Skip to main content

Ageing and Alzheimer’s Disease

Application of Artificial Intelligence in Mechanistic Studies, Diagnosis, and Drug Development

  • Living reference work entry
  • First Online:
Artificial Intelligence in Medicine

Abstract

Artificial intelligence (AI) implies the use of a machine with limited human interference to model intelligent actions. It covers a broad range of research studies from machine intelligence for computer vision, robotics, and natural language processing to more theoretical machine learning algorithm design and, recently, “deep learning” development. The application of AI in medical fields is booming, including the use of AI in data collection, analysis, mechanistic prediction, to clinical disease diagnosis and drug development. In this chapter, we focus on the challenges in the studies of aging and the age-predisposed Alzheimer’s disease (AD) and summarize on how to use AI to help addressing these questions. We finally provide future perspectives on the use of AI in aging research and AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Kulikowski CA. Beginnings of artificial intelligence in medicine (AIM): computational artifice assisting scientific inquiry and clinical art – with reflections on present AIM challenges. Yearb Med Inform. 2019;28:249–56.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kulikowski CA. An opening chapter of the first generation of artificial intelligence in medicine: the first rutgers AIM workshop, June 1975. Yearb Med Inform. 2015;10:227–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Szolovits P, Patil RS, Schwartz WB. Artificial intelligence in medical diagnosis. Ann Intern Med. 1988;108:80–7.

    Article  CAS  PubMed  Google Scholar 

  4. de Dombal FT, Leaper DJ, Staniland JR, McCann AP, Horrocks JC. Computer-aided diagnosis of acute abdominal pain. Br Med J. 1972;2:9–13.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shortliffe EH, et al. Computer-based consultations in clinical therapeutics: explanation and rule acquisition capabilities of the MYCIN system. Comput Biomed Res. 1975;8:303–20.

    Article  CAS  PubMed  Google Scholar 

  6. Barnett GO, Cimino JJ, Hupp JA, Hoffer EP. DXplain. An evolving diagnostic decision-support system. JAMA. 1987;258:67–74.

    Article  CAS  PubMed  Google Scholar 

  7. Dechter, R. Learning while searching in constraint-satisfaction problems. AAAI-86 Proceedings. 1986;178–183.

    Google Scholar 

  8. Yang YJ, Bang CS. Application of artificial intelligence in gastroenterology. World J Gastroenterol. 2019;25:1666–83.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ljosa V, Sokolnicki KL, Carpenter AE. Annotated high-throughput microscopy image sets for validation. Nat Methods. 2012;9:637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sudlow C, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12:e1001779.

    Article  PubMed  PubMed Central  Google Scholar 

  11. DesRoches CM, et al. Electronic health records in ambulatory care – a national survey of physicians. N Engl J Med. 2008;359:50–60.

    Article  CAS  PubMed  Google Scholar 

  12. Hsiao CJ, et al. Office-based physicians are responding to incentives and assistance by adopting and using electronic health records. Health Aff (Millwood). 2013;32:1470–7.

    Article  Google Scholar 

  13. Wouters OJ, McKee M, Luyten J. Estimated research and development investment needed to bring a new medicine to market, 2009–2018. JAMA. 2020;323:844–53.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhong F, et al. Artificial intelligence in drug design. Sci China Life Sci. 2018;61:1191–204.

    Article  PubMed  Google Scholar 

  15. Rester U. From virtuality to reality – virtual screening in lead discovery and lead optimization: a medicinal chemistry perspective. Curr Opin Drug Discov Devel. 2008;11:559–68.

    CAS  PubMed  Google Scholar 

  16. Rollinger JM, Stuppner H, Langer T. Virtual screening for the discovery of bioactive natural products. Prog Drug Res. 2008;65(211):213–49.

    Google Scholar 

  17. Perez-Sianes J, Perez-Sanchez H, Diaz F. Virtual screening meets deep learning. Curr Comput Aided Drug Des. 2019;15:6–28.

    Article  CAS  PubMed  Google Scholar 

  18. Liew CY, Ma XH, Liu X, Yap CW. SVM model for virtual screening of Lck inhibitors. J Chem Inf Model. 2009;49:877–85.

    Article  CAS  PubMed  Google Scholar 

  19. Melville JL, Burke EK, Hirst JD. Machine learning in virtual screening. Comb Chem High Throughput Screen. 2009;12:332–43.

    Article  CAS  PubMed  Google Scholar 

  20. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.

    Article  CAS  PubMed  Google Scholar 

  21. Leelananda SP, Lindert S. Computational methods in drug discovery. Beilstein J Org Chem. 2016;12:2694–718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Segler MHS, Kogej T, Tyrchan C, Waller MP. Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Cent Sci. 2018;4:120–31.

    Article  CAS  PubMed  Google Scholar 

  23. Klambauer G, et al. Rchemcpp: a web service for structural analoging in ChEMBL, drugbank and the connectivity map. Bioinformatics. 2015;31:3392–4.

    Article  CAS  PubMed  Google Scholar 

  24. Subramanian A, et al. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell. 2017;171:1437–1452 e1417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang SY, Grinter SZ, Zou X. Scoring functions and their evaluation methods for protein-ligand docking: recent advances and future directions. Phys Chem Chem Phys. 2010;12:12899–908.

    Article  CAS  PubMed  Google Scholar 

  26. Kinnings SL, et al. A machine learning-based method to improve docking scoring functions and its application to drug repurposing. J Chem Inf Model. 2011;51:408–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jimenez J, Skalic M, Martinez-Rosell G, De Fabritiis G. KDEEP: protein-ligand absolute binding affinity prediction via 3D-convolutional neural networks. J Chem Inf Model. 2018;58:287–96.

    Article  CAS  PubMed  Google Scholar 

  28. Pereira JC, Caffarena ER, Dos Santos CN. Boosting docking-based virtual screening with deep learning. J Chem Inf Model. 2016;56:2495–506.

    Article  CAS  PubMed  Google Scholar 

  29. Lusci A, Pollastri G, Baldi P. Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules. J Chem Inf Model. 2013;53:1563–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Duvenaud D, et al. Convolutional networks on graphs for learning molecular fingerprints. arXiv preprint arXiv:1509.09292; 2015.

    Google Scholar 

  31. Coley CW, Barzilay R, Green WH, Jaakkola TS, Jensen KF. Convolutional embedding of attributed molecular graphs for physical property prediction. J Chem Inf Model. 2017;57:1757–72.

    Article  CAS  PubMed  Google Scholar 

  32. Tian S, Li Y, Wang J, Zhang J, Hou T. ADME evaluation in drug discovery. 9. Prediction of oral bioavailability in humans based on molecular properties and structural fingerprints. Mol Pharm. 2011;8:841–51.

    Article  CAS  PubMed  Google Scholar 

  33. Kearnes S, Goldman B, Pande V. Modeling industrial ADMET data with multitask networks. arXiv preprint arXiv:1606.08793; 2016.

    Google Scholar 

  34. Popova M, Isayev O, Tropsha A. Deep reinforcement learning for de novo drug design. Sci Adv. 2018;4:eaap7885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhavoronkov A, et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat Biotechnol. 2019;37:1038–40.

    Article  CAS  PubMed  Google Scholar 

  36. Angermueller C, Parnamaa T, Parts L, Stegle O. Deep learning for computational biology. Mol Syst Biol. 2016;12:878.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yuan Y, Bar-Joseph Z. Deep learning for inferring gene relationships from single-cell expression data. Proc Natl Acad Sci U S A. 2019;10:116.

    Google Scholar 

  38. Wen B, et al. Deep learning in proteomics. Proteomics. 2020;20:e1900335.

    Article  PubMed  CAS  Google Scholar 

  39. Kuhlman B, Bradley P. Advances in protein structure prediction and design. Nat Rev Mol Cell Biol. 2019;20:681–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Abriata LA, Tamo GE, Dal Peraro M. A further leap of improvement in tertiary structure prediction in CASP13 prompts new routes for future assessments. Proteins. 2019;87:1100–12.

    Article  CAS  PubMed  Google Scholar 

  41. Senior AW, et al. Improved protein structure prediction using potentials from deep learning. Nature. 2020;577:706–10.

    Article  CAS  PubMed  Google Scholar 

  42. Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed Eng. 2018;2:719–31.

    Article  PubMed  Google Scholar 

  43. Lodwick GS. Computer diagnosis of primary bone tumors. A preliminary report. Radiology. 1963;80:273–5.

    Article  Google Scholar 

  44. Lakhani P, Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology. 2017;284:574–82.

    Article  PubMed  Google Scholar 

  45. Setio AA, Jacobs C, Gelderblom J, van Ginneken B. Automatic detection of large pulmonary solid nodules in thoracic CT images. Med Phys. 2015;42:5642–53.

    Article  PubMed  Google Scholar 

  46. Samala RK, Chan HP, Hadjiiski LM, Helvie MA. Analysis of computer-aided detection techniques and signal characteristics for clustered microcalcifications on digital mammography and digital breast tomosynthesis. Phys Med Biol. 2016;61:7092–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Samala RK, et al. Mass detection in digital breast tomosynthesis: deep convolutional neural network with transfer learning from mammography. Med Phys. 2016;43:6654.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Esteva A, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Panwar N, et al. Fundus photography in the 21st century – a review of recent technological advances and their implications for worldwide healthcare. Telemed J E Health. 2016;22:198–208.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gulshan V, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316:2402–10.

    Article  PubMed  Google Scholar 

  51. Poplin R, et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng. 2018;2:158–64.

    Article  PubMed  Google Scholar 

  52. Abramoff MD, et al. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Invest Ophthalmol Vis Sci. 2016;57:5200–6.

    Article  PubMed  Google Scholar 

  53. Ciresan DC, Giusti A, Gambardella LM, Schmidhuber J. Mitosis detection in breast cancer histology images with deep neural networks. Med Image Comput Comput Assist Interv. 2013;16:411–8.

    PubMed  Google Scholar 

  54. Robboy SJ, et al. Pathologist workforce in the United States: I. Development of a predictive model to examine factors influencing supply. Arch Pathol Lab Med. 2013;137:1723–32.

    Article  PubMed  Google Scholar 

  55. Bates DW, Saria S, Ohno-Machado L, Shah A, Escobar G. Big data in health care: using analytics to identify and manage high-risk and high-cost patients. Health Aff (Millwood). 2014;33:1123–31.

    Article  Google Scholar 

  56. Van Calster B, Wynants L. Machine learning in medicine. N Engl J Med. 2019;380:2588.

    Article  PubMed  Google Scholar 

  57. Mamoshina P, et al. Converging blockchain and next-generation artificial intelligence technologies to decentralize and accelerate biomedical research and healthcare. Oncotarget. 2018;9:5665–90.

    Article  PubMed  Google Scholar 

  58. Pyrkov TV, et al. Extracting biological age from biomedical data via deep learning: too much of a good thing? Sci Rep. 2018;8:5210.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Franke K, Ziegler G, Kloppel S, Gaser C, Alzheimer’s Disease Neuroimaging Initiative. Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters. NeuroImage. 2010;50:883–92.

    Article  PubMed  Google Scholar 

  60. Ng A, et al. IL-1beta, IL-6, TNF- alpha and CRP in elderly patients with depression or Alzheimer’s disease: systematic review and meta-analysis. Sci Rep. 2018;8:12050.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Ng TKS, Ho CSH, Tam WWS, Kua EH, Ho RC. Decreased serum brain-derived neurotrophic factor (BDNF) levels in patients with Alzheimer’s disease (AD): a systematic review and meta-analysis. Int J Mol Sci. 2019;20:257.

    Article  PubMed Central  CAS  Google Scholar 

  62. Ballard C, et al. Alzheimer’s disease. Lancet. 2011;377:1019–31.

    Article  PubMed  Google Scholar 

  63. Bi C, Bi S, Li B. Processing of mutant beta-amyloid precursor protein and the clinicopathological features of familial Alzheimer’s disease. Aging Dis. 2019;10:383–403.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Freudenberg-Hua Y, Li W, Davies P. The role of genetics in advancing precision medicine for Alzheimer’s disease-a narrative review. Front Med (Lausanne). 2018;5:108.

    Article  Google Scholar 

  65. Gatz M, et al. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry. 2006;63:168–74.

    Article  PubMed  Google Scholar 

  66. Fang EF, et al. Mitophagy inhibits amyloid-beta and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat Neurosci. 2019;22:401–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med. 2019;380:1347–58.

    Article  PubMed  Google Scholar 

  68. Webb S. Deep learning for biology. Nature. 2018;554:555–7.

    Article  CAS  PubMed  Google Scholar 

  69. Zitnik M, et al. Machine learning for integrating data in biology and medicine: principles, practice, and opportunities. Inf Fusion. 2019;50:71–91.

    Article  PubMed  Google Scholar 

  70. Lee Y, et al. Applications of machine learning algorithms to predict therapeutic outcomes in depression: a meta-analysis and systematic review. J Affect Disord. 2018;241:519–32.

    Article  PubMed  Google Scholar 

  71. Ku CS, Loy EY, Salim A, Pawitan Y, Chia KS. The discovery of human genetic variations and their use as disease markers: past, present and future. J Hum Genet. 2010;55:403–15.

    Article  PubMed  Google Scholar 

  72. Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.

    Article  CAS  Google Scholar 

  73. Maston GA, Evans SK, Green MR. Transcriptional regulatory elements in the human genome. Annu Rev Genomics Hum Genet. 2006;7:29–59.

    Article  CAS  PubMed  Google Scholar 

  74. Telenti A, Lippert C, Chang PC, DePristo M. Deep learning of genomic variation and regulatory network data. Hum Mol Genet. 2018;27:R63–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fenoglio C, Scarpini E, Serpente M, Galimberti D. Role of genetics and epigenetics in the pathogenesis of Alzheimer’s disease and frontotemporal dementia. J Alzheimers Dis. 2018;62:913–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kehoe P, et al. A full genome scan for late onset Alzheimer’s disease. Hum Mol Genet. 1999;8:237–45.

    Article  CAS  PubMed  Google Scholar 

  77. Kunkle BW, et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Abeta, tau, immunity and lipid processing. Nat Genet. 2019;51:414–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lambert JC, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013;45:1452–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pimenova AA, Raj T, Goate AM. Untangling genetic risk for Alzheimer’s disease. Biol Psychiatry. 2018;83:300–10.

    Article  CAS  PubMed  Google Scholar 

  80. Beecham GW, et al. Rare genetic variation implicated in non-Hispanic white families with Alzheimer disease. Neurol Genet. 2018;4:e286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bis JC, et al. Whole exome sequencing study identifies novel rare and common Alzheimer’s-associated variants involved in immune response and transcriptional regulation. Mol Psychiatry. 2020;25:1859–75.

    Article  CAS  PubMed  Google Scholar 

  82. Blue EE, et al. Variants regulating ZBTB4 are associated with age-at-onset of Alzheimer’s disease. Genes Brain Behav. 2018;17:e12429.

    Article  CAS  PubMed  Google Scholar 

  83. Cruchaga C, et al. Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer’s disease. Nature. 2014;505:550–4.

    Article  CAS  PubMed  Google Scholar 

  84. Deary IJ, et al. Age-associated cognitive decline. Br Med Bull. 2009;92:135–52.

    Article  PubMed  Google Scholar 

  85. Petersen RC, et al. Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review). Report of the quality standards Subcommittee of the American Academy of neurology. Neurology. 2001;56:1133–42.

    Article  CAS  PubMed  Google Scholar 

  86. Brodaty H, et al. Operationalizing the diagnostic criteria for mild cognitive impairment: the salience of objective measures in predicting incident dementia. Am J Geriatr Psychiatry. 2017;25:485–97.

    Article  PubMed  Google Scholar 

  87. Balota DA, et al. Predicting conversion to dementia of the Alzheimer’s type in a healthy control sample: the power of errors in Stroop color naming. Psychol Aging. 2010;25:208–18.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Patten RV, Fagan AM, Kaufman DAS. Differential cued-Stroop performance in cognitively asymptomatic older adults with biomarker-identified risk for Alzheimer’s disease: a pilot study. Curr Alzheimer Res. 2018;15:820–7.

    Article  PubMed  CAS  Google Scholar 

  89. Silverberg NB, et al. Assessment of cognition in early dementia. Alzheimers Dement. 2011;7:e60–76.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Wang N, et al. Application of artificial neural network model in diagnosis of Alzheimer’s disease. BMC Neurol. 2019;19:154.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Meyer SM, et al. Optimizing ADAS-cog worksheets: a survey of clinical trial rater s′ perceptions. Curr Alzheimer Res. 2017;14:1008–16.

    Article  CAS  PubMed  Google Scholar 

  92. Cummings J. Lessons learned from Alzheimer disease: clinical trials with negative outcomes. Clin Transl Sci. 2018;11:147–52.

    Article  PubMed  Google Scholar 

  93. Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nat Biotechnol. 2014;32:40–51.

    Article  CAS  PubMed  Google Scholar 

  94. Stimulus package. Nat Med. 2018;24:247.

    Google Scholar 

  95. Zwierzyna M, Davies M, Hingorani AD, Hunter J. Clinical trial design and dissemination: comprehensive analysis of clinicaltrials.gov and PubMed data since 2005. BMJ. 2018;361:k2130.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Cummings JL, Morstorf T, Zhong K. Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res Ther. 2014;6:37.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Grollemund V, et al. Machine learning in amyotrophic lateral sclerosis: achievements, pitfalls, and future directions. Front Neurosci. 2019;13:135.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Maudsley S, Devanarayan V, Martin B, Geerts H, Brain Health Modeling Initiative. Intelligent and effective informatic deconvolution of “Big Data” and its future impact on the quantitative nature of neurodegenerative disease therapy. Alzheimers Dement. 2018;14:961–75.

    Article  PubMed  Google Scholar 

  99. Xie T, Grossman JC. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys Rev Lett. 2018;120:145301.

    Article  CAS  PubMed  Google Scholar 

  100. Zitnik M, Agrawal M, Leskovec J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics. 2018;34:i457–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Palop JJ, Chin J, Mucke L. A network dysfunction perspective on neurodegenerative diseases. Nature. 2006;443:768–73.

    Article  CAS  PubMed  Google Scholar 

  102. Zhang B, et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell. 2013;153:707–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Haure-Mirande JV, et al. Deficiency of TYROBP, an adapter protein for TREM2 and CR3 receptors, is neuroprotective in a mouse model of early Alzheimer’s pathology. Acta Neuropathol. 2017;134:769–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Haure-Mirande JV, et al. Integrative approach to sporadic Alzheimer’s disease: deficiency of TYROBP in cerebral Abeta amyloidosis mouse normalizes clinical phenotype and complement subnetwork molecular pathology without reducing Abeta burden. Mol Psychiatry. 2019;24:431–46.

    Article  CAS  PubMed  Google Scholar 

  105. Jack CR Jr, et al. Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer’s disease. Brain. 2010;133:3336–48.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Ritter K, et al. Multimodal prediction of conversion to Alzheimer’s disease based on incomplete biomarkers. Alzheimers Dement (Amst). 2015;1:206–15.

    Article  Google Scholar 

  107. Zhang D, et al. Multimodal classification of Alzheimer’s disease and mild cognitive impairment. NeuroImage. 2011;55:856–67.

    Article  PubMed  Google Scholar 

  108. Hinrichs C, Singh V, Xu G, Johnson SC, Alzheimers Disease Neuroimaging Initiative. Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population. NeuroImage. 2011;55:574–89.

    Article  PubMed  Google Scholar 

  109. Wang P, et al. Multimodal classification of mild cognitive impairment based on partial least squares. J Alzheimers Dis. 2016;54:359–71.

    Article  CAS  PubMed  Google Scholar 

  110. Fang EF, et al. A research agenda for ageing in China in the 21st century (2nd edition): focusing on basic and translational research, long-term care, policy and social networks. Ageing Res Rev. 2020;64:101174.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Mkrtchyan GV, et al. ARDD 2020: from aging mechanisms to interventions. Aging (Albany NY). 2020;12:24484–503.

    Article  PubMed Central  Google Scholar 

  112. Aman Y, et al. The NAD(+)-mitophagy axis in healthy longevity and in artificial intelligence-based clinical applications. Mech Ageing Dev. 2020;185:111194.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the valuable work of the many investigators whose published articles they were unable to cite owing to space limitations. The authors thank Dr. Chenglong Xie for discussion and Thale Dawn Patrick-Brown for reading the manuscript. E.F.F. was supported by HELSE SØR-ØST (#2017056, #2020001, #2021021), the Research Council of Norway (#262175 and #277813), the National Natural Science Foundation of China (#81971327), Akershus University Hospital (#269901, #261973), the Civitan Norges Forskningsfond for Alzheimers sykdom (for a 3-year Ph.D. fellowship, #281931), the Czech Republic-Norway KAPPA programme (with Martin Vyhnálek, #TO01000215), and the Rosa sløyfe/Norwegian Cancer Society & Norwegian Breast Cancer Society (#207819). G.Y. was supported in part by the British Heart Foundation (Project Number: PG/16/78/32402), in part by the Hangzhou Economic and Technological Development Area Strategical Grant (Imperial Institute of Advanced Technology), in part by the European Research Council Innovative Medicines Initiative on Development of Therapeutics and Diagnostics Combatting Coronavirus Infections Award “DRAGON: rapiD and secuRe AI imaging based diaGnosis, stratification, fOllow-up, and preparedness for coronavirus paNdemics” (H2020-JTI-IMI2 101005122), in part by the AI for Health Imaging Award “CHAIMELEON: Accelerating the Lab to Market Transition of AI Tools for Cancer Management” (H2020-SC1-FA-DTS-2019-1 952172), and in part by the UK Research and Innovation (MR/V023799/1). A.R. was also funded by China Scholarship Council [http://www.csc.edu.cn/]; the funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Declaration of Interests

E.F.F. has CRADA arrangements with ChromaDex. E.F.F. and G.Y. are consultants to Aladdin Healthcare Technologies. E.F.F. is a consultant to the Vancouver Dementia Prevention Centre and Intellectual Labs. Z.N, X.J and B.T are affiliated with MindRank AI ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evandro F. Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ai, R., Jin, X., Tang, B., Yang, G., Niu, Z., Fang, E.F. (2021). Ageing and Alzheimer’s Disease. In: Lidströmer, N., Ashrafian, H. (eds) Artificial Intelligence in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-58080-3_74-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58080-3_74-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58080-3

  • Online ISBN: 978-3-030-58080-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics