Skip to main content

Aim in Genomics

Ontological and Connectivity Structure of Disease-Gene Modules in the Human Interactome

  • Living reference work entry
  • First Online:
Artificial Intelligence in Medicine

Abstract

The reductionist approach has dominated scientific research for several centuries and has been widely applied in the biomedical field. However, as we move into the realm of complex diseases, this approach fails to provide the insight needed to explain disease pathogenesis. Network medicine is a new paradigm that applies network science, artificial intelligence (in particular, machine learning and graph mining), and systems biology approaches to study a disease as a consequence of physical interactions within a cell. Pieces of evidence in this field show that if a gene or molecule is involved in a disease, its direct interactors might also be suspected to play some role in the same pathological process. This evidence has lead to formulating the so-called “disease module hypothesis”: genes involved in the same disease show a high propensity to interact with each other. However, the number and structure of disease modules are largely unexplored. The purpose of this study is to systematically analyze the relationship between structural proximity of disease modules and categorical similarity of diseases, by aligning human-curated disease taxonomies with disease taxonomies automatically induced from proximity relations of disease modules within the human-gene interaction network (interactome). We propose a large-scale analysis of a vast collection of diseases leveraging a novel network and taxonomy perspective. Our aim is to support clinical studies by obtaining relevant insights to improve our understanding of disease mechanisms at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Cheng F, Desai RJ, Handy DE, Wang R, Schneeweiss S, Barabási A-L, Loscalzo J. Network-based approach to prediction and population-based validation of in silico drug repurposing. Nat Commun. 2018;9(1):1–12.

    Article  CAS  Google Scholar 

  2. Menche J, Sharma A, Kitsak M, Ghiassian SD, Vidal M, Loscalzo J, Barabási A-L. Uncovering disease-disease relationships through the incomplete interactome. Science. 2015;347(6224):1257601.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Loscalzo J, Barabási A-L, Silverman EK. Network medicine: complex systems in human disease and therapeutics, vol. 1. 1st ed. Harvard University Press; 2017.

    Book  Google Scholar 

  4. Barabási A-L, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet. 2011;12(1):56–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Venkatesan K, Rual J-F, Vazquez A, Stelzl U, Lemmens I, Hirozane-Kishikawa T, Hao T, Zenkner M, Xin X, Goh K-I, et al. An empirical framework for binary interactome mapping. Nat Methods. 2009;6(1):83–90.

    Article  CAS  PubMed  Google Scholar 

  6. Goh K-I, Cusick ME, Valle D, Childs B, Vidal M, Barabási A-L. The human disease network. Proc Natl Acad Sci. 2007;104(21):8685–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cheng F, Kovács IA, Barabási A-L. Network-based prediction of drug combinations. Nat Commun. 2019;10(1):1–11.

    Article  CAS  Google Scholar 

  8. Ata SK, Wu M, Fang Y, Ou-Yang L, Kwoh CK, Li X-L. Recent advances in network-based methods for disease gene prediction. arXiv preprint arXiv:2007.10848. 2020.

    Google Scholar 

  9. Mordelet F, Vert J-P. Prodige: prioritization of disease genes with multitask machine learning from positive and unlabeled examples. BMC Bioinform. 2011;12(1):389.

    Article  Google Scholar 

  10. Zeng X, Liao Y, Liu Y, Zou Q. Prediction and validation of disease genes using hetesim scores. IEEE/ACM Trans Comput Biol Bioinform. 2016;14(3):687–95.

    Article  PubMed  Google Scholar 

  11. Agrawal M, Zitnik M, Leskovec J, et al. Large-scale analysis of disease pathways in the human interactome. In: PSB. World Scientific; 2018. p. 111–22.

    Google Scholar 

  12. Grover A, Leskovec J. node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016. p. 855–64.

    Google Scholar 

  13. Madeddu L, Stilo G, Velardi P. A feature-learning-based method for the disease-gene prediction problem. Int J Data Min Bioinform. 2020;24(1):16–37.

    Article  Google Scholar 

  14. Rhee S, Seo S, Kim S. Hybrid approach of relation network and localized graph convolutional filtering for breast cancer subtype classification. In: Proceedings of the twenty-seventh international joint conference on artificial intelligence, IJCAI-18. International Joint Conferences on Artificial Intelligence Organization; 2018. p. 3527–34.

    Google Scholar 

  15. Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, Doig A, Guilliams T, Latimer J, McNamee C, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18(1):41–58.

    Article  CAS  PubMed  Google Scholar 

  16. Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, Schacht AL. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov. 2010;9(3):203–14.

    Article  CAS  PubMed  Google Scholar 

  17. Ezzat A, Wu M, Li X-L, Kwoh C-K. Computational prediction of drug–target interactions using chemogenomic approaches: an empirical survey. Brief Bioinform. 2019;20(4):1337–57.

    Article  CAS  PubMed  Google Scholar 

  18. Lotfi Shahreza M, Ghadiri N, Mousavi SR, Varshosaz J, Green JR. A review of network-based approaches to drug repositioning. Brief Bioinform. 2018;19(5):878–92.

    Article  PubMed  CAS  Google Scholar 

  19. Zong N, Kim H, Ngo V, Harismendy O. Deep mining heterogeneous networks of biomedical linked data to predict novel drug–target associations. Bioinformatics. 2017;33(15):2337–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Perozzi B, Al-Rfou R, Skiena S. Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining. 2014. p. 701–10.

    Google Scholar 

  21. Luo Y, Zhao X, Zhou J, Yang J, Zhang Y, Kuang W, Peng J, Chen L, Zeng J. A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information. Nat Commun. 2017;8(1):1–13.

    Article  CAS  Google Scholar 

  22. Zitnik M, Agrawal M, Leskovec J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics. 2018;34(13):i457–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gysi DM, Valle ID, Zitnik M, Ameli A, Gan X, Varol O, Sanchez H, Baron RM, Ghiassian D, Loscalzo J, et al. Network medicine framework for identifying drug repurposing opportunities for covid-19. arXivpreprint arXiv:2004.07229. 2020.

    Google Scholar 

  24. Piñero J, Bravo À, Queralt-Rosinach N, Gutiérrez-Sacristán A, Deu-Pons J, Centeno E, García-García J, Sanz F, Furlong LI. Disgenet: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 2016;45:D833.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Blohm P, Frishman G, Smialowski P, Goebels F, Wachinger B, Ruepp A, Frishman D. Negatome 2.0: a database of non-interacting proteins derived by literature mining, manual annotation and protein structure analysis. Nucleic Acids Res. 2014;42(D1):D396–400.

    Article  CAS  PubMed  Google Scholar 

  26. Sachdev K, Gupta MK. A comprehensive review of feature based methods for drug target interaction prediction. J Biomed Inform. 2019;93:103159.

    Article  PubMed  Google Scholar 

  27. Venkatesan K, Rual J-F, Vazquez A, Stelzl U, Lemmens I, Hirozane-Kishikawa T, Hao T, Zenkner M, Xin X, Goh K-I, Yildirim MA, Simonis N, Heinzmann K, Gebreab F, Sahalie JM, Cevik S, Simon C, de Smet A-S, Dann E, Vidal M. An empirical framework for binary interactome mapping. Nat Methods. 2009;6:83–90.

    Article  CAS  PubMed  Google Scholar 

  28. Stumpf MP, Thorne T, de Silva E, Stewart R, An HJ, Lappe M, Wiuf C. Estimating the size of the human interactome. Proc Natl Acad Sci. 2008;105(19):6959–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Luck K, Kim D-K, Lambourne L, Spirohn K, Begg BE, Bian W, Brignall R, Cafarelli T, Campos-Laborie FJ, Charloteaux B, et al. A reference map of the human binary protein interactome. Nature. 2020;580(7803):402–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lin D, et al. An information-theoretic definition of similarity. ICML. 1998;98:296–304.

    Google Scholar 

  31. Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, Ronzano F, Centeno E, Sanz F, Furlong LI. The disgenet knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2020;48(D1):D845–55.

    PubMed  Google Scholar 

  32. Kibbe WA, Arze C, Felix V, Mitraka E, Bolton E, Fu G, Mungall CJ, Binder JX, Malone J, Vasant D, Parkinson H, Schriml LM. Disease ontology 2015 update: an expanded and updated database of human diseases for linking biomedical knowledge through disease data. Nucleic Acids Res. 2015;43(D1):D1071–8.

    Article  CAS  PubMed  Google Scholar 

  33. Zhou X, Lei L, Liu J, Halu A, Zhang Y, Li B, Guo Z, Liu G, Sun C, Loscalzo J, et al. A systems approach to refine disease taxonomy by integrating phenotypic and molecular networks. EBioMedicine. 2018;31:79–91.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Goh K-I, Cusick ME, Valle D, Childs B, Vidal M, Barabási A-L. The human disease network. Proc Natl Acad Sci. 2007;104(21):8685–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wood LD, Parsons DW, Jones S, Lin J, Sjöblom T, Leary RJ, Shen D, Boca SM, Barber T, Ptak J, et al. The genomic landscapes of human breast and colorectal cancers. Science. 2007;318(5853):1108–13.

    Article  CAS  PubMed  Google Scholar 

  36. Chhabra S, De S. Cardiovascular autonomic neuropathy in chronic obstructive pulmonary disease. Respir Med. 2005;99(1):126–33.

    Article  CAS  PubMed  Google Scholar 

  37. Huang BL, Chandra S, Shih DQ. Skin manifestations of inflammatory bowel disease. Front Physiol. 2012;3:13.

    PubMed  PubMed Central  Google Scholar 

  38. Maron BJ, Maron MS. Hypertrophic cardiomyopathy. Lancet. 2013;381(9862):242–55.

    Article  PubMed  Google Scholar 

  39. Gupta I, Haddock L, Greenfield DS. Secondary open-angle glaucoma and serous macular detachment associated with pulmonary hypertension. Am J Ophthalmol Case Rep. 2020;20:100878.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lewczuk N, Zdebik A, Boguslawska J, Turno-Krecicka A, Misiuk-Hojło M. Ocular manifestations of pulmonary hypertension. Surv Ophthalmol. 2019;64(5):694–9.

    Article  PubMed  Google Scholar 

  41. Tsechkovski M, Boulyjenkov V, Heuck C. A1-antitrypsin deficiency: memorandum from a who meeting> l. Bull World Health Organ. 1997;75(5):397–415.

    Google Scholar 

  42. Young RP, Hopkins RJ, Marsland B. The gut–liver–lung axis. Modulation of the innate immune response and its possible role in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2016;54(2):161–9.

    Article  CAS  PubMed  Google Scholar 

  43. Miyamoto T, Hosoba K, Itabashi T, Iwane AH, Akutsu SN, Ochiai H, Saito Y, Yamamoto T, Matsuura S. Insufficiency of ciliary cholesterol in hereditary zellweger syndrome. EMBO J. 2020;39:e103499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zaki MS, Heller R, Thoenes M, Nürnberg G, Stern-Schneider G, Nürnberg P, Karnati S, Swan D, Fateen E, Nagel-Wolfrum K, et al. Pex6 is expressed in photoreceptor cilia and mutated in deafblindness with enamel dysplasia and microcephaly. Hum Mutat. 2016;37(2):170–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Velardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Velardi, P., Madeddu, L. (2021). Aim in Genomics. In: Lidströmer, N., Ashrafian, H. (eds) Artificial Intelligence in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-58080-3_76-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58080-3_76-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58080-3

  • Online ISBN: 978-3-030-58080-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics