Skip to main content

AIM for Breast Thermography

  • Living reference work entry
  • First Online:
Artificial Intelligence in Medicine

Abstract

The use of Artificial Intelligence (AI) in medicine has increased in the recent years due to its ability to aid the clinician for better clinical decision. AI solutions could play a critical role in the growing need for health care access and low clinician to population ratio. Breast cancer incidence rate is rising every year and there is an urgent need for scalable and low-cost solutions for breast cancer detection, especially for low and middle income countries. Breast thermography has been used as an adjunct modality for breast cancer detection since 1980s. Breast thermography has advantages of being low-cost, non-invasive, radiation free, and privacy aware. However, subjectivity and high expertise required for interpretation of breast thermograms are major challenges for its poor adaptability and equivocal results in the literature for its effectiveness of breast cancer detection. To overcome these challenges, AI solutions have been proposed to automate different steps involved in breast thermography. The recent explorations have suggested that automated breast thermography can play a potential role in breast cancer detection, risk estimation, and hormonal status prediction. In this chapter, we discuss breast thermography and different AI applications in automated breast thermography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Feng Y, Spezia M, Huang S, Yuan C, Zeng Z, Zhang L, Ji X, et al. Breast cancer development and progression: risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 2018;5(2):77–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. https://www.who.int/cancer/prevention/diagnosis-screening/breast-cancer/en/

  3. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Google Scholar 

  4. Cancer Tomorrow. GLOBOCAN 2018. Retrieved from: http://gco.iarc.fr/. Accessed 28 June 2020.

  5. World Health Organization. WHO position paper on mammography screening. Geneva: World Health Organization; 2014.

    Google Scholar 

  6. Coleman C. Early detection and screening for breast cancer. In: Seminars in oncology nursing, vol. 33(2). United Kingdom: WB Saunders; 2017. p. 141–55.

    Google Scholar 

  7. Kolb TM, Lichy J, Newhouse JH. Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology. 2002;225(1):165–75.

    Article  PubMed  Google Scholar 

  8. Rajaraman P, Anderson BO, Basu P, Belinson JL, D’Cruz A, Dhillon PK, Gupta P, et al. Recommendations for screening and early detection of common cancers in India. Lancet Oncol. 2015;16(7):e352–61.

    Article  PubMed  Google Scholar 

  9. Carney PA, Miglioretti DL, Yankaskas BC, Kerlikowske K, Rosenberg R, Rutter CM, Geller BM, et al. Individual and combined effects of age, breast density, and hormone replacement therapy use on the accuracy of screening mammography. Ann Intern Med. 2003;138(3):168–75.

    Article  PubMed  Google Scholar 

  10. Yankaskas BC, Haneuse S, Kapp JM, Kerlikowske K, Geller B, Buist DSM, Breast Cancer Surveillance Consortium. Performance of first mammography examination in women younger than 40 years. JNCI J Natl Cancer Inst. 2010;102(10):692–701.

    Article  PubMed  Google Scholar 

  11. Forbes LJL, Atkins L, Thurnham A, Layburn J, Haste F, Ramirez AJ. Breast cancer awareness and barriers to symptomatic presentation among women from different ethnic groups in East London. Br J Cancer. 2011;105(10):1474–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee CH, Dershaw DD, Kopans D, Evans P, Monsees B, Monticciolo D, Brenner RJ, et al. Breast cancer screening with imaging: recommendations from the Society of Breast Imaging and the ACR on the use of mammography, breast MRI, breast ultrasound, and other technologies for the detection of clinically occult breast cancer. J Am Coll Radiol. 2010;7(1):18–27.

    Article  PubMed  Google Scholar 

  13. Menezes GLG, Knuttel FM, Stehouwer BL, Pijnappel RM, van den Bosch MAAJ. Magnetic resonance imaging in breast cancer: a literature review and future perspectives. World J Clin Oncol. 2014;5(2):61.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Arora R. The training and practice of radiology in India: current trends. Quant Imaging Med Surg. 2014;4(6):449–50.

    PubMed  PubMed Central  Google Scholar 

  15. Kakileti ST, Manjunath G, Madhu H, Ramprakash HV. Advances in breast thermography. In: Breast imaging: new perspectives in. Rijeka: IntechOpen; 2017. p. 91.

    Google Scholar 

  16. Gautherie M, Gros CM. Breast thermography and cancer risk prediction. Cancer. 1980;45(1):51–6.

    Article  CAS  PubMed  Google Scholar 

  17. Etehadtavakol M, Ng EYK. Breast thermography as a potential non-contact method in the early detection of cancer: a review. J Mech Med Biol. 2013;13(02):1330001.

    Article  Google Scholar 

  18. Anbar M, Milescu L, Naumov A, Brown C, Button T, Carly C, AlDulaimi K. Detection of cancerous breasts by dynamic area telethermometry. IEEE Eng Med Biol Mag. 2001;20(5):80–91.

    Article  CAS  PubMed  Google Scholar 

  19. Zore Z, Boras I, Stanec M, Orešić T, Zore IF. Influence of hormonal status on thermography findings in breast cancer. Acta Clin Croat. 2013;52(1):35–42.

    PubMed  Google Scholar 

  20. Gonzalez-Hernandez J-L, Recinella AN, Kandlikar SG, Dabydeen D, Medeiros L, Phatak P. Technology, application and potential of dynamic breast thermography for the detection of breast cancer. Int J Heat Mass Transf. 2019;131:558–73.

    Article  Google Scholar 

  21. Lahiri BB, Bagavathiappan S, Jayakumar T, Philip J. Medical applications of infrared thermography: a review. Infrared Phys Technol. 2012;55(4):221–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Madhu H, Kakileti ST, Venkataramani K, Jabbireddy S. Extraction of medically interpretable features for classification of malignancy in breast thermography. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE; 2016. p. 1062–5.

    Chapter  Google Scholar 

  23. Baker LH. Breast cancer detection demonstration project: five-year summary report. CA Cancer J Clin. 1982;32(4):194–225.

    Article  CAS  PubMed  Google Scholar 

  24. Omranipour R, Kazemian A, Alipour S, Najafi M, Alidoosti M, Navid M, Alikhassi A, Ahmadinejad N, Bagheri K, Izadi S. Comparison of the accuracy of thermography and mammography in the detection of breast cancer. Breast Care. 2016;11(4):260–4.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Keyserlingk JR, Ahlgren PD, Yu E, Belliveau N, Yassa M. Functional infrared imaging of the breast. IEEE Eng Med Biol Mag. 2000;19(3):30–41.

    Article  CAS  PubMed  Google Scholar 

  26. Kennedy DA, Lee T, Seely D. A comparative review of thermography as a breast cancer screening technique. Integr Cancer Ther. 2009;8(1):9–16.

    Article  PubMed  Google Scholar 

  27. FDA warns thermography should not be used in place of mammography to detect, diagnose, or screen for breast cancer: FDA Safety Communication. https://www.fda.gov/medical-devices/safety-communications/fda-warns-thermography-should-not-be-used-place-mammography-detect-diagnose-or-screen-breast-cancer. Date issued: 25 Feb 2019.

  28. Haleem A, Javaid M, Khan IH. Current status and applications of artificial intelligence (AI) in medical field: an overview. Curr Med Res Pract. 2019;9(6):231–7.

    Article  Google Scholar 

  29. Ratner M. FDA backs clinician-free AI imaging diagnostic tools. Nat Biotechnol. 2018;36:673–4.

    Article  CAS  PubMed  Google Scholar 

  30. Petrone J. FDA approves stroke-detecting AI software. Nat Biotechnol. 2018;36(4):290.

    Article  CAS  Google Scholar 

  31. QuantX. Evaluation of automatic class III designation for QuantX. Available at: https://www.accessdata.fda.gov/cdrh_docs/reviews/DEN170022.pdf

  32. Transpara. Radiological computer assisted detection/diagnosis software for lesions suspicious for cancer. Available at: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K192287

  33. Borchartt TB, Conci A, Lima RCF, Resmini R, Angel S. Breast thermography from an image processing viewpoint: a survey. Signal Process. 2013;93(10):2785–803.

    Article  Google Scholar 

  34. Singh D, Singh AK. Role of image thermography in early breast cancer detection-Past, present and future. Comput Methods Prog Biomed. 2020;183:105074.

    Article  Google Scholar 

  35. Prabha S, Suganthi SS, Sujatha CM. An approach to analyze the breast tissues in infrared images using nonlinear adaptive level sets and Riesz transform features. Technol Health Care. 2015;23(4):429–42.

    Article  CAS  PubMed  Google Scholar 

  36. Pramanik S, Bhattacharjee D, Nasipuri M. Wavelet based thermogram analysis for breast cancer detection. In: 2015 International Symposium on Advanced Computing and Communication (ISACC). IEEE; 2015. p. 205–12.

    Chapter  Google Scholar 

  37. De Oliveira JPS, Conci A, Perez MG, Andaluz VH. Segmentation of infrared images: a new technology for early detection of breast diseases. In: 2015 IEEE International Conference on Industrial Technology (ICIT). IEEE; 2015. p. 1765–71.

    Chapter  Google Scholar 

  38. Kakileti ST, Manjunath G, Madhu HJ. Cascaded CNN for view independent breast segmentation in thermal images. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE; 2019. p. 6294–7.

    Chapter  Google Scholar 

  39. Raghavendra U, Rajendra Acharya U, Ng EYK, Tan J-H, Gudigar A. An integrated index for breast cancer identification using histogram of oriented gradient and kernel locality preserving projection features extracted from thermograms. Quant InfraRed Thermogr J. 2016;13(2):195–209.

    Article  Google Scholar 

  40. EtehadTavakol M, Sadri S, Ng EYK. Application of K-and fuzzy c-means for color segmentation of thermal infrared breast images. J Med Syst. 2010;34(1):35–42.

    Article  CAS  PubMed  Google Scholar 

  41. Zadeh HG, Haddadnia J, Seryasat OR, Isfahani SMM. Segmenting breast cancerous regions in thermal images using fuzzy active contours. EXCLI J. 2016;15:532.

    Google Scholar 

  42. Kakileti ST, Dalmia A, Manjunath G. Exploring deep learning networks for tumour segmentation in infrared images. Quant InfraRed Thermogr J. 2019;17:1–16.

    Google Scholar 

  43. Tavakol E, Mahnaz CL, Sadri S, Ng EYK. Analysis of breast thermography using fractal dimension to establish possible difference between malignant and benign patterns. J Healthc Eng. 2010;1:27–43.

    Google Scholar 

  44. Kakileti ST, Venkataramani K. Automated blood vessel extraction in two-dimensional breast thermography. In: 2016 IEEE International Conference on Image Processing (ICIP). IEEE; 2016. p. 380–4.

    Chapter  Google Scholar 

  45. Kakileti ST, Madhu HJ, Manjunath G, Wee L, Dekker A, Sampangi S. Personalized risk prediction for breast cancer pre-screening using artificial intelligence and thermal radiomics. Artif Intell Med. 2020;105:101854.

    Article  PubMed  Google Scholar 

  46. Saniei E, Setayeshi S, Akbari ME, Navid M. A vascular network matching in dynamic thermography for breast cancer detection. Quant InfraRed Thermogr J. 2015;12(1):24–36.

    Article  Google Scholar 

  47. Silva LF, Sequeiros GO, Santos MLO, Fontes CAP, Muchaluat-Saade DC, Conci A. Thermal signal analysis for breast cancer risk verification. In: MedInfo. São Paulo: IOS press; 2015. p. 746–50.

    Google Scholar 

  48. Venkataramani K, Mestha LK, Ramachandra L, Prasad SS, Kumar V, Raja PJ. Semi-automated breast cancer tumor detection with thermographic video imaging. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE; 2015. p. 2022–5.

    Chapter  Google Scholar 

  49. Roslidar R, Saddami K, Arnia F, Syukri M, Munadi K. A study of fine-tuning CNN models based on thermal imaging for breast cancer classification. In: 2019 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom). IEEE; 2019. p. 77–81.

    Chapter  Google Scholar 

  50. Zuluaga-Gomez J, Al Masry Z, Benaggoune K, Meraghni S, Zerhouni N. A CNN-based methodology for breast cancer diagnosis using thermal images. arXiv preprint arXiv. 2019;1910.13757

    Google Scholar 

  51. Tello-Mijares S, Woo F, Flores F. Breast cancer identification via thermography image segmentation with a gradient vector flow and a convolutional neural network. J Healthc Eng. 2019;2019:1–13.

    Google Scholar 

  52. Flores JL, Gonzalez FJ, Cruz A, Navarro NE, Oceguera A. Automatic analysis of breast thermograms by convolutional neural networks. In: Applications of Digital Image Processing XLIII, vol. 11510. International Society for Optics and Photonics; 2020. p. 115101R.

    Google Scholar 

  53. Berz R, Schulte-Uebbing C. MammoVision (Infrared Breast Thermography) compared to x-ray mammography and ultrasonography. In: Diakides M, Bronzino JD, Peterson DR, editors. Medical infrared imaging: principles and practices. CRC Press; 2012. p. 12.1–12.12. https://doi.org/10.1201/b12938-13.

    Chapter  Google Scholar 

  54. Kakileti ST, Venkataramani K, Madhu HJ. Automatic determination of hormone receptor status in breast cancer using thermography. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer; 2016. p. 636–43.

    Google Scholar 

  55. PROENG. Image processing and image analyses applied to mastology. 2012. http://visual.ic.uff.br/en/proeng

  56. Sudhakar S, Manjunath G, Kakileti ST, Madhu H. Thermalytix: an advanced artificial intelligence based solution for non-contact breast screening. Int J Med Health Sci. 2018;12(2):48–51.

    Google Scholar 

  57. Wishart GC, Campisi M, Boswell M, Chapman D, Shackleton V, Iddles S, Hallett A, Britton PD. The accuracy of digital infrared imaging for breast cancer detection in women undergoing breast biopsy. Eur J Surg Oncol (EJSO). 2010;36(6):535–40.

    Article  CAS  Google Scholar 

  58. Arora N, Martins D, Ruggerio D, Tousimis E, Swistel AJ, Osborne MP, Simmons RM. Effectiveness of a noninvasive digital infrared thermal imaging system in the detection of breast cancer. Am J Surg. 2008;196(4):523–6.

    Article  PubMed  Google Scholar 

  59. Hellgren RJ, Sundbom AE, Czene K, Izhaky D, Hall P, Dickman PW. Does three-dimensional functional infrared imaging improve breast cancer detection based on digital mammography in women with dense breasts? Eur Radiol. 2019;29(11):6227–35.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kakileti ST, Madhu H, Manjunath G, Krishnan L, Sudhakar S, Ramprakash HV. An observational study to evaluate the clinical efficacy of thermalytix for detecting breast cancer in symptomatic and asymptomatic women. JCO Glob Oncol. 2020;6:1472–1480.

    Google Scholar 

  61. Bratko I. Machine learning: between accuracy and interpretability. In: Learning, networks and statistics. Vienna: Springer; 1997. p. 163–77.

    Chapter  Google Scholar 

  62. Vellido A. The importance of interpretability and visualization in machine learning for applications in medicine and health care. Neural Comput & Applic. 2020;32:18069–18083.

    Google Scholar 

  63. Kakileti ST. Machine Learning for Breast Cancer Diagnosis in Developing Countries. Maastricht: ProefschriftMaken; 2020. p. 216. https://doi.org/10.26481/dis.20201109st

Download references

Acknowledgements

We would like to thank Prof. Andre Dekker and Prof. Leonard Wee from Maastricht University, Netherlands, for their valuable suggestions and comments on the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siva Teja Kakileti .

Editor information

Editors and Affiliations

1 Electronic Supplementary Materials

(MP4 46609 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kakileti, S.T., Manjunath, G. (2021). AIM for Breast Thermography. In: Lidströmer, N., Ashrafian, H. (eds) Artificial Intelligence in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-58080-3_251-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58080-3_251-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58080-3

  • Online ISBN: 978-3-030-58080-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics