Skip to main content

Climate Change Extent and Dipteran Pollinators Diversity in Africa

  • Reference work entry
  • First Online:
Handbook of Climate Change Management

Abstract

This chapter reveals that there are five known pollinating dipteran families common in the Afrotropical region, namely, Syrphidae, Nemestrinidae, Bombyliidae, Calliphoridae, and Rhiniidae. Only the first three families have their habitat preference revealed, that is, Syrphidae, Nemestrinidae, and Bombyliidae; these are occurring in places where rainfall is less than 400 mm annually, occupying all habitat types except where the forest has closed canopy thus associated with open arid and semi-arid regions, respectively. Most common climate events in Africa are drought, desertification, flooding, and land degradation. There is an expected 1.1–6.4 °C temperature rise by the end of the twenty-first century and 2% precipitation increase observed globally. The impact of climate change in Africa is bound to be severe because of direct effects, high agricultural dependence, and limited capacity to adapt. Due to climate change, flies ranges may shift, population change will occur, and extinction of certain species will be observed. Dipterans respond to environmental modification either by adapting to new conditions or by shifting their geographic distributions toward suitable areas. Decrease in dipteran species population will result in reduced flowering plants population, i.e., reduced diversity, thereby consequently reducing the yield produced. Plant diversity is essential for food production, therapeutic drug development, and cultural values, thereby being important to maintain it. There is need to reduce perpetrators of climate change so that pollinating dipteran population may not be affected, thus boosting up plant diversity as a result. There are some flies produced commercially to boost pollination of crops, i.e., calliphorid flies to aid pollination of lettuce, garlic, sunflower, pepper, buckwheat, and canola; therefore it is advisable to breed other species as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abrha H (2018) Climate change impact on coffee and the pollinator bee suitable area interaction in Raya Azebo, Ethiopia. Cogent Food Agric 4(1):1564538

    Article  CAS  Google Scholar 

  • Aizen MA, Harder LD (2009) The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr Biol 19:915

    Article  CAS  Google Scholar 

  • Barraclough D, Slotow R (2010) The South African keystone pollinator Moegistorhynchus biology, biogeography and proboscis length variation. Afr Invertebr 51:397–403

    Article  Google Scholar 

  • Bartomeus I, Ascher JS, Wgner D, Danforth BN, Colla S, Kornbluth S, Winfree R (2011) Climate-associated phenological advances in bee pollinators and bee-pollinated plants. PNAS 108(51):20645–20649

    Article  CAS  Google Scholar 

  • Bartomeus I, Park MG, Gibbs J, Danforth BN, Lasko AN, Winfree R (2013) Biodiversity ensures plant-pollinator phenological synchrony against climate. Ecol Lett 16(11):13331–11338

    Article  Google Scholar 

  • Beillouin D, Schauberger B, Bastos A, Ciais P, Makowski D (2020) Impact of extreme weather conditions on European crop production in 2018. Philos Trans R Soc B 375(1810):20190510

    Google Scholar 

  • Biesmeijer JC, Roberts SPM, Reemer M, Ohlemüller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J, Kunin WE (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313(5785):351–354. https://doi.org/10.1126/science.1127863

    Article  CAS  Google Scholar 

  • Boesi R, Polidori C, Andrietti F (2008) Searching for the right target: oviposition and feeding behavior in. Zool Stud 48:141–150

    Google Scholar 

  • Brostein NA, Milano NJ, Kiers ET, Theis N, Bartolv V, Hazzard RV, Adler LS (2015) Root herbivory indirectly affects above- and below-ground community memebrs and directly reduces plant performance. J Ecol 103:1509–1518

    Google Scholar 

  • Buchmann SL, Nabhan GP (1996) The pollination crisis: the plight of the honey bee and the decline of other pollinators imperil future harvests. Science 36(4):22

    Google Scholar 

  • Burkle LA, Marlin JC, Knight TM (2013) Plant–pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 339:1611–1615

    Article  CAS  Google Scholar 

  • Carvalheiro LG, Veldtman R, Shenkute AG, Tesfay GB, Pirk CWW, Donaldson JS, Nicolson SW (2011) Natural and within farmland biodiversity enhances crop productivity. Ecol Lett 14(3):251–259

    Google Scholar 

  • Chaves M, Pereira J (1992) Water stress, CO2 and climate change. J Exp Bot 43(8):1131–1139

    Article  Google Scholar 

  • Chown SL, Slabber S, McGeoch MA, Janion C, Leinaas HP (2007) Phenotypic plasticity mediates climate change responses among invasive and indigenous arthropods. Proc R Soc B Biol Sci 274(1625):2531–2537

    Article  Google Scholar 

  • Clement SL, Hellier BC, Elberson LR, Staska RT, Evans MA (2007) Flies (Diptera: Muscidae: Calliphoridae) are efficient pollinators of Allium ampeloprasum L. (Alliaceae) in field cages. J Econ Entomol 100:131–135

    Article  Google Scholar 

  • Collier P, Conway G, Venables T (2008) Climate change and Africa. Oxf Rev Econ Policy 24(2):337–353

    Article  Google Scholar 

  • Cooper P, Dimes J, Rao K, Shapiro B, Shiferaw B, Twomlow S (2008) Coping better with current climatic variability in the rain-fed farming systems of sub-Saharan Africa: an essential first step in adapting to future climate change? Agric Ecosyst Environ 126(1–2):24–35

    Article  Google Scholar 

  • Dawson IK, Carsan S, Franzel S, Kindt R, van Breugel P, Graudal L, … Jamnadass R (2014) Agroforestry, livestock, fodder production and climate change adaptation and mitigation in East Africa: issues and options. World Agroforestry Center, Nairobi

    Google Scholar 

  • De Meyer M (2001) Biogeography, diversity and seasonality of Syrpffidae (dipteral) in a Gueineo-Congolian rain forest in Kenya. J East Afr Nat Hist 90:87–101

    Article  Google Scholar 

  • Dell M, Jones BF, Olken BA (2012) Temperature shocks and economic growth: evidence from the last half century. Am Econ J Macroecon 4:66–95

    Google Scholar 

  • Doak DF, Morris WF (2010) Demographic compensation and tipping points in climate-induced range shifts. Nature 467(7318):959–962

    Article  CAS  Google Scholar 

  • Edenhofer O (2015) Climate change 2014: mitigation of climate change, vol 3. Cambridge University Press

    Google Scholar 

  • Edenhofer O, Seyboth K (2013) Intergovernmental panel on climate change. IPCC

    Book  Google Scholar 

  • Evenhuis NL, Pape T, Pontand AC, Thompson FC (eds) (2008) Biosystematic database of World Diptera, Version 10. http://www.diptera.org/biosys.htm. Accessed 20 Jan 2008

  • Forister ML, McCall AC, Sanders NJ (2010) Compounded effects of climate change and habitat alteration shift patterns of butterfly diversity. Proc Natl Acad Sci U S A 107:2088–2092

    Article  CAS  Google Scholar 

  • Forrest JRK (2016) Complex responses of insect phenology to climate change. Curr Opin Insect Sci 17:49–54

    Article  Google Scholar 

  • Gallagher MK, Campbell DR (2017) Shifts in water availability mediate plant– pollinator interactions. New Phytol 215:792–802

    Article  Google Scholar 

  • Gallai N, Salles JM, Settele J et al (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ 68:810

    Article  Google Scholar 

  • Garibaldi LA, Steffan-Dewenter I, Kremen C et al (2011) Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol Lett 14:1062

    Article  Google Scholar 

  • Gérard M, Vanderplanck M, Wood T, Michez D (2020) Global warming and plant–pollinator mismatches. Emerg Top Life Sci 4(1):77–86

    Google Scholar 

  • Giejsztowt J, Classen AT, Deslippe JR (2020) Climate change and invasion may synergistically affect native plant reproduction. Ecol 101(1):e02913

    Google Scholar 

  • Goldblatt P, Manning JC, Bernhardt P (1995) Pollination biology of Lapeirousia subgenus Lapeirousia (Iridaceae) in Southern Africa; Floral divergence and adaptation for long-tongued fly pollination. Ann Missouri Bot Gard 82:517–534

    Google Scholar 

  • Gonzalez AMM, Dalsgaard B, Ollerton J, Timmermann A (2009) Effects of climate on pollination networks in the West Indies. J Trop Ecol 25:492–506

    Article  Google Scholar 

  • González-Varo JP, Biesmeijer JC, Bommarco R, Potts SG, Schweiger O, Smith HG, … Vilà M (2013) Combined effects of global change pressures on animal-mediated pollination. Trends Ecol Evol 28(9):524–530

    Google Scholar 

  • Greathead D, Lovell S, Barraclough D, Slotow R, Hamer M, Herbert D (2006) An ecological and conservation assessment of the fauna of Bombyliidae (Diptera) occurring in the Mkhuze, Phinda and False Bay reserves, KwaZulu-Natal, South Africa. Afr Invertebr 47:185–206

    Google Scholar 

  • Hansen M (1983) Yuca (Yuca, Cassava). In: Manzen D (ed) Costa Rican natural history. The University of Chicago Press, Chicago, pp 114–117, xi+816

    Google Scholar 

  • Harrison RD (2000) Repercussions of ElNino: drought causes extinction and the breakdown of mutualism in Borneo. Proc R Soc Lond. Biol Sci Series B 267:911–915

    Google Scholar 

  • Hassall C, Owen J, Gilbert F (2016) Phenological shifts in hoverflies (Diptera: Syrphidae): linking measurement and mechanism. Ecography 40(7):853–863

    Article  Google Scholar 

  • Hiraishi T, Krug T, Tanabe K, Srivastava N, Baasansuren J, Fukuda M, Troxler T (2014) 2013 supplement to the 2006 IPCC guidelines for national greenhouse gas inventories: wetlands. IPCC, Geneva

    Google Scholar 

  • https://www.cbd.int/agro/peer_review_pollinators.pdf

  • Intergovernmental Panel on Climate Change (2014) Climate change 2014–impacts, adaptation and vulnerability: regional aspects. Cambridge University Press

    Google Scholar 

  • Jarlan A, DeOliveira D, Gringras J (1997) Pollination by Eristalistenax (Diptera : Syrphidae) and seed set of greenhouse sweet pepper. Hortic Entomol 90:1646–1649

    Google Scholar 

  • Inouye DW, Ogilvie JE (2001) Pollinators role of. Encyclopedia of Biodiversity 723–730

    Google Scholar 

  • Jones BF, Olken BA (2010) Climate shocks and exports. Am Econ Rev 100:454–459

    Google Scholar 

  • Jordaens K, Goergen G, Virgilio M, Backeljau T, Vokaer A, De Meyer M (2020) DNA barcoding to improve the taxonomy of the Afrotropical Hoverflies (Insecta: Diptera: Syrphidae). PLoS ONE 10:1–15

    Google Scholar 

  • Kaloveloni A, Tscheulin T, Vujic A, Radenkovic S, Petanidou T (2015) Winners and losers of climate change for the genus Merodon (Diptera: Syrphidae) across the Balkan Peninsula a. Ecol Model 313:201–211

    Article  Google Scholar 

  • Kearns CA (2001) North American dipteran pollinators: assessing their value and conservation status. Conserv Ecol 5(1):5 [online]. http://www.consecol.org/vol5/issl/art5/

  • Kearns CA, Inouye DW, Waser NM (1998) Endangered mutualisms: the conservation of plant pollinator interactions. Annu Rev Ecol Syst 29:83

    Article  Google Scholar 

  • Kevan PG (1972) Insect pollination of high arctic flowers. J Ecol 60:831–847

    Article  Google Scholar 

  • Kirk-Spriggs AH, Sinclair BS (eds) (2017a) Manual of Afrotropical Diptera: introductory chapters and keys to Diptera families. SANBI Graphics and Editing, Pretoria, South Africa. 1: xii+425. ISBN:9781928224112

    Google Scholar 

  • Kirk-Spriggs AH, Sinclair BJ (2017b) Manual of Afrotropical Diptera, vol 2

    Google Scholar 

  • Klein AM, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc B 274(1608):303–313

    Google Scholar 

  • Knight T, Ashman TL, Bennett J, Burns J, Passonneau S, Steets J (2018) Reflections on, and visions for, the changing field of pollination ecology. Ecol Lett 21(8):1282–1295

    Article  CAS  Google Scholar 

  • Kremen C, Williams NM, Thorp RW (2002) Crop pollination from the native bees at risk from agricultural intensification. Proc Natl Acad Sci USA 99(26):16812–16816

    Google Scholar 

  • Kumar J, Misra RC, Gupta JK (1985) The effect of mode of pollination on Allium species with observation on insects as pollinators. J Apic Res 24(1):62–66

    Article  Google Scholar 

  • Larson BMH, Kevan PG, Inouye DW (2001) Flies and flowers: the taxonomic diversity of anthophiles and pollinators. Can Entomol 133(4):439–465

    Article  Google Scholar 

  • Liebhold A, Bentz B (2011) Insect disturbance and climate change. U.S. Department of Agriculture, Forest Service, Climate Change Resource Center. www.fs.usda.gov/ccrc/topics/insect-disturbance/insect-disturbance

  • Lobell DB, Hammer GL, Chenu K, Zheng B, McLean G, Chapman SC (2015) The shifting influence of drought and heat stress for crops in northeast Australia. Glob Change Biol 21(11):4115–4127

    Google Scholar 

  • Louda SM, Potvin MA (1985) Effect of inflorescence‐feeding insects on the demography and lifetime of a native plant. Ecol 76:229–245

    Google Scholar 

  • Lovett JC, Midgley GF, Barnard P (2005) Climate change and ecology in Africa. Afr J Ecol 43(3):167–169

    Article  Google Scholar 

  • Marcos-Garcia M, Ricarte A, Estela N (2013) An updated hoverfly checklist (Diptera: Syrphidae) of the Mascarene Island of Réunion, France. J Entomol Res Soc 15:59–68

    Google Scholar 

  • Marshall SA (2012) Flies: the natural history and diversity of diptera. Firefly Book, Ontario. 616. ISBN 978-1-77085-100-9

    Google Scholar 

  • Martin R, Sebele L, Koeslag A, Curtis O, Abadi F (2014) Phenological shifts assist colonisation of a novel environment in a range-expanding raptor. Oikos 123:1457–1468

    Article  Google Scholar 

  • Mayes D (2011) Peace Corps Volunteer and Masters International student. Pollinators in Africa: Understanding is the first step to protecting. Zambia 2009–2011. L Ferreira (ed) South African National Biodiversity Institute (SANBI)

    Google Scholar 

  • McCall AC, Irwin RE (2006) Florivory: the intersection of pollination and herbivory. Ecol Lett 9(12):1351–1365

    Google Scholar 

  • Memmott J, Craze PG, Waser NM (2007) Global warming and the disruption of plant–pollinator interactions. Ecol Lett 10:710–717

    Article  Google Scholar 

  • Memmott J, Carvell C, Pywell RF (2010) The potential impact of global warming on the efficacy of field margins sown for the conservation of bumble-bees. Philos Trans R Soc Lond B Biol Sci 365:2071–2079

    Article  Google Scholar 

  • Mengual X, Stahls G, Rojo S (2007) Molecular phylogenetics and evolution molecular phylogeny of Allograpta (Diptera, Syrphidae) reveals diversity of lineages and non-monophyly of phytophagous taxa. Mol Phylogenet Evol 49:25–37. Elsevier

    Google Scholar 

  • Mitra B, Banerjee D (2007) Fly pollinators: assessing their value in biodiversity conservation and food security in India. Rec Zool Surv India 107(Part 1):33–48

    Google Scholar 

  • Motten AF (1986) Pollination ecology of the spring wildflower community of a temperate deciduous forest. Ecol Monogr 56:21–42. https://doi.org/10.2307/2937269

  • Moreira X, Castagneyrol B, Abdala‐Roberts L, Traveset A (2019) A meta‐analysis of herbivore effects on plant attractiveness to pollinators. Ecol 100(6):e0207

    Google Scholar 

  • Mudri-Stojnić S, Andrić A, Józan Z, Vujic A (2012) Pollinator diversity (Hymenoptera and Diptera) in semi-natural habitats in Serbia during summer. Arch Biol Sci 64. https://doi.org/10.2298/ABS1202777S

  • Mudsa A (2013) DPhil thesis. Diversity and Effectiveness of Native Pollinators in Curcurbit Agrosystem of Southern Punjab, Pakistan

    Google Scholar 

  • Neill AR, Puettmann KJ (2013) Managing for adaptive capacity: thinning improves food availability for wildlife and insect pollinators under climate change conditions. Can J For Res 43(5):428–440

    Article  Google Scholar 

  • Nkomo JC, Nyong A, Kulindwa K (2006) The impacts of climate change in Africa. Final draft submitted to the Stern Review on the Economics of Climate Change, 51

    Google Scholar 

  • Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals. Oikos 120(3):321–326. https://doi.org/10.1111/j.1600-0706.2010.18644.x

    Article  Google Scholar 

  • Pellmyr O (1989) The cost of mutualism: interactions between Trollius europaeus and its pollinating parasites. Oecologia 78:53–59

    Article  Google Scholar 

  • Picker M, Griffiths C, Weaving A (2002) Field guide to insects of South Africa. Penguin Random House, Cape Town

    Google Scholar 

  • Potgieter CJ, Edwards TJ (2005) The Stenobasipteron wiedemanni (Diptera, Nemestrinidae) pollination guild in eastern southern Africa. Ann Missouri Bot Gard 254–267

    Google Scholar 

  • Potts SG, Roberts SPM, Dean R (2010a) Declines of managed honey bees and beekeepers in Europe. J Apicult Res 49:15

    Article  Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010b) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25(6):345–353

    Article  Google Scholar 

  • Potts SG, Imperatriz-Fonseca V, Ngo H, Biesmeijer JC, Breeze T, Dicks L, … Aizen MA (2016) Summary for policymakers of the assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) on pollinators, pollination and food production

    Google Scholar 

  • Rader R, Bartomeus I, Garibaldi LA, Garratt MPD, Howlett BG, Winfree R, Cunningham SA, Mayfield MM, Arthur AD, Andersson GKS, Bommarco R, Brittain C, Carvalheiro LG, Chacoff NP, Entling MH, Foully B, Freitas BM, Gemmill-Herren B, Ghazoul J, Griffin SR, Gross CL, Herbertsson L, Herzog F, Hipólito J, Jaggar S, Jauker F, Klein A-M, Kleijn D, Krishnan S, Lemos CQ, Lindström SAM, Mandelik Y, Monteiro VM, Nelson W, Nilsson L, Pattemore DE, de O. Pereira N, Pisanty G, Potts SG, Reemer M, Rundlöf M, Sheffield CS, Scheper J, Schüepp C, Smith HG, Stanley DA, Stout JC, Szentgyörgyi H, Taki H, Vergara CH, Viana BF, Woyciechowski M (2016) Non-bee insects are important contributors to global crop pollination. Proc Natl Acad Sci 113:146–151

    Article  CAS  Google Scholar 

  • Raguso RA (2020) Don’t forget the flies: dipteran diversity and its consequences for floral ecology and evolution. Appl Entomol Zool 55:1–7. https://doi.org/10.1007/s13355-020-00668-9

    Article  Google Scholar 

  • Sakai S, Kato M, Nagainasu H (2000) Artocarpus (Moraceae)- gall midge pollination mutualism mediated by a male-flower parasitic fungus. Am J Bot 87(3):440

    Article  CAS  Google Scholar 

  • Scaven VL, Rafferty NE (2013) Physiological effects of climate warming on flowering plants and insect pollinators and potential consequences for their interactions. Curr Zool 59(3):418–426

    Article  Google Scholar 

  • Schiestl FP, Kirk H, Bigler S, Cozzolino Desurmont GA (2014) Herbivory and floral signalling: phenotypic plasticity and tradeoffs between reproduction and indirect defence. New Phytol 203:257–266

    Google Scholar 

  • Schweiger O, Settele J, Kudrna O, Klotz S, Kühn I (2008) Climate change can cause spatial mismatch of trophically interacting species. Ecology 89(12):372–3479

    Article  Google Scholar 

  • Serdeczny O, Adams S, Baarsch F, Coumou D, Robinson A, Hare W, … Reinhardt J (2017) Climate change impacts in Sub-Saharan Africa: from physical changes to their social repercussions. Reg Environ Chang 17(6):1585–1600

    Google Scholar 

  • Siegfried W (1989) Preservation of species in southern African nature reserves. Oxford University Press, Cape Town

    Google Scholar 

  • Sintayehu DW (2018) Impact of climate change on biodiversity and associated key ecosystem services in Africa: a systematic review. Ecosyst Health Sustain 4(9):225–239

    Article  Google Scholar 

  • Skevington JH, Dang PT (eds) (2002) Exploring the diversity of flies (Diptera). Biodivers 3(4):3–27

    Google Scholar 

  • Smith AA, Chancy WE (2007) A survey of syrphid predators of Nasonovia ribisnigri in organic lettuce on the central coast of California. J Econ Entomol 100(1):39–48

    Article  Google Scholar 

  • Ssymank A, Kearns CA, Pape T, Thompson FC (2008) Pollinating flies (Diptera): a major contribution to plant diversity and agricultural production. Trop Conserv Biodivers 9(1&2):86–89

    Google Scholar 

  • Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, … Midgley PM (2013) Climate change 2013. The physical science basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change-Abstract for decision-makers

    Google Scholar 

  • Tacoli C (2011) Not only climate change: mobility, vulnerability and socio-economic transformations in environmentally fragile areas in Bolivia, Senegal and Tanzania: IIED

    Google Scholar 

  • Terblanche JS, Klok CJ, Krasfur ES, Chown SL (2006) Phenotypic plasticity and geographic variation I thermal tolerance and water loss of the tsetse Glossina pallidipes (Diptera: Glossinidae): implications for distribution modelling. Am J Trop Med Hyg 74(5):786–794

    Article  Google Scholar 

  • Thomas-Cabianca A, Martinez-Sanchez A, Rojo S (2017) Identification keys for the genera of Calliphoridae and Rhiniidae (Diptera: Calyptratae) of the Afrotropical region, 1–15

    Google Scholar 

  • Triplehorn CA, Johnson NF, Borror DJ (2005) Borror and DeLong’s introduction to the study of insects. Thompson Brooks/Cole, Belmont

    Google Scholar 

  • Tsiftsis S, Djordjević V (2020) Modelling sexually deceptive orchid species distributions under future climates: the importance of plant–pollinator interactions. Sci Rep 10(1):1–12

    Article  CAS  Google Scholar 

  • USDA, US Department of Agriculture, North Central Regional Plant Introduction Station 2007. Pollinators at PI. http://www.ars.usda.gov/Main/docs.htm?docid=13442&page=5

  • Van Asch M, Van Tienderen PH, Holleman JM, Visser ME (2007) Predicting adaptation of phenology in response to climate change, an insect herbivore example. Glob Chang Biol 13(8):1596–1604

    Article  Google Scholar 

  • Weiskopf SR, Rubenstein MA, Crozier LG, Gaichas S, Griffis R, Halofsky JE, … Muñoz RC (2020) Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Sci Total Environ 733:137782

    Google Scholar 

  • Whittington AE (1994) Distribution and conservation of Afrotropical Graptomyza Wiedemann, with a new species description (Diptera: Syrphidae: Volucellini). Biodivers Conserv 733:716–733

    Article  Google Scholar 

  • World Bank (2015) Regional dashboard: poverty and equity Sub-Saharan Africa. http://povertydata.worldbank.org/poverty/region/SSA. Accessed 20 February 2021

  • Wiegmann BM, Trautwein MD, Winkler IS, Barr NB, Kim JW, Lambkin C, Bertone MA, Cassel BK, Bayless KM, Heimberg AM, Wheeler BM (2011) Episodic radiations in the fly tree of life. Proc Natl Acad Sci U S A 108:5690–5695. https://doi.org/10.1073/pnas.1012675108

    Article  Google Scholar 

  • Zaragoza‐Trello C, Vilà M, Botías C, Bartomeus I (2021) Interactions among global change pressures act in a non‐additive way on bumblebee individuals and colonies. Funct Ecol 35(2):420–434

    Google Scholar 

  • Zust T, Agrawal AA (2017) Trade-offs between plant growth and defense against insect herbivory: an emerging mechanistic synthesis. Ann Rev Plant Biol 68:513–534

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annabel Banda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Banda, A., Madamba, D.C., Gumbo, T., Chanyandura, A. (2021). Climate Change Extent and Dipteran Pollinators Diversity in Africa. In: Luetz, J.M., Ayal, D. (eds) Handbook of Climate Change Management. Springer, Cham. https://doi.org/10.1007/978-3-030-57281-5_306

Download citation

Publish with us

Policies and ethics