Skip to main content

Arc Routing Problems

  • Living reference work entry
  • First Online:
Encyclopedia of Optimization

Introduction

Arc routing problems or ARPs are a special kind of vehicle routing problem in which it is the edges or arcs of the network that require service, rather than the nodes. The literature on ARPs is vast, and there are hundreds of academic articles on the subject, along with two excellent textbooks [11, 15].

The reason that ARPs have attracted so much attention is that many important problems, arising in real-world applications, can be naturally modelled as ARPs. Typical application areas include postal delivery, meter reading, road sweeping, refuse collection, snow removal, salt spreading, and the planning of school bus routes.

ARPs have an interesting historical connection to the origins of graph theory. In the 18th century, the mathematician Leonhard Euler came across the problem of the “Seven Bridges of Königsberg.” Königsberg, now called Kaliningrad, was a small city in Prussia. Running through Königsberg was the Pregel River, in which there were two islands. The islands...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bach L, Lysgaard J, Wøhlk S (2016) A branch-and-cut-and-price algorithm for the mixed capacitated general routing problem. Networks 68:161–184

    Article  MathSciNet  Google Scholar 

  2. Belenguer JM (2023) Benchmark CARP instances, at https://www.uv.es/belengue/carp.html, Accessed: Dec 2023

  3. Belenguer JM, Benavent E, Lacomme P, Prins C (2006) Lower and upper bounds for the mixed capacitated arc routing problem. Comput Oper Res 33:3363–3383

    Article  MathSciNet  Google Scholar 

  4. Benavent E, Corberán A, Piñana E, Plana I, Sanchis JM (2005) New heuristic algorithms for the windy rural postman problem. Comput Oper Res 32:3111–3128

    Article  Google Scholar 

  5. Bodin LD, Kursh SJ (1978) A computer-assisted system for the routing and scheduling of street sweepers. Oper Res 26:525–537

    Article  Google Scholar 

  6. Boyacı B, Dang TH, Letchford AN (2023) Improving a constructive heuristic for the general routing problem. Networks 81:93–106

    Article  MathSciNet  Google Scholar 

  7. Ciancio C, Laganá D, Vocaturo F (2018) Branch-price-and-cut for the mixed capacitated general routing problem with time windows. Eur J Oper Res 267:187–199

    Article  MathSciNet  Google Scholar 

  8. Christofides N (1973) The optimum traversal of a graph. Omega 1:719–732

    Article  Google Scholar 

  9. Christofides N, Campos V, Corberán A, Mota E (1986) An algorithm for the rural postman problem on a directed graph. Math Program Study 26:155–166

    Article  MathSciNet  Google Scholar 

  10. Corberán A, Eglese RW, Hasle G, Plana I, Sanchis JM (2021) Arc routing problems: a review of the past, present, and future. Networks 77:88–115

    Article  MathSciNet  Google Scholar 

  11. Corberán A, Laporte G (eds) (2015) Arc Routing: problems, methods, and applications. SIAM, Philadelphia, PA

    Google Scholar 

  12. Corberán A, Letchford AN, Sanchis JM (2001) A cutting-plane algorithm for the general routing problem. Math Program 90:291–316

    Article  MathSciNet  Google Scholar 

  13. Corberán A, Martí R, Romero A (2000) Heuristics for the mixed rural postman problem. Comput Oper Res 27:183–203

    Article  MathSciNet  Google Scholar 

  14. Corberán A, Plana I, Sanchis JM (2007) A branch & cut algorithm for the windy general routing problem and special cases. Networks 49: 245–257

    Article  MathSciNet  Google Scholar 

  15. Dror M (ed) (2000) Arc routing: theory, solutions and applications. Kluwer, Dordrecht

    Google Scholar 

  16. Edmonds J (1963) The Chinese postman problem. Oper Res 13:B73–B77

    Google Scholar 

  17. Edmonds J, Johnson EL (1973) Matchings, Euler tours and the Chinese postman. Math Program 5:88–124

    Article  MathSciNet  Google Scholar 

  18. Eglese RW (1994) Routeing winter gritting vehicles. Discr Appl Math 48:231–244

    Article  Google Scholar 

  19. Euler L (1741) Solutio problematis ad geometriam situs pertinentis. Comment Acad Sci U Petrop 8:128–140

    Google Scholar 

  20. Frederickson GN, Hecht MS, Kim, CE (1978) Approximation algorithms for some routing problems. SIAM J Comput 7: 178–193

    Article  MathSciNet  Google Scholar 

  21. Gendreau M, Potvin JY (eds) (2019) Handbook of Metaheuristics, 3rd edn. Springer, Cham

    Google Scholar 

  22. Ghiani G, Laporte G (2000) A branch-and-cut algorithm for the undirected rural postman problem. Math Program 87:467–481

    Article  MathSciNet  Google Scholar 

  23. Golden BL and Wong RT (1981) Capacitated arc routing problems. Networks 11:305–315

    Article  MathSciNet  Google Scholar 

  24. Guan M (1962) Graphic programming using odd or even points. Chinese Math 1:237–277

    MathSciNet  Google Scholar 

  25. Irnich S (2023) Benchmark ARP instances, at https://logistik.bwl.uni-mainz.de/forschung/benchmarks/, Accessed: Dec 2023

  26. Jansen K (1992) An approximation algorithm for the general routing problem. Inf Process Lett 41:333–339

    Article  MathSciNet  Google Scholar 

  27. Jansen K (1993) Bounds for the general capacitated routing problem. Networks 23:165–173

    Article  MathSciNet  Google Scholar 

  28. Lenstra JK, Rinnooy Kan AHG (1976) On general routing problems. Networks 6:273–280

    Article  MathSciNet  Google Scholar 

  29. Minieka E (1979) The Chinese postman problem for mixed networks. Manag Sci 25:643–648

    Article  MathSciNet  Google Scholar 

  30. Mourão M, Pinto LS (2017) An updated annotated bibliography on arc routing problems. Networks 70:144–194

    Article  MathSciNet  Google Scholar 

  31. Mullaseril P, Dror M, Leung J (1997) Split-delivery routeing heuristics in livestock feed distribution. J Oper Res Soc 48:107–116

    Article  Google Scholar 

  32. Orloff CS (1974) A fundamental problem in vehicle routing. Networks 4:35–64

    Article  MathSciNet  Google Scholar 

  33. Papadimitriou CH (1976) On the complexity of edge traversing. J ACM 23:544–554

    Article  MathSciNet  Google Scholar 

  34. Pecin D, Uchoa E (2019) Comparative analysis of capacitated arc routing formulations for designing a new branch-cut-and-price algorithm. Transp Sci 53:1673–1694

    Article  Google Scholar 

  35. Raghavachari B, Veerasamy J (1999) A 3/2-approximation algorithm for the mixed postman problem. SIAM J Discr Math 12:425–433

    Article  MathSciNet  Google Scholar 

  36. Raghavachari B, Veerasamy J (1999) Approximation algorithms for the asymmetric postman problem. In: Charikar M (ed) Proceedings of SODA’99. SIAM, Philadelphia, PA, pp 734–741

    Google Scholar 

  37. Wøhlk S (2023) Benchmark ARP instances, at http://optimization.dk/index.html, Accessed: Dec 2023

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam N. Letchford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Eglese, R.W., Letchford, A.N. (2024). Arc Routing Problems. In: Pardalos, P.M., Prokopyev, O.A. (eds) Encyclopedia of Optimization. Springer, Cham. https://doi.org/10.1007/978-3-030-54621-2_901-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54621-2_901-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54621-2

  • Online ISBN: 978-3-030-54621-2

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics