Skip to main content

Cultural Heritage Project at  Australian Nuclear Science and Technology Organisation (ANSTO)

  • Reference work entry
  • First Online:
Handbook of Cultural Heritage Analysis

Abstract

The Australian Nuclear Science and Technology Organization (ANSTO) is the home of Australia’s most significant landmark and national infrastructure for research. ANSTO operates one of the world’s most modern nuclear research reactors, OPAL; a comprehensive suite of neutron beam instruments; the Australian Synchrotron; the Electron Microscope Facility; and the Center for Accelerator Science.

Over the years, the suite of nuclear methods available across ANSTO’s campuses has been increasingly applied to study a wide range of heritage materials. Since 2015 the strategic reseach project on cultural heritage was initiated in order to promote access to ANSTO’s capabilities and experties, unique in the region, by cultural institution and researchers.

This chapter offers a compendium of ANSTO nuclear capabilities most frequently applied to cultural heritage research. A series of innovative, interdisciplinary, and multi-technique studies conducted in close collaboration with Australian museums, institutions, and universities is also showcased. It includes research on dating Aboriginal Australian rock art and fingerprinting the sources of ochre pigments; rediscovering the technological knowledge in the making of early coinage and ancient weapons; virtually unwrapping the content of votive mummies from ancient Egypt; and investigating and restoring the original layer of a painting that can be explored by the museum audience in a novel type of exhibition based on an immersive, interactive, and virtual environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Frederick McCubbin The North Wind

    Google Scholar 

  2. The Nicholson Museum Collection

    Google Scholar 

  3. 2015. Tudor and Jacobean Portrait Database, entry for NPG 1376. Available: https://www.npg.org.uk/collections/search/portraitConservation/mw03084/King-Henry-VIII?

  4. Adriaens A, Dowsett M, Lehmann A, Farhi J, Gunneweg J, Bouchenoire L (2010) The coin beneath the crust: a pilot study of coins from the Mediterranean coast of Israel. In: Gunneweg J, Adriaens A (eds) A holistic view on Qumran and the Dead Sea scrolls. Brill, Leiden

    Google Scholar 

  5. Anderson I, Robert L, Mcgreevy L, Bilheux HZ (2008) Neutron imaging and applications. A reference for the imaging community. Springer, New York

    Google Scholar 

  6. Aubert M, Setiawan P, Oktaviana AA, Brumm A, Sulistyarto PH, Saptomo EW, Istiawan B, Ma’rifat TA, Istiawan B, Wahyuono VN, Atmoko FT, Zhao JX, Huntley J, Taçon PSC, Howard DL, Brand HEA (2018) Palaeolithic cave art in Borneo. Nature 564:254–257

    Article  Google Scholar 

  7. Beck L, Pichon L, Moignard B, Guillou T, Walter P (2011) IBA techniques: examples of useful combinations for the characterisation of cultural heritage materials. Nucl Instrum Methods Phys Res, Sect B 269:2999–3005

    Article  Google Scholar 

  8. Bellot-Gurlet L, Poupeau G, Salomon J, Calligaro T, Moignard B, Dran J-C, Barrat J-A, Pichon L (2005) Obsidian provenance studies in archaeology: a comparison between PIXE, ICP-AES and ICP-MS. Nucl Instrum Methods Phys Res, Sect B 240:583–588

    Article  Google Scholar 

  9. Bennett JW (2008) Commissioning of NAA at the new OPAL reactor in Australia. J Radioanal Nucl Chem 278:671–673

    Article  Google Scholar 

  10. Bennett JW, Stopic A, Grave P (2012) Establishing a basis for nuclear archaeometry in Australia using the 20 MW OPAL research reactor. J Radioanal Nucl Chem 291:13–17

    Article  Google Scholar 

  11. Bergmann U, Manning P, Wogelius R (2012) Chemical mapping of paleontological and archeological artifacts with synchrotron X-rays. Annu Rev Anal Chem 5:361–389. Palo Alto

    Article  Google Scholar 

  12. Bertrand L et al (2012) Cultural heritage and archaeology materials studied by synchrotron spectroscopy and imaging. Appl Phys A Mater Sci Process 106:377–396

    Article  Google Scholar 

  13. Bisset NG (1989) Arrow and dart poisons. J Ethnopharmacol 25:1–41

    Article  Google Scholar 

  14. Bleiberg E (2013) Animal mummies: the souls of the Gods. In: Soulful creatures: animal mummies in Ancient Egypt. Giles, Brooklyn

    Google Scholar 

  15. Bleiberg E, Barbash Y, Bruno L (2013) Soulful creatures: animal mummies in Ancient Egypt. Brooklyn, Giles

    Google Scholar 

  16. Bowler J et al (2003) New ages for human occupation and climatic change at Lake Mungo, Australia. Nature 42:837–840

    Article  Google Scholar 

  17. Brookhouse M, Ives S, Dredge P, Howard D, Bridge M (2020) Mapping Henry: dendrochronological analysis of a sixteenth-century panel painting based upon synchrotron-sourced x-ray fluorescence mapping. Stud Conservat 66(7):1–13

    Google Scholar 

  18. Bruno L (2013) The scientific examination of animal mummies in soulful creatures. Brooklyn, Giles

    Google Scholar 

  19. Buckley S, Clark K, Evershed R (2004) Complex organic chemical balms of pharaonic animal mummies. Nature 431:294–299

    Article  Google Scholar 

  20. Butalag K, Calcagnile L, Quarta G, Maruccio L, D’elia M (2008) PIXE analysis of obsidian tools from radiocarbon dated archaeological contexts. Nucl Instrum Methods Phys Res, Sect B 266:2353–2357

    Article  Google Scholar 

  21. Calligaro T, Coquinot Y, Pichon L, Moignard B (2011) Advances in elemental imaging of rocks using the AGLAE external microbeam. Nucl Instrum Methods Phys Res, Sect B 269:2364–2372

    Article  Google Scholar 

  22. Calligaro T, Dran JC, Klein M (2003) Application of photo-detection to art and archaeology at the C2RMF. Nucl Instrum Methods Phys Res Sect A 504:213–221

    Article  Google Scholar 

  23. Calligaro T, Mossmann A, Poirot JP, Querré G (1998) Provenance study of rubies from a Parthian statuette by PIXE analysis. Nucl Instrum Methods Phys Res, Sect B 136–138:846–850

    Article  Google Scholar 

  24. Carminati C, Boillat P, Schmid F, Vontobel P, Hovind J, Morgano M, Raventos M, Siegwart M, Mannes D, Gruenzweig C, Trtik P, Lehmann E, Strobl M, Kaestner A (2019) Implementation and assessment of the black body bias correction in quantitative neutron imaging. PLoS One 14:1–24

    Article  Google Scholar 

  25. Carter E, Hargreaves M, Kononenko N, Graham I, Edwards H, Swarbrick B, Torrence R (2009) Raman spectroscopy applied to understanding Prehistoric Obsidian Trade in the Pacific region. Vib Spectrosc 50:116–124

    Article  Google Scholar 

  26. Chabanne D, Bouquillon A, Aucouturier M, Dectot X, Padeletti G (2008) Physico-chemical analyses of Hispano-Moresque lustred ceramic: a precursor for Italian majolica? Appl Phys A Mater Sci Process 92:11–18

    Article  Google Scholar 

  27. Chêne G, Bols S, Dupuis T, Marchal A, Mathis F, Garnir HP, STRIVAY D (2012) New external beam and particle detection set-up of Liège cyclotron – first applications of high energy beams to cultural heritage. Nucl Instrum Methods Phys Res, Sect B 273:208–212

    Article  Google Scholar 

  28. Conophagus C, Badecca E, Tsaimou C (1976) La technique Athenienne de la frappe des monnaies à l’Epoque Classique’. Nomismatika Khronika 4:4–33

    Google Scholar 

  29. Cookson JA, Ferguson ATG, Pilling FD (1972) Proton microbeams, their production and use. J Radioanal Chem 12:39–52

    Article  Google Scholar 

  30. Copper T, Howard M (2015) Artists, patrons and the context for the production of painted images in Tudor and Jacobean England, in painting in Britain 1500–1630. Production, influences and patronage. Oxford University Press, Oxford

    Google Scholar 

  31. Cotte M, Susini L, Dik J, Janssens K (2010) Synchrotron-based x-ray absorption spectroscopy for art conservation: looking back and looking forward. Acc Chem Res 43:705–714

    Article  Google Scholar 

  32. Cotte M, Walter P, Tsoucaris G, Dumas P (2005) Studying skin of an Egyptian mummy by infrared microscopy. Vib Spectrosc 38:159–167

    Article  Google Scholar 

  33. Divitcos J, De Jonge M, Howard D, Mckinlay J (2017) Milliprobe scanner station. In: Schaa VRW (ed) Mechanical engineering design of synchrotron radiation equipment and instrumentation. JACoW, Barcelona, pp 93–95

    Google Scholar 

  34. Doménech Carbó M, Bosch Reig F, Periz Martinez V, Gimeno Adelantado J (1996) Fourier transform infrared spectroscopy and the analytical study of works of arcrt for purposes of diagnosis and conservation. Anal Chim Acta:2670

    Google Scholar 

  35. Dowsett MG, Adriaens A (2006) Cell for simultaneous synchrotron radiation X-ray and electrochemical corrosion measurements on cultural heritage metals and other materials. Anal Chem 78:3360–3365

    Article  Google Scholar 

  36. Dran J-C, Calligaro T (2013) Ion beam analysis in cultural heritage studies: milestones and perspectives. AIP, American Institute of Physics

    Google Scholar 

  37. Dran J-C, Salomon J, Calligaro T, Walter P (2004) Ion beam analysis of art works: 14 years of use in the Louvre. Nucl Instrum Methods Phys Res, Sect B 219–220:7–15

    Article  Google Scholar 

  38. Dredge P, Howard D, Morgan K, Yip A (2018) Unmasking Sidney Nolan’s Ned Kelly: X-ray fluorescence conservation imaging, art historical interpretation and virtual reality visualisation. Aust New Zealand J Art 17:147–161

    Article  Google Scholar 

  39. Dredge P, Ives S, Howard DL, Spiers KM, Yip A, Kenderdine S (2015) Mapping Henry: synchrotron-sourced X-ray fluorescence mapping and ultra-high-definition scanning of an early Tudor portrait of Henry VIII. Appl Phys A Mater Sci Process 121:789–800

    Article  Google Scholar 

  40. Eiselt B, Popelka-Filcoff R, Darling J, Glascock M (2011) Hematite sources and archaeological ochres from Hohokam and O’odham sites in Central Arizona: an experiment in type identification and characterization. J Archaeol Sci 38:3019–3028

    Article  Google Scholar 

  41. Fedrigo A, Strobl M, Williams A, Lefmann K, Lindelof PE, Jørgensen L, Pentz P, Bausenwein D, Schillinger B, Kovyakh A, Grazzi F (2016) Neutron imaging study of ‘pattern-welded’swords from the Viking age. Archaeol Anthropol Sci 27:1–15

    Google Scholar 

  42. Franke KA (2017) Chapter 11. Precious Metal Artefacts (Gold, Silver, Lead, Antimony). In: L. Weeks (ed.), Saruq al-Hadid Archaeological Research Project (SHARP). Interim Report III 551–637

    Google Scholar 

  43. Garbe U, Randall T, Davidson C, Pangelis G, Kennedy S (2015) A new neutron radiography/tomography/imaging station DINGO at OPAL. Phys Procedia 69:27–32

    Article  Google Scholar 

  44. Ginsburg L (183–191) Les chats du Bubasteion de Saqqara (Égypte): Nouvelle étude archéozoologique et perspectives., Oct 2010, France

    Google Scholar 

  45. Goodall R, Puskar L, Fisher K, Mccartney E, Privett M (2015) Investigation of historical dart poisons using synchrotron based infrared microscopy and spectroscopy. Vib Spectrosc 78:66–74

    Article  Google Scholar 

  46. Gorini G (1975) La monetazione incusa della Magna Grecia. Edizioni Arte e moneta, Milano

    Google Scholar 

  47. Grassi N, Giuntini L, Mandò PA, Massi M (2007) Advantages of scanning-mode ion beam analysis for the study of cultural heritage. Nucl Instrum Methods Phys Res, Sect B 256:712–718

    Article  Google Scholar 

  48. Grazzi F, Bartoli L, Civita F, Franci R, Paradowska A, Scherillo A, Zoppi M (2011) From Koto age to modern times: quantitative characterization of Japanese swords with time of flight neutron diffraction. J Anal At Spectrom 26:1030–1039

    Article  Google Scholar 

  49. Guerra MF (2004) Fingerprinting ancient gold with proton beams of different energies. Nucl Instrum Methods Phys Res, Sect B 226:185–198

    Article  Google Scholar 

  50. Guerra MF, Calligaro T (2003) Gold cultural heritage objects: a review of studies of provenance and manufacturing technologies. Meas Sci Technol 14:1527–1537

    Article  Google Scholar 

  51. Guerra MF, Tissot I (2013) The role of nuclear microprobes in the study of technology, provenance and corrosion of cultural heritage: the case of gold and silver items. Nucl Instrum Methods Phys Res, Sect B 306:227–231

    Article  Google Scholar 

  52. Hartley M, Lord C, Evans L (2017) Animals in ancient Egypt: roles in Life and Death. In Death is only the beginning. The Australian Centre for Egyptology Studies, 11, 100–109

    Google Scholar 

  53. Hiroko Kapp L, Oshihara Y (1987) The craft of the Japanese Sword. Tokyo, Kodan Internationa Ltd

    Google Scholar 

  54. Hohl M (2011) Sensual technologies: embodied experience and visualisation of scientific data. Body Space Technol J 10:384–396

    Google Scholar 

  55. Holden C (1995) Glue incriminates sculptor. Science 267:966–966

    Article  Google Scholar 

  56. Houlihan PF (1996) The animal world of the Pharaohs. Thames & Hudson, London

    Google Scholar 

  57. Howard DL, De Jonge MD, Lau D, Hay D, Varcoe-Cocks M, Ryan CG, Kirkham R, Moorhead G, Paterson D, Thurrowgood D (2012) High-definition X-ray fluorescence elemental mapping of paintings. Anal Chem 84:3278–3286

    Article  Google Scholar 

  58. Howard DL, De Jonge MD, Paterson D, Thurrowgood D (2018) Chemical processing of an early salt print photograph revealed with X-ray fluorescence elemental mapping. Microsc Microanal 24:488–489

    Article  Google Scholar 

  59. Hua Q, Zoppi U, Williams AA, Smith AM (2004) Small-mass AMS radiocarbon analysis at ANTARES. Nucl Inst Methods Phys Res B 223–224:284–292

    Article  Google Scholar 

  60. Hunt A, Thomas P, James D, David B, Geneste J-M, Delannoy J-J, Stuart B (2016) The characterisation of pigments used in X-ray rock art at Dalakngalarr 1, Central-Western Arnhem Land. Microchem J 126:524–529

    Article  Google Scholar 

  61. Ikram S (2005) Divine creatures: animal mummies in Ancient Egypt. The American University in Cairo Press, Cairo

    Book  Google Scholar 

  62. Ikram S (2009) Ancient Egypt: an introduction. Cambridge University Press, Cambridge

    Google Scholar 

  63. Janssens K, Dik J, Cotte M, Susini J (2010) Photon-based techniques for nondestructive subsurface analysis of painted cultural heritage artifacts. Acc Chem Res 43:814–825

    Article  Google Scholar 

  64. Jeynes C, Webb RP, Lohstroh A (2011) Ion beam analysis: a century of exploiting the electronic and nuclear structure of the atom for materials characterisation. Rev Accel Sci Technol 04:41–82

    Article  Google Scholar 

  65. Johansson TB, Akselsson R, Johansson SAE (1970) X-ray analysis: elemental trace analysis at the 10−12 g level. Nucl Inst Methods 84:141–143

    Article  Google Scholar 

  66. Jones RN, Gallagher BS (1959) The infrared spectra of steroid lactones. J Am Chem Soc 81:5242–5251

    Article  Google Scholar 

  67. Jones T, Levchenko VA, King PL, Troitzsch U, Wesley D, Williams AA, Nayingul A (2017) Radiocarbon age constraints for a Pleistocene–Holocene transition rock art style: the Northern Running Figures of the East Alligator River region, western Arnhem Land, Australia. J Archaeol Sci Rep 11:80–89

    Google Scholar 

  68. Kardjilov N, Festa G (2017) Neutron methods for archaeology and cultural heritage. Springer, Cham

    Book  Google Scholar 

  69. Katsanos A, Xenoulis A, Hadjiantoniou A, Fink RW (1976) An external beam technique for proton-induced X-ray emission analysis. Nucl Inst Methods 137:119–124

    Article  Google Scholar 

  70. Kirstein O, Luzin V, Garbe U (2009) The strain-scanning diffractometer Kowari. Neutron News 20:34–36

    Article  Google Scholar 

  71. Knoll GF (2009) Radiation detection and measurement. Wiley, New York

    Google Scholar 

  72. Kockelmann W, Kirfel A, Siano S, Fros CD (2004) Illuminating the past: the neutron as a tool in archaeology. Phys Educ 39:155–165

    Article  Google Scholar 

  73. Laura L-M (1996) La scrittura dell’antico Perù. Un mondo da scoprire, CLUEB Editore, Bologna, 1996

    Google Scholar 

  74. Laurencich-Minelli L, Clara M, Carlo A (1995) Il documento seicentesco Historia et Rudimenta Linguae Piruanorum, Studi e Materiali di Storia de/le Religioni 61:363–413

    Google Scholar 

  75. Laurencich-Minelli L, Miccinelli C, Animato C (1998) Lettera di Francisco de Chaves alla sacra cesarea cattolica maestá: un inédito del sec. XVI, Studi e Materialli di Storia delle Religioni 64:57–87

    Google Scholar 

  76. Lawler C (1990) History of the Nicholson Museum of antiquities, unpublished manuscript

    Google Scholar 

  77. Liang L, Rinaldi R, Schober H (2009) Neutron applications in Earth, energy and environmental sciences. Springer, New York

    Book  Google Scholar 

  78. Ligeon E, Bontemps A (1972) Nuclear reaction analysis of boron and oxygen in silicon. J Radioanal Chem 12:335–351

    Article  Google Scholar 

  79. Liss K-D, Hunter B, Hagen M, Noakes T, Kennedy S (2006) Echidna – the new high-resolution powder diffractometer being built at OPAL. Phys B Condens Matter 385–386:1010–1012

    Article  Google Scholar 

  80. Macdonald B et al (2012) Elemental analysis of ochre outcrops in Southern British Columbia, Canada. Archaeometry 55:1020–1033

    Article  Google Scholar 

  81. Macleod ID, Thurrowgood D, Pohl G, Howard D, Patterson D (2014) Centuries of decay revealed by synchrotron analysis of the de Vlamingh 1697 pewter plate. In: Bridgland J (ed) ICOM-CC 17th Triennal conference – International Council of Museums Paris, 6

    Google Scholar 

  82. Manfredotti C, Fizzotti F, Polesello P, Vittone E, Truccato M, Lo Giudice A, Jaksic M, Rossi P (1998) IBIC and IBIL microscopy applied to advanced semiconductor materials. Nucl Instrum Methods Phys Res, Sect B 136–138:1333–1339

    Article  Google Scholar 

  83. Marchese FT, Banissi E (2013) Knowledge visualization currents: from text to art to culture. Springer, London

    Book  Google Scholar 

  84. Martinetto P, Dran JC, Moignard B, Salomon J, Walter P (2001) In situ RBS study of the kinetics of galena thermal oxidation by means of 4He external micro-beam. Nucl Instrum Methods Phys Res, Sect B 181:703–706

    Article  Google Scholar 

  85. Mathis F, Moignard B, Pichon L, Dubreuil O, Salomon J (2005) Coupled PIXE and RBS using a 6MeV 4He2+ external beam: a new experimental device for particle detection and dose monitoring. Nucl Instrum Methods Phys Res, Sect B 240:532–538

    Article  Google Scholar 

  86. Mathis F, Othmane G, Vrielynck O, Calvo Del Castillo H, Chêne G, Dupuis T, Strivay D (2010) Combined PIXE/PIGE and IBIL with external beam applied to the analysis of Merovingian glass beads. Nucl Instrum Methods Phys Res, Sect B 268:2078–2082

    Article  Google Scholar 

  87. Mathis F, Salomon J, Moignard B, Pichon L, Aucouturier M, Dran JC (2004) Real time RBS study of Cu–Sn alloy thermal oxidation by means of a 4He2+ external micro-beam. Nucl Instrum Methods Phys Res, Sect B 226:147–152

    Article  Google Scholar 

  88. Milazzo M, Cicardi C, Mannoni T, Tuniz C (1997) Non destructive measurements for characterisation of materials and datation of Corona Ferrea of Monza, Handbook of the Sixth Australasian archaeometry conference. Sydney, Australia, Handbook_australian_museum_10-13_February_1997, Paper #38, page 74

    Google Scholar 

  89. Modjtahed-Zadeh R, Rastegar B, Gallmann A, Guillaume G, Jundt F, Sioshansi P (1975) Analyse sous helium par la technique de fluorescence X induite par protons. Nucl Inst Methods 131:563–565

    Article  Google Scholar 

  90. Moesta H, Franke PR (1995) Herstellung von Muenzen Antike Metallurgie und Muenzpraegung. Ein Beitrag zur Technikgeschichte, Basel

    Book  Google Scholar 

  91. Monico L, Janssens K, Alfeld M, Cotte M, Vanmeert C, Ryan G, Falkenberg G, Howard DL, Brunetti BG, Miliani C (2015) Full spectral XANES imaging using the Maia detector array as a new tool for the study of the alteration process of chrome yellow pigments in paintings by Vincent van Gogh. J Anal At Spectrom 30:613–626

    Article  Google Scholar 

  92. Mørkholm O (1991) Early Hellenistic coinage. Cambridge University Press, Cambridge

    Google Scholar 

  93. Morris WG (1989) PIXE: a novel technique for elemental analysis. S. A. E. Johansson and J. L. Campbell Published by John Wiley & Sons, New York (1988); 347 pages, ISBN 0471920118. X-Ray Spectrom 18:248

    Google Scholar 

  94. Možir A, Gonzalez L, Kralj Cigić I, Wess T, Rabin I, Hahn O, Strlič M (2012) A study of degradation of historic parchment using small-angle X-ray scattering, synchrotron-IR and multivariate data analysis. Anal Bioanal Chem 402:1559–1566

    Article  Google Scholar 

  95. Munita C (2004) NAA applied to archaeological problems. International Atomic Energy Agency, Vienna, pp 165–170

    Google Scholar 

  96. Nastasi M, Mayer JW, Wang Y (2019) Ion beam analysis. CRC Press, Boca Raton

    Google Scholar 

  97. Nel P et al Elemental and mineralogical study of earth-based pigments using particle induced X-ray emission and X-ray diffraction. Nucl Instrum Methods Phys Res Sect A 619:306–310

    Google Scholar 

  98. Nel P, Lynch PA, Laird JS, Casey HM, Goodall LJ, Ryan CG, Sloggett RJ (2010) Elemental and mineralogical study of earth-based pigments using particle induced X-ray emission and X-ray diffraction. Nucl Instrum Methods Phys Res Sect A 619:306–310

    Article  Google Scholar 

  99. Nicholson C (1891) Ӕgyptiaca: comprising a catalogue of Egyptian antiquities collected in the years 1856, 1857, and now deposited in the museum of the University of Sydney. Harrison and Sons, London

    Google Scholar 

  100. Nobbs M (1996) Aboriginal painters of the Olary District of South Australia an ethnoecological study of the Lake Frome Plains and the adjoining uplands, with particular reference to the granite area of the Olary Uplands. Thesis (M.A.) Flinders University of S. Aust

    Google Scholar 

  101. Osmond G, Boon J, Puskar L, Drennan J (2012) Metal stearate distributions in modern artists’ oil paints: surface and cross-sectional investigation of reference paint films using conventional and synchrotron infrared microspectroscopy. Appl Spectrosc 66:1136–1144

    Google Scholar 

  102. Pastuovic Z, Button D, Cohen D, Fink D, Garton D, Hotchkis M, Ionescu M, Long S, Levchenko V, Mann M, Siegele R, Smith A, Wilcken K (2016) SIRIUS – a new 6 MV accelerator system for IBA and AMS at ANSTO. Nucl Instrum Methods Phys Res, Sect B 371:142–147

    Article  Google Scholar 

  103. Pastuovic Z, Siegele R, Cohen DD, Mann M, Ionescu M, Button D, Long S (2017) The new confocal heavy ion microprobe beamline at ANSTO: the first microprobe resolution tests and applications for elemental imaging and analysis. Nucl Instrum Methods Phys Res, Sect B 404:1–8

    Article  Google Scholar 

  104. Paterson D, De Jonge MD, Howard DL, Lewis W, Mckinlay J, Starritt A, Kusel M, Ryan CG, Kirkham R, Moorhead G, Siddons DP (2010) The X-ray fluorescence microscopy beamline at the Australian synchrotron. AIP 1365:219–222

    Google Scholar 

  105. Pilling JACAFD (1970) 1970 Harwell report

    Google Scholar 

  106. Popelka-Filcoff R et al (2012) Evaluation of relative comparator and k0-NAA for characterization of Aboriginal Australian ochre. J Radioanal Nucl Chem 291:19–24

    Article  Google Scholar 

  107. Popelka-Filcoff R et al (2015) Microelemental characterisation of Aboriginal Australian natural Fe oxide pigments. Anal Methods 7:7363–7380

    Article  Google Scholar 

  108. Popelka-Filcoff R et al (2016) Novel application of X-ray fluorescence microscopy (XFM) for the non-destructive micro-elemental analysis of natural mineral pigments on Aboriginal Australian objects. Analyst 141:3657–3667

    Article  Google Scholar 

  109. Pouyet E, Lluveras-Tenorio A, Nevin A, Saviello D, Sette F, Cotte M (2014) Preparation of thin-sections of painting fragments: classical and innovative strategies. Anal Chim Acta 822:51–59

    Article  Google Scholar 

  110. Pradell T, Molera J, Smith AD, Climent-Font A, Tite MS (2008) Technology of Islamic lustre. J Cult Herit 9:e123–e128

    Article  Google Scholar 

  111. Raymond CA (2017) Mummification unwrapped: investigating an Egyptian votive mummy using novel, non-invasive archaeometric techniques, Macquarie University MRes Thesis

    Google Scholar 

  112. Raymond CA, Bevitt JJ, Tristant Y, Power RK, Lanati AW, Davey CJ, Magnussen JS, Clark SM (2019) Recycled blessings: an investigative case study of a Re-wrapped Egyptian Votive Mummy using novel and established 3d imaging techniques. Archaeometry 61(5):1160–1174

    Google Scholar 

  113. Re A, Giudice AL, Angelici D, Calusi S, Giuntini L, Massi M, Pratesi G (2011) Lapis lazuli provenance study by means of micro-PIXE. Nucl Instrum Methods Phys Res, Sect B 269:2373–2377

    Article  Google Scholar 

  114. Reiche I, Castaing J, Calligaro T, Salomon J, Aucouturier M, Reinholz U, Weise H-P (2006) Analyses of hydrogen in quartz and in sapphire using depth profiling by ERDA at atmospheric pressure: comparison with resonant NRA and SIMS. Nucl Instrum Methods Phys Res, Sect B 249:608–611

    Article  Google Scholar 

  115. Roumié M, Nsouli B, Atalla C, Waksman SY (2005) Application of PIXE using Al funny filter for cluster analysis of Byzantine amphorae from Beirut. Nucl Instrum Methods Phys Res, Sect B 227:584–590

    Article  Google Scholar 

  116. Rubin SR, W.K. (1950) Backscattering spectroscopy – chemical analysis by proton scattering. Phys Rev 78:83

    Google Scholar 

  117. Russ JC (2002) Image threshold and segmentation. Wiley Online Library

    Google Scholar 

  118. Rutter NK (2001) Historia Numorum. Italy. The British Museum Press, London

    Google Scholar 

  119. Ryan C et al (2009) Elemental X-ray imaging using the Maia detector array: the benefits and challenges of large solid-angle. Nucl Instrum Methods Phys Res Sect A 619:37–43

    Article  Google Scholar 

  120. Salvadó N, Butí S, Tobin M, Pantos E, Prag A (2005) Advantages of the use of SR-FT-IR microspectroscopy: applications to cultural heritage. Anal Chem 77:3444–3451

    Article  Google Scholar 

  121. Salvemini F, Lord C, Richards CJNRW (2020) Neutron imaging, a key scientific analytical tool for the cultural heritage project at ANSTO-Investigation of Egyptian Votive Mummies. 15, 256

    Google Scholar 

  122. Salvemini F, Luzin V, Avdeev M, Tremsin A, Sokolova A, Gregg A, Wensrich CM, Gatenby S, Kim MJ, Grazzi F (2020) Samurai’s swords, a non-invasive investigation by neutron techniques. Mater Sci Forum 983:15–23

    Article  Google Scholar 

  123. Salvemini F, Luzin V, Grazzi F, Gatenby S, Kim MJ (2017a) Structural characterization of ancient Japanese swords from MAAS using neutron strain scanning measurements. Mater Res Proc 2:443–448

    Google Scholar 

  124. Salvemini F, Luzin V, Grazzi F, Olsen S, Sheedy K, Gatenby S, Kim M-J, Garbe U (2017b) Archaeometric investigations on manufacturing processes in ancient cultures with the neutron imaging station DINGO at ANSTO. Phys Procedia 88:116–122

    Article  Google Scholar 

  125. Salvemini F, Olsen SR, Luzin V, Garbe U (2016) Neutron tomographic analysis: material characterization of silver and electrum coins from the 6th and 5th centuries BC. Mater Charact 118:175–185

    Article  Google Scholar 

  126. Salvemini F, Sheedy K, Olsen SR, Avdeev M, Davis J, Luzin V (2018) A multi-technique investigation of the incuse coinage of Magna Graecia. J Archaeol Sci Rep 20:748–755

    Google Scholar 

  127. Sánchez Del Río M, Martinetto P, Solís C, Reyes-Valerio C (2006) PIXE analysis on Maya blue in Prehispanic and colonial mural paintings. Nucl Instrum Methods Phys Res, Sect B 249:628–632

    Article  Google Scholar 

  128. Santos HC, Added N, Silva TF, Rodrigues CL (2015) External-RBS, PIXE and NRA analysis for ancient swords. Nucl Instrum Methods Phys Res, Sect B 345:42–47

    Article  Google Scholar 

  129. Sanvito, A. Venafro Chessmen. British Chess Magazine

    Google Scholar 

  130. Scadding R, Winton V, Brown V (2015) An LA-ICP-MS trace element classification of ochres in the Weld Range environ, Mid West region, Western Australia. J Archaeol Sci 54:300–312

    Article  Google Scholar 

  131. Scott DA, Podany J, Considine BB (1994) Ancient & historic metals: conservation and scientific research. Symposium on ancient and historic metals organized by the J. Paul Getty Museum and the Getty Conservation Institute, November 1991. Los Angeles

    Google Scholar 

  132. Sellwood D (1962) Medieval minting techniques. Br Numismatic J 31:57–65

    Google Scholar 

  133. Shaw I (2004) Ancient Egypt: a very short introduction. Oxford University Press, Oxford

    Book  Google Scholar 

  134. Sheedy KA (2008) Sylloge Nummorum Graecorum Australia I. The Gale Collection of South Italian Coins. Numismatic Association of Australia, Adelaide

    Google Scholar 

  135. Sheedy KA, Munroe P, Salvemini F, Luzin V, Garbe U (2015) An incuse stater from the series ‘Sirinos/Pyxoes’. J Numismatic Assoc Australia 26:36–52

    Google Scholar 

  136. Simon A, Matiskainen H, Uzonyi I, Csedreki L, Szikszai Z, Kertész Z, Räisänen J, Kiss ÁZ (2011) PIXE analysis of middle European 18th and 19th century glass seals. X-Ray Spectrom 40:224–228

    Article  Google Scholar 

  137. Simonits A, De Corte F, Moens L, Hoste J (1982) Status and recent developments in the k0-standardization method. J Radioanal Chem 72:209–230

    Article  Google Scholar 

  138. Sippel RF, Glover ED (1960) Sedimentary rock analysis by charged particle bombardment. Nucl Inst Methods 9:37–48

    Article  Google Scholar 

  139. Sloggett R, Kyi C, Tse N, Tobin M, Puskar L, Best S (2010) Microanalysis of artworks: IR microspectroscopy of paint cross-sections. Vib Spectrosc:77–82

    Google Scholar 

  140. Šmit Ž, Tartari F, Stamati F, Vevecka Priftaj A, Istenič J (2013) Analysis of Roman glass from Albania by PIXE–PIGE method. Nucl Instrum Methods Phys Res, Sect B 296:7–13

    Article  Google Scholar 

  141. Smith M, Fankhauser B (1996) An archaeological perspective on the geochemistry of Australian red ochre deposits: prospects for fingerprinting major sources. Australian Institute of Aboriginal and Torres Strait Islander Studies, Canberra

    Google Scholar 

  142. Smith M, Fankhauser B (2009) Geochemistry and identification of Australian red ochre deposits in Paleoworks technical papers 9. National Museum of Australia and Centre for Archaeological Research, Canberra

    Google Scholar 

  143. Sowada KN (2006) Sir Charles Nicholson: an early Scholar-Traveller in Egypt. In: Egyptian art in the Nicholson museum. Meditarch Publishing, Sydney

    Google Scholar 

  144. Speakman R, Glascock M (2007) Acknowledging fifty years of neutron activation analysis in archaeology. Archaeometry 49:179–183

    Article  Google Scholar 

  145. Stopic A, Bennett JW (2014) The robustness of k0-NAA in large multi-purpose research reactors. J Radioanal Nucl Chem 300:481–487

    Article  Google Scholar 

  146. Terrasi F, Campajola L, Petrazzuolo F, Brondi A, Cipriano A, D’Onofrio M, Hua Q, Roca V, Romano M, Romoli M, Tuniz C, Lawson E (1994) Datazione radiocarbonica degli scacchi di Venafro, pages 48–60 in Gli Scacchi di Venfafro. Datazione Radiocarbonica con il metodo della Spettrometria di Massa con Acceleratore. L’Italia Scacchistica, 1064, 64. Mailand

    Google Scholar 

  147. Terreault B, Martel JG, St-Jacques RG, L’Ecuyer J (1977) Depth profiling of light elements in materials with high-energy ion beams. J Vac Sci Technol 14:492–500

    Article  Google Scholar 

  148. Thurrowgood D, Paterson D, De Jonge MD, Kirkham R, Thurrowgood S, Howard DL (2016) A hidden portrait by Edgar Degas. Sci Report 6:1–10

    Article  Google Scholar 

  149. Toja F, Nevin A, Comelli D, Levi M, Cubeddu R, Toniolo L (2011) Fluorescence and Fourier-transform infrared spectroscopy for the analysis of iconic Italian design lamps made of polymeric materials. Anal Bioanal Chem 399:2977–2986

    Article  Google Scholar 

  150. Turner M (2011) Mummy forensics and Sir Grafton Elliot Smith. Egyptians, Gods and Mummies: Travels with Herodotus (exhibition). Nicholson Museum 04 April 2009–July 2011

    Google Scholar 

  151. Vadrucci M, Mazzinghi A, Gorghinian A, Picardi L, Ronsivalle C, Ruberto C, Chiari M (2019) Analysis of Roman Imperial coins by combined PIXE, HE-PIXE and μ-XRF. Appl Radiat Isot 143:35–40

    Article  Google Scholar 

  152. Watt F (1987) Principles and applications of high-energy ion microbeams. Adam Hilger, Bristol

    Google Scholar 

  153. Weeks L, Cable C, Franke K, Newton C, Karacic S, Roberts J, Stepanov I, David-Cuny H, Price D, Bukhash RM, Radwan MB, Zein H (2017) Recent archaeological research at Saruq al-Hadid, Dubai, UAE. Arab Archaeol Epigr 28:31–60

    Article  Google Scholar 

  154. Xie Y, Lutterotti L, Wenk HR (2004) Texture analysis of ancient coins with TOF neutron diffraction. J Mater Sci 39:3329–3337

    Article  Google Scholar 

  155. Yates A, Smith AM, Parr J, Scheffers A, Joannes-Boyau R (2014) MS dating of ancient plant residues from experimental stone tools: a pilot study. J Archaeol Sci 49:595–602

    Article  Google Scholar 

  156. Yates AB, Smith AM, Bertuch F (2015a) Residue radiocarbon AMS dating review and preliminary sampling protocol suggestions. J Archaeol Sci 61:223–234

    Article  Google Scholar 

  157. Yates AB, Smith AM, Bertuch F, Gehlen B, Heinen M, Joannes-Boyau R, Scheffers A, Parr J, Pawlik A (2015b) Radiocarbon-dating adhesive and wooden residues from stone tools by accelerator mass spectrometry (AMS): challenges and insights encountered in a case study. J Archaeol Sci 61:45–58

    Article  Google Scholar 

  158. Zipkin A et al (2015) Ochre fingerprints: distinguishing among Malawian mineral pigment sources with Homogenized Ochre Chip LA-ICPMS. Archaeometry 57:297–317

    Article  Google Scholar 

  159. Zoppi U, Hua Q, Jacobsen G, Sarkissian G, Laws EM, Tuniz C, Laurencich ML (2000) AMS and controversies in history: the Spanish conquest of Peru. Nucl Inst Methods Phys Res B 172:756–760

    Article  Google Scholar 

  160. Zucchiatti A (2019) Ion beam analysis for the study of our cultural heritage. A short history and its milestones. Nucl Instrum Methods Phys Res, Sect B 452:48–54

    Article  Google Scholar 

  161. Zucchiatti A, Agulló-Lopez F (2012) Potential consequences of ion beam analysis on objects from our cultural heritage: an appraisal. Nucl Instrum Methods Phys Res, Sect B 278:106–114

    Article  Google Scholar 

  162. Zucchiatti A, Canonica L, Prati P, Cagnana A, Roascio S, Font AC (2007) PIXE analysis of V–XVI century glasses from the archaeological site of San Martino di Ovaro (Italy). J Cult Herit 8:307–314

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filomena Salvemini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Salvemini, F. et al. (2022). Cultural Heritage Project at  Australian Nuclear Science and Technology Organisation (ANSTO). In: D'Amico, S., Venuti, V. (eds) Handbook of Cultural Heritage Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-60016-7_15

Download citation

Publish with us

Policies and ethics