S, Siegler P, Moens A (2007) Low energy transmission measurements of 240,242Pu at GELINA and their impact on the capture width. In: Proceedings of the international conference on nuclear data for science and technology, Nice, April 2007, pp 623–626

    Google Scholar 

  91. Schooneveld EM, Tardocchi M, Gorini G, Kockelmann W, Nakamura T, Perelli Cippo E, Postma H, Rhodes NJ, Schillebeeckx P, Ancient Charm Collaboration (2009) A new position-sensitive transmission detector for epithermal neutron imaging. J Phys D: Appl Phys 42:152003

    Article  Google Scholar 

  92. Schillebeeckx P, Borella A, Emiliani F, Gorini G, Kockelmann W, Kopecky S, Lampoudis C, Moxon M, Perelli Cippo E, Postma H, Rhodes NJ, Schooneveld EM, Van Beveren C (2012) Neutron resonance spectroscopy for the characterization of materials and objects. J Instrum 7:C03009

    Article  Google Scholar 

  93. Tremsin AS, McPhate JB, Vallerga JV, Siegmund OHW, Kockelman W, Schooneveld EM, Rhodes NJ, Bruce Feller W (2012) High resolution neutron resonance absorption imaging at a pulsed neutron beamline. IEEE Trans Nucl Sci 59:3272–3277

    Article  Google Scholar 

  94. Tremsin AS, Vogel SC, Mocko M, Bourke MAM, Yuan V, Nelson RO, Brown DW, Feller WB (2013) Non-destructive studies of fuel pellets by neutron resonance absorption radiography and thermal neutron radiography. J Nucl Mater 440:633–646

    Article  Google Scholar 

  95. Watanabe K, Minniti T, Kockelmann W, Dalgliesh R, Burca G, Tremsin AS (2017) Characterization of a neutron sensitive MCP/Timepix detector for quantitative image analysis at a pulsed neutron source. Nucl Instrum Methods Phys Res A 861:55–63

    Article  Google Scholar 

  96. Borella A, Aerts G, Gunsing F, Moxon M, Schillebeeckx P, Wynants R (2007) The use of C6D6 detectors for neutron induced capture cross-section measurements in the resonance region. Nucl Instrum Methods Phys Res A 577:626–640

    Article  Google Scholar 

  97. Massimi C, Becker B, Dupont E, Kopecky S, Lampoudis C, Massarczyk R, Moxon M, Pronyaev V, Schillebeeckx P, Sirakov I, Wynants R (2014) Neutron capture cross section measurements for 197Au from 3.5 to 84 keV at GELINA. Eur J Phys A 50:124

    Article  Google Scholar 

  98. Kim HI, Paradela C, Sirakov I, Becker B, Capote R, Gunsing F, Kim GN, Kopecky S, Lampoudis C, Lee Y-O, Massarczyk R, Moens A, Moxon M, Pronyaev VG, Schillebeeckx P, Wynants R (2016) Neutron capture cross section measurements for 238U in the resonance region at GELINA. Eur J Phys A 52:170

    Article  Google Scholar 

  99. Meija J, Coplen TB, Berglund M, Brand WA, De Bievre P, Groning M, Holden NE, Irrgeher J, Loss RD, Walczyk T, Prohaska T (2016) Isotopic compositions of the elements 2013 (IUPAC technical report). Pure Appl Chem 88(3):293–306

    Article  Google Scholar 

  100. Needham S (1990) Middle Bronze Age ceremonial weapons: new finds from Oxborough, Norfolk and Essex/Kent. Antiquaries J LXX(Part II):239–252

    Article  Google Scholar 

  101. Butler JJ (1995/6) Bronze age metal and amber in the Netherlands, part II:1. Catalogue of flat axes, flanged axes and stopridge axes. Palaeohistoria 37:159–243

    Google Scholar 

  102. Förster H-J (2004) Mineralogy of the Niederschlema-Alberoda U-Se-polymetallic deposit, Erzgebirge, Germany. II: Hessite, Ag2Te, and native Te (?), the first tellurium minerals. Neues Jahrbuch für Mineralogie – Abhandlungen 180(2):101–113, Stuttgart

    Article  Google Scholar 

  103. Willett F, Sayre EV (2000) The elemental composition of Benin memorial heads. Archaeometry 42:159–188

    Article  Google Scholar 

  104. Mödlinger M, Godfrey E, Postma H, Schillebeeckx P, Kockelmann W (2020) Neutron analyses of eight Bronze Age swords from Austria: the question of ‘stabbing’ or ‘cut-and-thrust’ weapons. J Archaeol Sci Rep 33:102521

    Google Scholar 

  105. Sedyshev PV, Simbirtseva NV, Yergashov AM, Mazhen ST, Mareev YD, Shvetsov VN, Abramzon MG, Saprykina IA (2020) Determining the elemental composition of antique coins of Phanagorian treasure by neutron spectroscopy at the pulsed neutron source IREN in FLNP JINR. Phys Part Nucl Lett 17:389–400

    Article  Google Scholar 

  106. Agresti J, Osticioli I, Guidotti MC, Kardjilov N, Siano S (2016) Non-invasive archaeometallurgical approach to the investigations of bronze figurines using neutron, laser and X-ray techniques. Microchem J 124:765–774

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Schillebeeckx .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Schillebeeckx, P., Postma, H. (2022). Neutron Resonance Analysis Methods for Archaeological and Cultural Heritage Applications. In: D'Amico, S., Venuti, V. (eds) Handbook of Cultural Heritage Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-60016-7_7

Download citation

Publish with us

Policies and ethics