Abstract
This review considers the specific mechanisms of salinity adaptation in different salt-tolerant plant species. The differences among salt tolerance mechanisms are primarily associated with the organization of long-distance ion transport, including limitation of Na+ and Cl− inflow to aboveground organs, their accumulation in vacuoles, or their excretion back to the environment (by salt glands on the leaf surface), maintaining a high K+/Na+ ratio in the cytoplasm and additional synthesis of organic osmolytes. The review provides the current data on the role of proline, one of the most common organic osmolytes, in salinity adaptation in different plant species. Proline biosynthesis and catabolism regulation, as well as its multiple functions in plant cells, were described under normal and stress conditions. The changes in contents of proline and K+ were analyzed in different types of halophytes, including salt-tolerant glycophytes, succulent euhalophytes, xerohalophytes, and recretohalophytes. Proline response to osmotic and ionic components of salinity, as well as its participation in fundamentally different adaptation mechanisms, was considered in different types of halophytes. The possibility of the mutual participation of proline and K+ in the formation of specific mechanisms of salinity adaptation in different types of halophytes was discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J., & Hernandez, J. A. (2017). Plant responses to salt stress: Adaptive mechanisms. Agronomy, 7, 18. https://doi.org/10.3390/agronomy7010018.
Al Hassan, M., Estrelles, E., Soriano, P., López-Gresa, M. P., Bellés, J. M., Boscaiu, M., & Vicente, O. (2017). Unraveling salt tolerance mechanisms in halophytes: A comparative study on four Mediterranean Limonium species with different geographic distribution patterns. Frontiers in Plant Science, 8, 1438. https://doi.org/10.3389/fpls.2017.01438.
Anschütz, U., Becker, D., & Shabala, S. (2014). Going beyond nutrition: Regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment. Journal of Plant Physiology, 171, 670–687.
Bueno, M., LendÃnez, M. L., Calero, J., & del Pilar Cordovilla, M. (2020). Salinity responses of three halophytes from inland saltmarshes of Jáen (southern Spain). Flora, 266, 151589. https://doi.org/10.1016/j.flora.2020.151589.
Chérel, I., & Gaillard, I. (2019). The complex fine-tuning of K+ fluxes in plants in relation to osmotic and ionic abiotic stresses. International Journal of Molecular Sciences, 20, 715. https://doi.org/10.3390/ijms20030715.
Cuin, T. A., & Shabala, S. (2005). Exogenously supplied compatible solutes rapidly ameliorate NaCl-induced potassium efflux from barley roots. Plant & Cell Physiology, 46, 1924–1933.
Cuin, T. A., & Shabala, S. (2007). Compatible solutes reduce ROS induced potassium efflux in Arabidopsis roots. Plant, Cell & Environment, 30, 875–885. https://doi.org/10.1111/j.1365-3040.2007.01674.x.
Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes. The New Phytologist, 179, 945–963.
Flowers, T. J., Galal, H. K., & Bromham, L. (2010). Evolution of halophytes: Multiple origins of salt tolerance in land plants. Functional Plant Biology, 37, 604–612.
Funck, D., Eckard, S., & Müller, G. (2010). Non-redundant functions of two proline dehydrogenase isoforms in Arabidopsis. BMC Plant Biology, 10, 70.
Funck, D., Winter, G., Baumgarten, L., & Forlani, G. (2012). Requirement of proline synthesis during Arabidopsis reproductive development. BMC Plant Biology, 12. https://doi.org/10.1186/1471-2229-12-191.
Ghars, M. A., Parre, E., Debez, A., Bordenave, M., Richard, L., Leport, L., Bouchereau, A., Savourer, A., & Abdelly, C. (2008). Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophila, with special emphasis on K+/Na+ selectivity and proline accumulation. Journal of Plant Physiology, 165, 588–599.
Grigore, M. N., & Toma, C. (2017). Anatomical adaptations of halophytes. A review of classic literature and recent findings. Cham: Springer. https://doi.org/10.1007/978-3-319-66480-4.
Guan, C., Cen, H. F., Cui, X., Tian, D. Y., Tadesse, D., & Zhang, Y. W. (2019). Proline improves switchgrass growth and development by reduced lignin biosynthesis. Scientific Reports, 9, 20117. https://doi.org/10.1038/s41598-019-56575-9.
Hancock, C. N., Liu, W., Alvord, W. G., & Phang, J. M. (2016). Co-regulation of mitochondrial respiration by proline dehydrogenase/oxidase and succinate. Amino Acids, 48, 859–872. https://doi.org/10.1007/s00726-015-2134-7.
Hare, P. D., & Cress, W. A. (1997). Metabolic implications of stress induced proline accumulation in plants. Plant Growth Regulation, 21, 79–102.
Hare, P. D., Cress, W. A., & van Staden, J. (2003). A regulatory role for proline metabolism in stimulating Arabidopsis thaliana seed germination. Plant Growth Regulation, 39, 41–50.
Hossain, M. A., Hoque, M. H., Burritt, D. J., & Fujita, M. (2014). Chapter 16, Proline protects plants against abiotic oxidative stress. In P. Ahmad (Ed.), Oxidative damage to plants (pp. 477–522). San Diego: Elsevier. https://doi.org/10.1016/B978-0-12-799963-0.00016-2.
Huang, Z., Zhao, L., Chen, D., Liang, M., Liu, Z., Shao, H., & Long, X. (2013). Salt stress encourages proline accumulation by regulating proline biosynthesis and degradation in Jerusalem artichoke plantlets. PLoS One, 8, e62085.
Kaur, G., & Asthir, B. (2015). Proline: A key player in plant abiotic stress tolerance. Biologia Plantarum, 59(4), 609–619.
Kavi Kishor, P. B., Sangam, S., Amrutha, R. N., Laxmi, P. S., Naidu, K. R., Rao, K. R. S. S., Rao, S., Reddy, K. J., Theriappan, P., & Sreenivasulu, N. (2005). Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Current Science, 88, 424–438.
Kuznetsov, V. V., & Shevyakova, N. I. (1999). Proline under stress: Biological role, metabolism, and regulation. Russian Journal of Plant Physiology, 46, 274–289.
Lambert, D., & Draper, D. E. (2007). Effects of osmolytes on RNA secondary and tertiary structure stabilities and RNA–Mg2+ ion interactions. Journal of Molecular Biology, 370(5), 993–1005.
Lehmann, S., Funck, D., Szabados, L., & Rentsch, D. (2010). Proline metabolism and transport in plant development. Amino Acids, 39, 949–962.
Lehmann, S., Gumy, C., Blatter, E., Boeffel, S., Fricke, W., & Rentsch, D. (2011). In planta function of compatible solute transporters of the AtProT family. Journal of Experimental Botany, 62, 787e796.
Liang, X., Zhang, L., Natarajan, S. K., & Becker, D. F. (2013). Proline mechanisms of stress survival. Antioxidants & Redox Signaling, 19, 998–1011.
Maimaiti, A., Yunus, Q., Iwanaga, F., Mori, N., Tanaka, K., & Yamanaka, N. (2014). Effects of salinity on growth, photosynthesis, inorganic and organic osmolyte accumulation in Elaeagnus oxycarpa seedlings. Acta Physiologiae Plantarum, 36, 881–892.
Mansour, M. F., & Ali, E. F. (2017). Evaluation of proline functions in saline conditions. Phytochemistry, 140, 52–68. https://doi.org/10.1016/j.phytochem.2017.04.016.
Mattioli, R., Falasca, G., Sabatini, S., Altamura, M. M., Costantino, P., & Trovato, M. (2009). The proline biosynthetic genes P5CS1 and P5CS2 play overlapping roles in Arabidopsis flower transition but not in embryo development. Physiologia Plantarum, 137, 72–85.
Pardo-Domenech, L., Tifrea, A., Grigore, M., Boscaiu, M., & Vicente, O. (2016). Proline and glycine betaine accumulation in two succulent halophytes under natural and experimental conditions. Plant Biosystems – An International Journal Dealing with All Aspects of Plant Biology, 150(5), 904–915. https://doi.org/10.1080/11263504.2014.990943.
Rakhmankulova, Z. F., Voronin, P. Yu., Shuyskaya, E. V., Kuznetsova, N. A., Zhukovskaya, N. V., & Toderich, K. N. (2014). Effect of NaCl and iso-osmotic PEG stress on CO2/H2O exchange in shoots of the C4 xero-halophyte Haloxylon aphyllum (Chenopodiaceae). Photosynthetica, 52(3), 437–443. https://doi.org/10.1007/s11099-014-0048-3.
Rakhmankulova, Z. F., Shuyskaya, E. V., Voronin, P. Y., & Usmanov, I. Y. (2019). Comparative study on resistance of C3 and C4 xerohalophytes of the genus Atriplex to water deficit and salinity. Russian Journal of Plant Physiology, 66(2), 250–258. https://doi.org/10.1134/S1021443719020109.
Rejeb, K. B., Abdelly, C., & Savouré, A. (2014). How reactive oxygen species and proline face stress together. Plant Physiology and Biochemistry, 80, 278–284.
Roth, J., Hin-Fai, Y. G., Jingyu, F., Kiyoko, H., Gaplovska-Kysela, K., Le Fourn, V., Guhl, B., Santimaria, R., Torossi, T., Ziak, M., & Zuber, C. (2008). Protein quality control: The who’s who, the where’s and therapeutic escapes. Histochemistry and Cell Biology, 129(2), 163–177.
Samuel, D., Kumar, T. K., Ganesh, G., Jayaraman, G., Yang, P. W., Chang, M. M., Trivedi, V. D., Wang, S. L., Hwang, K. C., Chang, D. K., & Yu, C. (2000). Proline inhibits aggregation during protein refolding. Protein Science, 9, 344–352.
Schertl, P., & Braun, H. P. (2014). Respiratory electron transfer pathways in plant mitochondria. Frontiers in Plant Science, 5, 163. https://doi.org/10.3389/fpls.2014.00163.
Schwacke, R., Grallath, S., Breitkreuz, K. E., Stransky, E., Stransky, H., Frommer, W. B., & Rentsch, D. (1999). LeProT1, a transporter for proline, glycine betaine, and gamma-amino butyric acid in tomato pollen. The Plant Cell, 11, 377–392.
Shabala, S., & Pottosin, I. (2014). Regulation of potassium transport in plants under hostile conditions: Implications for abiotic and biotic stress tolerance. Physiologia Plantarum, 151(3), 257–279.
Shabala, S., & Shabala, L. (2011). Ion transport and osmotic adjustment in plants and bacteria. Biomolecular Concepts, 2, 407–419.
Shuyskaya, E., Rakhmankulova, Z., Voronin, P., Kuznetsova, N., Biktimerova, G., & Usmanov, I. (2015). Salt and osmotic stress tolerance of the C3-C4 xero-halophyte Bassia sedoides from two populations differ in productivity and genetic polymorphism. Acta Physiologiae Plantarum, 37, 236. https://doi.org/10.1007/s11738-015-1981-x.
Shuyskaya, E. V., Rakhamkulova, Z. F., Lebedeva, M. P., Kolesnikov, A. V., Safarova, A., Borisochkina, T. I., & Toderich, K. N. (2017). Different mechanisms of ion homeostasis are dominant in the recretohalophyte Tamarix ramosissima under different soil salinity. Acta Physiologiae Plantarum, 39, 81. https://doi.org/10.1007/s11738-017-2379-8.
Shuyskaya, E. V., Rakhmankulova, Z. F., Prokofeva, M. Yu., & Toderich, K. N. (in press). Free proline in C3 and C4 species.
Singh, L. R., Poddar, N. K., Dar, T. A., Kumar, R., & Ahmad, F. (2011). Protein and DNA destabilization by osmolytes: The other side of the coin. Life Sciences, 88, 117–125. https://doi.org/10.1016/j.lfs.2010.10.020.
Szabados, L., & Savoure, A. (2010). Proline: A multifunctional amino acid. Trends in Plant Science, 15(2), 89–97.
Tabot, P. T., & Adams, J. B. (2014). Salt secretion, proline accumulation and increased branching confer tolerance to drought and salinity in the endemic halophyte Limonium linifolium. South African Journal of Botany, 94, 64–73. https://doi.org/10.1016/j.sajb.2014.05.009.
Tipirdamaz, R., Gagneul, D., Duhaze, C., Ainouche, A., Monnier, C., Ozkum, D., & Larher, F. (2006). Clustering of halophytes from an inland salt marsh in Turkey according to their ability to accumulate sodium and nitrogenous osmolytes. Environmental and Experimental Botany, 57, 139–153. https://doi.org/10.1016/j.envexpbot.2005.05.007.
Voetberg, G., & Stewart, C. R. (1984). Steady state proline levels in salt-shocked barley leaves. Plant Physiology, 76, 567–570. 0032-0889/84/76/0556/04/$0 1.00/0.
Volkov, V., & Flowers, T. J. (2019). Mechanisms of ion transport in halophytes: From roots to leaves. In Sabkha ecosystems. Cham: Springer.
Yildiztugay, E., Ozfidan-Konakci, C., & Kucukoduk, M. (2014). Modulation of osmotic adjustment and antioxidant status in salt-stressed leaves of Thermopsis turcica. Acta Physiologiae Plantarum, 36, 125–138.
Youssef, A. M., Hassanein, R. A., Hassanein, A. A., & Morsy, A. A. (2003). Changes in quaternary ammonium compounds, proline and protein profiles of certain halophytic plants under different habitat conditions. Pakistan Journal of Biological Sciences, 6(10), 867–882.
Yuan, F., Leng, B., & Wang, B. (2016). Progress in studying salt secretion from the salt glands in recretohalophytes: How do plants secrete salt? Frontiers in Plant Science, 30(7), 977. https://doi.org/10.3389/fpls.2016.00977.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Section Editor information
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this entry
Cite this entry
Shuyskaya, E.V., Rakhmankulova, Z.F., Toderich, K.N. (2021). Role of Proline and Potassium in Adaptation to Salinity in Different Types of Halophytes. In: Grigore, MN. (eds) Handbook of Halophytes. Springer, Cham. https://doi.org/10.1007/978-3-030-57635-6_75
Download citation
DOI: https://doi.org/10.1007/978-3-030-57635-6_75
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-57634-9
Online ISBN: 978-3-030-57635-6
eBook Packages: Biomedical and Life SciencesReference Module Biomedical and Life Sciences