Skip to main content

Role of Proline and Potassium in Adaptation to Salinity in Different Types of Halophytes

  • Reference work entry
  • First Online:
Handbook of Halophytes

Abstract

This review considers the specific mechanisms of salinity adaptation in different salt-tolerant plant species. The differences among salt tolerance mechanisms are primarily associated with the organization of long-distance ion transport, including limitation of Na+ and Cl− inflow to aboveground organs, their accumulation in vacuoles, or their excretion back to the environment (by salt glands on the leaf surface), maintaining a high K+/Na+ ratio in the cytoplasm and additional synthesis of organic osmolytes. The review provides the current data on the role of proline, one of the most common organic osmolytes, in salinity adaptation in different plant species. Proline biosynthesis and catabolism regulation, as well as its multiple functions in plant cells, were described under normal and stress conditions. The changes in contents of proline and K+ were analyzed in different types of halophytes, including salt-tolerant glycophytes, succulent euhalophytes, xerohalophytes, and recretohalophytes. Proline response to osmotic and ionic components of salinity, as well as its participation in fundamentally different adaptation mechanisms, was considered in different types of halophytes. The possibility of the mutual participation of proline and K+ in the formation of specific mechanisms of salinity adaptation in different types of halophytes was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J., & Hernandez, J. A. (2017). Plant responses to salt stress: Adaptive mechanisms. Agronomy, 7, 18. https://doi.org/10.3390/agronomy7010018.

    Article  CAS  Google Scholar 

  • Al Hassan, M., Estrelles, E., Soriano, P., López-Gresa, M. P., Bellés, J. M., Boscaiu, M., & Vicente, O. (2017). Unraveling salt tolerance mechanisms in halophytes: A comparative study on four Mediterranean Limonium species with different geographic distribution patterns. Frontiers in Plant Science, 8, 1438. https://doi.org/10.3389/fpls.2017.01438.

    Article  PubMed  PubMed Central  Google Scholar 

  • Anschütz, U., Becker, D., & Shabala, S. (2014). Going beyond nutrition: Regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment. Journal of Plant Physiology, 171, 670–687.

    Article  Google Scholar 

  • Bueno, M., Lendínez, M. L., Calero, J., & del Pilar Cordovilla, M. (2020). Salinity responses of three halophytes from inland saltmarshes of Jáen (southern Spain). Flora, 266, 151589. https://doi.org/10.1016/j.flora.2020.151589.

    Article  Google Scholar 

  • Chérel, I., & Gaillard, I. (2019). The complex fine-tuning of K+ fluxes in plants in relation to osmotic and ionic abiotic stresses. International Journal of Molecular Sciences, 20, 715. https://doi.org/10.3390/ijms20030715.

    Article  CAS  PubMed Central  Google Scholar 

  • Cuin, T. A., & Shabala, S. (2005). Exogenously supplied compatible solutes rapidly ameliorate NaCl-induced potassium efflux from barley roots. Plant & Cell Physiology, 46, 1924–1933.

    Article  CAS  Google Scholar 

  • Cuin, T. A., & Shabala, S. (2007). Compatible solutes reduce ROS induced potassium efflux in Arabidopsis roots. Plant, Cell & Environment, 30, 875–885. https://doi.org/10.1111/j.1365-3040.2007.01674.x.

    Article  CAS  Google Scholar 

  • Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes. The New Phytologist, 179, 945–963.

    Article  CAS  Google Scholar 

  • Flowers, T. J., Galal, H. K., & Bromham, L. (2010). Evolution of halophytes: Multiple origins of salt tolerance in land plants. Functional Plant Biology, 37, 604–612.

    Article  Google Scholar 

  • Funck, D., Eckard, S., & Müller, G. (2010). Non-redundant functions of two proline dehydrogenase isoforms in Arabidopsis. BMC Plant Biology, 10, 70.

    Article  Google Scholar 

  • Funck, D., Winter, G., Baumgarten, L., & Forlani, G. (2012). Requirement of proline synthesis during Arabidopsis reproductive development. BMC Plant Biology, 12. https://doi.org/10.1186/1471-2229-12-191.

  • Ghars, M. A., Parre, E., Debez, A., Bordenave, M., Richard, L., Leport, L., Bouchereau, A., Savourer, A., & Abdelly, C. (2008). Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophila, with special emphasis on K+/Na+ selectivity and proline accumulation. Journal of Plant Physiology, 165, 588–599.

    Article  CAS  Google Scholar 

  • Grigore, M. N., & Toma, C. (2017). Anatomical adaptations of halophytes. A review of classic literature and recent findings. Cham: Springer. https://doi.org/10.1007/978-3-319-66480-4.

    Book  Google Scholar 

  • Guan, C., Cen, H. F., Cui, X., Tian, D. Y., Tadesse, D., & Zhang, Y. W. (2019). Proline improves switchgrass growth and development by reduced lignin biosynthesis. Scientific Reports, 9, 20117. https://doi.org/10.1038/s41598-019-56575-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hancock, C. N., Liu, W., Alvord, W. G., & Phang, J. M. (2016). Co-regulation of mitochondrial respiration by proline dehydrogenase/oxidase and succinate. Amino Acids, 48, 859–872. https://doi.org/10.1007/s00726-015-2134-7.

    Article  CAS  PubMed  Google Scholar 

  • Hare, P. D., & Cress, W. A. (1997). Metabolic implications of stress induced proline accumulation in plants. Plant Growth Regulation, 21, 79–102.

    Article  CAS  Google Scholar 

  • Hare, P. D., Cress, W. A., & van Staden, J. (2003). A regulatory role for proline metabolism in stimulating Arabidopsis thaliana seed germination. Plant Growth Regulation, 39, 41–50.

    Article  CAS  Google Scholar 

  • Hossain, M. A., Hoque, M. H., Burritt, D. J., & Fujita, M. (2014). Chapter 16, Proline protects plants against abiotic oxidative stress. In P. Ahmad (Ed.), Oxidative damage to plants (pp. 477–522). San Diego: Elsevier. https://doi.org/10.1016/B978-0-12-799963-0.00016-2.

    Chapter  Google Scholar 

  • Huang, Z., Zhao, L., Chen, D., Liang, M., Liu, Z., Shao, H., & Long, X. (2013). Salt stress encourages proline accumulation by regulating proline biosynthesis and degradation in Jerusalem artichoke plantlets. PLoS One, 8, e62085.

    Article  CAS  Google Scholar 

  • Kaur, G., & Asthir, B. (2015). Proline: A key player in plant abiotic stress tolerance. Biologia Plantarum, 59(4), 609–619.

    Article  CAS  Google Scholar 

  • Kavi Kishor, P. B., Sangam, S., Amrutha, R. N., Laxmi, P. S., Naidu, K. R., Rao, K. R. S. S., Rao, S., Reddy, K. J., Theriappan, P., & Sreenivasulu, N. (2005). Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Current Science, 88, 424–438.

    Google Scholar 

  • Kuznetsov, V. V., & Shevyakova, N. I. (1999). Proline under stress: Biological role, metabolism, and regulation. Russian Journal of Plant Physiology, 46, 274–289.

    CAS  Google Scholar 

  • Lambert, D., & Draper, D. E. (2007). Effects of osmolytes on RNA secondary and tertiary structure stabilities and RNA–Mg2+ ion interactions. Journal of Molecular Biology, 370(5), 993–1005.

    Article  CAS  Google Scholar 

  • Lehmann, S., Funck, D., Szabados, L., & Rentsch, D. (2010). Proline metabolism and transport in plant development. Amino Acids, 39, 949–962.

    Article  CAS  Google Scholar 

  • Lehmann, S., Gumy, C., Blatter, E., Boeffel, S., Fricke, W., & Rentsch, D. (2011). In planta function of compatible solute transporters of the AtProT family. Journal of Experimental Botany, 62, 787e796.

    Article  Google Scholar 

  • Liang, X., Zhang, L., Natarajan, S. K., & Becker, D. F. (2013). Proline mechanisms of stress survival. Antioxidants & Redox Signaling, 19, 998–1011.

    Article  CAS  Google Scholar 

  • Maimaiti, A., Yunus, Q., Iwanaga, F., Mori, N., Tanaka, K., & Yamanaka, N. (2014). Effects of salinity on growth, photosynthesis, inorganic and organic osmolyte accumulation in Elaeagnus oxycarpa seedlings. Acta Physiologiae Plantarum, 36, 881–892.

    Article  CAS  Google Scholar 

  • Mansour, M. F., & Ali, E. F. (2017). Evaluation of proline functions in saline conditions. Phytochemistry, 140, 52–68. https://doi.org/10.1016/j.phytochem.2017.04.016.

    Article  CAS  PubMed  Google Scholar 

  • Mattioli, R., Falasca, G., Sabatini, S., Altamura, M. M., Costantino, P., & Trovato, M. (2009). The proline biosynthetic genes P5CS1 and P5CS2 play overlapping roles in Arabidopsis flower transition but not in embryo development. Physiologia Plantarum, 137, 72–85.

    Article  CAS  Google Scholar 

  • Pardo-Domenech, L., Tifrea, A., Grigore, M., Boscaiu, M., & Vicente, O. (2016). Proline and glycine betaine accumulation in two succulent halophytes under natural and experimental conditions. Plant Biosystems – An International Journal Dealing with All Aspects of Plant Biology, 150(5), 904–915. https://doi.org/10.1080/11263504.2014.990943.

    Article  Google Scholar 

  • Rakhmankulova, Z. F., Voronin, P. Yu., Shuyskaya, E. V., Kuznetsova, N. A., Zhukovskaya, N. V., & Toderich, K. N. (2014). Effect of NaCl and iso-osmotic PEG stress on CO2/H2O exchange in shoots of the C4 xero-halophyte Haloxylon aphyllum (Chenopodiaceae). Photosynthetica, 52(3), 437–443. https://doi.org/10.1007/s11099-014-0048-3.

  • Rakhmankulova, Z. F., Shuyskaya, E. V., Voronin, P. Y., & Usmanov, I. Y. (2019). Comparative study on resistance of C3 and C4 xerohalophytes of the genus Atriplex to water deficit and salinity. Russian Journal of Plant Physiology, 66(2), 250–258. https://doi.org/10.1134/S1021443719020109.

    Article  CAS  Google Scholar 

  • Rejeb, K. B., Abdelly, C., & Savouré, A. (2014). How reactive oxygen species and proline face stress together. Plant Physiology and Biochemistry, 80, 278–284.

    Article  Google Scholar 

  • Roth, J., Hin-Fai, Y. G., Jingyu, F., Kiyoko, H., Gaplovska-Kysela, K., Le Fourn, V., Guhl, B., Santimaria, R., Torossi, T., Ziak, M., & Zuber, C. (2008). Protein quality control: The who’s who, the where’s and therapeutic escapes. Histochemistry and Cell Biology, 129(2), 163–177.

    Article  CAS  Google Scholar 

  • Samuel, D., Kumar, T. K., Ganesh, G., Jayaraman, G., Yang, P. W., Chang, M. M., Trivedi, V. D., Wang, S. L., Hwang, K. C., Chang, D. K., & Yu, C. (2000). Proline inhibits aggregation during protein refolding. Protein Science, 9, 344–352.

    Article  CAS  Google Scholar 

  • Schertl, P., & Braun, H. P. (2014). Respiratory electron transfer pathways in plant mitochondria. Frontiers in Plant Science, 5, 163. https://doi.org/10.3389/fpls.2014.00163.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwacke, R., Grallath, S., Breitkreuz, K. E., Stransky, E., Stransky, H., Frommer, W. B., & Rentsch, D. (1999). LeProT1, a transporter for proline, glycine betaine, and gamma-amino butyric acid in tomato pollen. The Plant Cell, 11, 377–392.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shabala, S., & Pottosin, I. (2014). Regulation of potassium transport in plants under hostile conditions: Implications for abiotic and biotic stress tolerance. Physiologia Plantarum, 151(3), 257–279.

    Article  CAS  Google Scholar 

  • Shabala, S., & Shabala, L. (2011). Ion transport and osmotic adjustment in plants and bacteria. Biomolecular Concepts, 2, 407–419.

    Article  CAS  Google Scholar 

  • Shuyskaya, E., Rakhmankulova, Z., Voronin, P., Kuznetsova, N., Biktimerova, G., & Usmanov, I. (2015). Salt and osmotic stress tolerance of the C3-C4 xero-halophyte Bassia sedoides from two populations differ in productivity and genetic polymorphism. Acta Physiologiae Plantarum, 37, 236. https://doi.org/10.1007/s11738-015-1981-x.

    Article  CAS  Google Scholar 

  • Shuyskaya, E. V., Rakhamkulova, Z. F., Lebedeva, M. P., Kolesnikov, A. V., Safarova, A., Borisochkina, T. I., & Toderich, K. N. (2017). Different mechanisms of ion homeostasis are dominant in the recretohalophyte Tamarix ramosissima under different soil salinity. Acta Physiologiae Plantarum, 39, 81. https://doi.org/10.1007/s11738-017-2379-8.

    Article  CAS  Google Scholar 

  • Shuyskaya, E. V., Rakhmankulova, Z. F., Prokofeva, M. Yu., & Toderich, K. N. (in press). Free proline in C3 and C4 species.

    Google Scholar 

  • Singh, L. R., Poddar, N. K., Dar, T. A., Kumar, R., & Ahmad, F. (2011). Protein and DNA destabilization by osmolytes: The other side of the coin. Life Sciences, 88, 117–125. https://doi.org/10.1016/j.lfs.2010.10.020.

    Article  CAS  PubMed  Google Scholar 

  • Szabados, L., & Savoure, A. (2010). Proline: A multifunctional amino acid. Trends in Plant Science, 15(2), 89–97.

    Article  CAS  Google Scholar 

  • Tabot, P. T., & Adams, J. B. (2014). Salt secretion, proline accumulation and increased branching confer tolerance to drought and salinity in the endemic halophyte Limonium linifolium. South African Journal of Botany, 94, 64–73. https://doi.org/10.1016/j.sajb.2014.05.009.

    Article  CAS  Google Scholar 

  • Tipirdamaz, R., Gagneul, D., Duhaze, C., Ainouche, A., Monnier, C., Ozkum, D., & Larher, F. (2006). Clustering of halophytes from an inland salt marsh in Turkey according to their ability to accumulate sodium and nitrogenous osmolytes. Environmental and Experimental Botany, 57, 139–153. https://doi.org/10.1016/j.envexpbot.2005.05.007.

    Article  CAS  Google Scholar 

  • Voetberg, G., & Stewart, C. R. (1984). Steady state proline levels in salt-shocked barley leaves. Plant Physiology, 76, 567–570. 0032-0889/84/76/0556/04/$0 1.00/0.

    Article  CAS  Google Scholar 

  • Volkov, V., & Flowers, T. J. (2019). Mechanisms of ion transport in halophytes: From roots to leaves. In Sabkha ecosystems. Cham: Springer.

    Google Scholar 

  • Yildiztugay, E., Ozfidan-Konakci, C., & Kucukoduk, M. (2014). Modulation of osmotic adjustment and antioxidant status in salt-stressed leaves of Thermopsis turcica. Acta Physiologiae Plantarum, 36, 125–138.

    Article  CAS  Google Scholar 

  • Youssef, A. M., Hassanein, R. A., Hassanein, A. A., & Morsy, A. A. (2003). Changes in quaternary ammonium compounds, proline and protein profiles of certain halophytic plants under different habitat conditions. Pakistan Journal of Biological Sciences, 6(10), 867–882.

    Article  Google Scholar 

  • Yuan, F., Leng, B., & Wang, B. (2016). Progress in studying salt secretion from the salt glands in recretohalophytes: How do plants secrete salt? Frontiers in Plant Science, 30(7), 977. https://doi.org/10.3389/fpls.2016.00977.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Shuyskaya, E.V., Rakhmankulova, Z.F., Toderich, K.N. (2021). Role of Proline and Potassium in Adaptation to Salinity in Different Types of Halophytes. In: Grigore, MN. (eds) Handbook of Halophytes. Springer, Cham. https://doi.org/10.1007/978-3-030-57635-6_75

Download citation

Publish with us

Policies and ethics