Skip to main content

AIM in Dentistry

  • 94 Accesses

Abstract

The steep rise of digital dentistry and technological advancements have opened doors for the development of artificial intelligence (AI). For the past few years, AI-based applications in dentistry have been constantly evolving as highlighted by the increasing number of studies, and now it is slowly entering the clinical arena. As healthcare professionals, dentists need to diagnose, plan, and make clinical decisions in order to provide an adequate treatment and care for their patients. All these phases are time-consuming, observer-dependent, and subjected to human error. Currently, the studies applying AI in many dental specialties have validated its application for the purpose of diagnosis and clinical decision-making. Thus, the objective of AI is to combine the professional expertise with the computer-assisted systems to automatize complex tasks, mimic human cognitive skills, and retrieve information from digital data. Dental AI applications can be advantageous for all dental specialties including dentomaxillofacial radiology, restorative dentistry, oral and maxillofacial surgery, orthodontics, periodontics, prosthodontics, endodontics, and forensic dentistry.

Even though most researches and developments are still in an early phase, current results in the dental field are encouraging for future clinical applications.

This chapter provides an overview of the current state of the art of the AI applications in dentistry and its specialties.

Keywords

  • Digital dentistry
  • Presurgical planning
  • Cone-beam computed tomography
  • Intraoral scanner
  • Panoramic radiography
  • Radiological diagnosis
  • Tooth
  • Jaw
  • Face

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Khanagar SB, Al-Ehaideb A, Maganur PC, Vishwanathaiah S, Patil S, Baeshen HA, et al. Developments, application, and performance of artificial intelligence in dentistry - a systematic review. J Dent Sci. 2021;16(1):508–22.

    PubMed  CrossRef  Google Scholar 

  2. Schwendicke F, Samek W, Krois J. Artificial intelligence in dentistry: chances and challenges. J Dent Res. 2020;99(7):769–74.

    CAS  PubMed  CrossRef  Google Scholar 

  3. Joda T, Bornstein MM, Jung RE, Ferrari M, Waltimo T, Zitzmann NU. Recent trends and future direction of dental research in the digital era. Int J Environ Res Public Health. 172020.

    Google Scholar 

  4. Leite AF, Vasconcelos KF, Willems H, Jacobs R. Radiomics and machine learning in Oral healthcare. Proteomics Clin Appl. 2020;14(3):e1900040.

    PubMed  CrossRef  CAS  Google Scholar 

  5. Jaskari J, Sahlsten J, Järnstedt J, Mehtonen H, Karhu K, Sundqvist O, et al. Deep learning method for Mandibular Canal segmentation in dental cone beam computed tomography volumes. Sci Rep. 2020;10(1):5842.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  6. Zhang K, Wu J, Chen H, Lyu P. An effective teeth recognition method using label tree with cascade network structure. Comput Med Imaging Graph. 2018;68:61–70.

    PubMed  CrossRef  Google Scholar 

  7. Chen H, Zhang K, Lyu P, Li H, Zhang L, Wu J, et al. A deep learning approach to automatic teeth detection and numbering based on object detection in dental periapical films. Sci Rep. 2019;9(1):3840.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  8. Tuzoff DV, Tuzova LN, Bornstein MM, Krasnov AS, Kharchenko MA, Nikolenko SI, et al. Tooth detection and numbering in panoramic radiographs using convolutional neural networks. Dentomaxillofac Radiol. 2019;48(4):20180051.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  9. Leite AF, Gerven AV, Willems H, Beznik T, Lahoud P, Gaêta-Araujo H, et al. Artificial intelligence-driven novel tool for tooth detection and segmentation on panoramic radiographs. Clin Oral Investig. 2020.

    Google Scholar 

  10. Hosntalab M, Aghaeizadeh Zoroofi R, Abbaspour Tehrani-Fard A, Shirani G. Classification and numbering of teeth in multi-slice CT images using wavelet-Fourier descriptor. Int J Comput Assist Radiol Surg. 2010;5(3):237–49.

    PubMed  CrossRef  Google Scholar 

  11. Miki Y, Muramatsu C, Hayashi T, Zhou X, Hara T, Katsumata A, et al. Classification of teeth in cone-beam CT using deep convolutional neural network. Comput Biol Med. 2017;80:24–9.

    PubMed  CrossRef  Google Scholar 

  12. Lahoud P, EzEldeen M, Beznik T, Willems H, Leite A, Van Gerven A, et al. Artificial intelligence for fast and accurate 3D tooth segmentation on CBCT. J Endod. 2021.

    Google Scholar 

  13. Takahashi T, Nozaki K, Gonda T, Mameno T, Wada M, Ikebe K. Identification of dental implants using deep learning-pilot study. Int J Implant Dent. 2020;6(1):53.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  14. Hadj Saïd M, Le Roux MK, Catherine JH, Lan R. Development of an artificial intelligence model to identify a dental implant from a radiograph. Int J Oral Maxillofac Implants. 2020;36(6):1077–82.

    PubMed  CrossRef  Google Scholar 

  15. Lee JH, Jeong SN. Efficacy of deep convolutional neural network algorithm for the identification and classification of dental implant systems, using panoramic and periapical radiographs: a pilot study. Medicine (Baltimore). 2020;99(26):e20787.

    CrossRef  Google Scholar 

  16. Vranckx M, Van Gerven A, Willems H, Vandemeulebroucke A, Ferreira Leite A, Politis C, et al. Artificial intelligence (AI)-driven molar angulation measurements to predict third molar eruption on panoramic radiographs. Int J Environ Res Public Health. 2020;17(10).

    Google Scholar 

  17. Park JH, Hwang HW, Moon JH, Yu Y, Kim H, Her SB, et al. Automated identification of cephalometric landmarks: part 1-comparisons between the latest deep-learning methods YOLOV3 and SSD. Angle Orthod. 2019;89(6):903–9.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  18. Kunz F, Stellzig-Eisenhauer A, Zeman F, Boldt J. Artificial intelligence in orthodontics : evaluation of a fully automated cephalometric analysis using a customized convolutional neural network. J Orofac Orthop. 2020;81(1):52–68.

    PubMed  CrossRef  Google Scholar 

  19. Hwang HW, Park JH, Moon JH, Yu Y, Kim H, Her SB, et al. Automated identification of cephalometric landmarks: part 2- might it be better than human? Angle Orthod. 2020;90(1):69–76.

    PubMed  CrossRef  Google Scholar 

  20. Yu HJ, Cho SR, Kim MJ, Kim WH, Kim JW, Choi J. Automated skeletal classification with lateral Cephalometry based on artificial intelligence. J Dent Res. 2020;99(3):249–56.

    CAS  PubMed  CrossRef  Google Scholar 

  21. Kök H, Acilar AM, İzgi MS. Usage and comparison of artificial intelligence algorithms for determination of growth and development by cervical vertebrae stages in orthodontics. Prog Orthod. 2019;20(1):41.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  22. Krois J, Ekert T, Meinhold L, Golla T, Kharbot B, Wittmeier A, Dörfer C, Schwendicke F. Deep learning for the radiographic detection of periodontal bone loss. Sci Rep. 2019;9(1):8495.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  23. Kim J, Lee HS, Song IS, Jung KH. DeNTNet: deep neural transfer network for the detection of periodontal bone loss using panoramic dental radiographs. Sci Rep. 2019;9(1):17615.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  24. Lee JH, Kim DH, Jeong SN, Choi SH. Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm. J Periodontal Implant Sci. 2018;48(2):114–23.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  25. Chang HJ, Lee SJ, Yong TH, Shin NY, Jang BG, Kim JE, Huh KH, Lee SS, Heo MS, Choi SC, Kim TI, Yi WJ. Deep learning hybrid method to automatically diagnose periodontal bone loss and stage periodontitis. Sci Rep. 2020;10(1):7531.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  26. Saghiri MA, Garcia-Godoy F, Gutmann JL, Lotfi M, Asgar K. The reliability of artificial neural network in locating minor apical foramen: a cadaver study. J Endod. 2012;38(8):1130–4.

    PubMed  CrossRef  Google Scholar 

  27. De Tobel J, Radesh P, Vandermeulen D, Thevissen PW. An automated technique to stage lower third molar development on panoramic radiographs for age estimation: a pilot study. J Forensic Odontostomatol. 2017;35(2):42–54.

    PubMed  PubMed Central  Google Scholar 

  28. Patil V, Vineetha R, Vatsa S, Shetty DK, Raju A, Naik N, et al. Artificial neural network for gender determination using mandibular morphometric parameters: a comparative retrospective study. Cogent Eng. 2020;7(1):1723783.

    CrossRef  Google Scholar 

  29. Devito KL, de Souza BF, Filho WNF. An artificial multilayer perceptron neural network for diagnosis of proximal dental caries. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol. 2008;106(6):879–84.

    CrossRef  Google Scholar 

  30. Lee J-H, Kim D-H, Jeong S-N, Choi S-H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent. 2018;77:106–11.

    PubMed  CrossRef  Google Scholar 

  31. Johari M, Esmaeili F, Andalib A, Garjani S, Saberkari H. Detection of vertical root fractures in intact and endodontically treated premolar teeth by designing a probabilistic neural network: an ex vivo study. Dentomaxillofac Radiol. 2017;46(2):20160107.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  32. Fukuda M, Inamoto K, Shibata N, Ariji Y, Yanashita Y, Kutsuna S, et al. Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography. Oral Radiol. 2020;36(4):337–43.

    PubMed  CrossRef  Google Scholar 

  33. Aubreville M, Knipfer C, Oetter N, Jaremenko C, Rodner E, Denzler J, et al. Automatic classification of cancerous tissue in Laserendomicroscopy images of the Oral cavity using deep learning. Sci Rep. 2017;7(1):11979.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  34. Poedjiastoeti W, Suebnukarn S. Application of convolutional neural network in the diagnosis of jaw Tumors. Healthcare Inform Res. 2018;24(3):236–41.

    CrossRef  Google Scholar 

  35. Thanathornwong B. Bayesian-based decision support system for assessing the needs for orthodontic treatment. Healthcare Inform Res. 2018;24(1):22–8.

    CrossRef  Google Scholar 

  36. Xie X, Wang L, Wang A. Artificial neural network modeling for deciding if extractions are necessary prior to orthodontic treatment. Angle Orthod. 2010;80(2):262–6.

    PubMed  CrossRef  PubMed Central  Google Scholar 

  37. Jung SK, Kim TW. New approach for the diagnosis of extractions with neural network machine learning. Am J Orthod Dentofac Orthop. 2016;149(1):127–33.

    CrossRef  Google Scholar 

  38. Choi HI, Jung SK, Baek SH, Lim WH, Ahn SJ, Yang IH, et al. Artificial intelligent model with neural network machine learning for the diagnosis of orthognathic surgery. J Craniofac Surg. 2019;30(7):1986–9.

    PubMed  CrossRef  Google Scholar 

  39. Zhang W, Li J, Li ZB, Li Z. Predicting postoperative facial swelling following impacted mandibular third molars extraction by using artificial neural networks evaluation. Sci Rep. 2018;8(1):12281.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  40. Moghimi S, Talebi M, Parisay I. Design and implementation of a hybrid genetic algorithm and artificial neural network system for predicting the sizes of unerupted canines and premolars. Eur J Orthod. 2012;34(4):480–6.

    CAS  PubMed  CrossRef  Google Scholar 

  41. Lu C-H, Ko EW-C, Liu L. Improving the video imaging prediction of postsurgical facial profiles with an artificial neural network. J Dental Sci. 2009;4(3):118–29.

    CrossRef  Google Scholar 

  42. Aliaga IJ, Vera V, De Paz JF, García AE, Mohamad MS. Modelling the longevity of dental restorations by means of a CBR system. Biomed Res Int. 2015;2015:540306.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  43. Yamaguchi S, Lee C, Karaer O, Ban S, Mine A, Imazato S. Predicting the Debonding of CAD/CAM composite resin crowns with AI. J Dent Res. 2019;98(11):1234–8.

    CAS  PubMed  CrossRef  Google Scholar 

  44. Alarifi A, AlZubi AA. Memetic search optimization along with genetic scale recurrent neural network for predictive rate of implant treatment. J Med Syst. 2018;42(11):202.

    PubMed  CrossRef  Google Scholar 

  45. Cheng C, Cheng X, Dai N, Jiang X, Sun Y, Li W. Prediction of facial deformation after complete denture prosthesis using BP neural network. Comput Biol Med. 2015;66:103–12.

    PubMed  CrossRef  Google Scholar 

  46. Wei J, Peng M, Li Q, Wang Y. Evaluation of a novel computer color matching system based on the improved Back- propagation neural network model. J Prosthodont. 2018;27(8):775–83.

    PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhilde Jacobs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Verify currency and authenticity via CrossMark

Cite this entry

do Nascimento Gerhardt, M., Shujaat, S., Jacobs, R. (2021). AIM in Dentistry. In: Lidströmer, N., Ashrafian, H. (eds) Artificial Intelligence in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-58080-3_319-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58080-3_319-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58080-3

  • Online ISBN: 978-3-030-58080-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine