Skip to main content

Water Pollution and Advanced Water Treatment Technologies

  • Living reference work entry
  • First Online:
The Palgrave Encyclopedia of Urban and Regional Futures

Synonyms

Wastewater processing; Wastewater recycling; Water purification

Definitions

  • Water treatment – Treating wastewater to make it suitable for reuse, using chemical, physical, or biological methods

  • Advanced oxidation processes (AOPs) – Processes that involve generation of oxidizing species to chemically destroy pollutants

  • Micropollutants – Water pollutants with concentrations of several ng/L to μg/L, usually pharmaceuticals, personal care products, pesticides, and herbicides

  • Microplastics – Pieces of plastics with length less than 5 mm, these are emerging water pollutants in urban settings

Introduction

The demand for safe potable water is growing exponentially due to the rapid growth of the global population. The United Nations sustainable development goal (SDG) 6 has set the target to provide clean water access to everyone by 2030 (UN 2018). However, supplying clean water to the population that is currently deprived of access to safe potable water remains a global challenge....

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bayat, A., Aghamiri, S. F., Moheb, A., & Vakili-Nezhaad, G. R. (2005). Oil spill cleanup from sea water by sorbent materials. Chemical Engineering & Technology: Industrial Chemistry-Plant Equipment-Process Engineering-Biotechnology, 28(12), 1525–1528.

    CAS  Google Scholar 

  • Beck, M. B., & Walker, R. V. (2013). On water security, sustainability, and the water-food-energy-climate nexus. Frontiers of Environmental Science & Engineering, 7(5), 626–639.

    Google Scholar 

  • Boano, F., Caruso, A., Costamagna, E., Ridolfi, L., Fiore, S., Demichelis, F., … Masi, F. (2020). A review of nature-based solutions for greywater treatment: Applications, hydraulic design, and environmental benefits. Science of the Total Environment, 711, 134731.

    Google Scholar 

  • Boorman, G. A. (1999). Drinking water disinfection byproducts: Review and approach to toxicity evaluation. Environmental Health Perspectives, 107(Suppl 1), 207–217.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bratby, J. (2016). Coagulation and flocculation in water and wastewater treatment. IWA Publishing.

    Google Scholar 

  • Brears, R. C. (2020a). Circular water economy. In The Palgrave encyclopedia of urban and regional futures. Springer International Publishing. https://doi.org/10.1007/978-3-030-51812-7_49-1.

  • Brears, R. C. (2020b). Water-smart cities. In The Palgrave encyclopedia of urban and regional futures. Springer International Publishing. https://doi.org/10.1007/978-3-030-51812-7_44-1.

  • Cao, Y., & Li, X. (2014). Adsorption of graphene for the removal of inorganic pollutants in water purification: A review. Adsorption, 20(5-6), 713–727.

    CAS  Google Scholar 

  • Chong, M. F. (2012). Direct flocculation process for wastewater treatment. In Advances in water treatment and pollution prevention (pp. 201–230). Springer.

    Google Scholar 

  • Chong, M. N., Jin, B., Chow, C. W., & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: A review. Water Research, 44(10), 2997–3027.

    CAS  PubMed  Google Scholar 

  • Deng, Y., & Zhao, R. (2015). Advanced oxidation processes (AOPs) in wastewater treatment. Current Pollution Reports, 1(3), 167–176.

    CAS  Google Scholar 

  • Di, M., & Wang, J. (2018). Microplastics in surface waters and sediments of the Three Gorges Reservoir, China. Science of the Total Environment, 616, 1620–1627. 

    Google Scholar 

  • Drinan, J., Drinan, J. E., & Spellman, F. (2000). Water and wastewater treatment: A guide for the nonengineering professional. CRC Press.

    Google Scholar 

  • Dushenkov, V., Kumar, P. N., Motto, H., & Raskin, I. (1995). Rhizofiltration: The use of plants to remove heavy metals from aqueous streams. Environmental Science & Technology, 29(5), 1239–1245.

    ADS  CAS  Google Scholar 

  • Dwivedi, S., & Vats, T. (2013). Remediation of dye containing wastewater using viable algal biomass. In Green materials for sustainable water remediation and treatment (pp. 212–228). Cambridge, UK: RSC Green Chemistry Series.

    Google Scholar 

  • Endo, A., Tsurita, I., Burnett, K., & Orencio, P. M. (2017). A review of the current state of research on the water, energy, and food nexus. Journal of Hydrology: Regional Studies, 11, 20–30.

    Google Scholar 

  • FAO. (2021). Indicator 6.4.2- Level of water stress. Food and Agricultural Organisation of United Nations. Retrieved 26 Oct 2021 from https://www.fao.org/sustainable-development-goals/indicators/642/en/

  • Franke, V., Schäfers, M. D., Lindberg, J. J., & Ahrens, L. (2019). Removal of per-and polyfluoroalkyl substances (PFASs) from tap water using heterogeneously catalyzed ozonation. Environmental Science: Water Research & Technology, 5(11), 1887–1896.

    CAS  Google Scholar 

  • Garcia-Segura, S., Ocon, J. D., & Chong, M. N. (2018). Electrochemical oxidation remediation of real wastewater effluents – A review. Process Safety and Environmental Protection, 113, 48–67. 

    Google Scholar 

  • Gasperi, J., Wright, S. L., Dris, R., Collard, F., Mandin, C., Guerrouache, M., … Tassin, B. (2018). Microplastics in air: Are we breathing it in? Current Opinion in Environmental Science & Health, 1, 1–5.

    Google Scholar 

  • Gebre, G., & Van Rooijen, D. J. (2009). Urban water pollution and irrigated vegetable farming in Addis Ababa. In: Shaw, R.J. (ed). Water, sanitation and hygiene - Sustainable development and multisectoral approaches: Proceedings of the 34th WEDC International Conference, Addis Ababa, Ethiopia, 18-22 May 2009. https://repository.lboro.ac.uk/articles/conference_contribution/Urban_water_pollution_and_irrigated_vegetable_farming_in_Addis_Ababa_/9585773

  • Gupta, V. K., Ali, I., Saleh, T. A., Nayak, A., & Agarwal, S. (2012). Chemical treatment technologies for waste-water recycling – An overview. RSC Advances, 2(16), 6380–6388.

    ADS  CAS  Google Scholar 

  • Huber, K. (2018). Resilience strategies for drought. https://www.c2es.org/document/resilience-strategies-for-drought/

  • Jefferson, B., & Jarvis, P. R. (2006). Practical application of fractal dimension: Theory and applications. In G. Newcombe & D. Dixon (Eds.), Interface science in drinking water treatment: Theory and applications. Academic.

    Google Scholar 

  • Joseph, L., Jun, B.-M., Jang, M., Park, C. M., Muñoz-Senmache, J. C., Hernández-Maldonado, A. J., … Yoon, Y. (2019). Removal of contaminants of emerging concern by metal-organic framework nanoadsorbents: A review. Chemical Engineering Journal, 369, 928–946.

    Google Scholar 

  • Khaydarov, R., & Gapurova, O. (2009). Application of carbon nanoparticles for water treatment. In Water treatment technologies for the removal of high-toxicity pollutants (pp. 253–258). Springer.

    Google Scholar 

  • Laffoley, D., Baxter, J. M., Amon, D. J., Claudet, J., Downs, C. A., Earle, S. A., … Levin, L. A. (2021). The forgotten ocean: Why COP26 must call for vastly greater ambition and urgency to address ocean change. In Aquatic conservation: Marine and freshwater ecosystems, 32 (1), 217–228. Wiley, https://doi.org/10.1002/aqc.3751

  • Lattemann, S., & Höpner, T. (2008). Environmental impact and impact assessment of seawater desalination. Desalination, 220(1–3), 1–15.

    CAS  Google Scholar 

  • Lee, K., & Jepson, W. (2021). Environmental impact of desalination: A systematic review of life cycle assessment. Desalination, 509, 115066.

    CAS  Google Scholar 

  • Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A., & Polonio, J. C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3(2), 275–290. https://doi.org/10.1016/j.biori.2019.09.001.

    Article  Google Scholar 

  • Lim, X. (2021). Microplastics are everywhere – But are they harmful? Nature, 593, 22-25.

    Google Scholar 

  • MacAllister, D. J., MacDonald, A., Kebede, S., Godfrey, S., & Calow, R. (2020). Comparative performance of rural water supplies during drought. Nature Communications, 11(1), 1–13.

    Google Scholar 

  • Malato, S., Fernández-Ibáñez, P., Maldonado, M. I., Blanco, J., & Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 147(1), 1–59.

    CAS  Google Scholar 

  • Martínez-Huitle, C. A., & Panizza, M. (2018). Electrochemical oxidation of organic pollutants for wastewater treatment. Current Opinion in Electrochemistry, 11, 62–71. 

    Google Scholar 

  • Marugán, J., Giannakis, S., McGuigan, K. G., & Polo-López, I. (2020). Solar disinfection as a water treatment technology. In W. Leal Filho, A. M. Azul, L. Brandli, A. Lange Salvia, & T. Wall (Eds.), Clean water and sanitation (pp. 1–16). Springer International Publishing. https://doi.org/10.1007/978-3-319-70061-8_125-1.

    Chapter  Google Scholar 

  • McGrane, S. J. (2016). Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: A review. Hydrological Sciences Journal, 61(13), 2295–2311.

    Google Scholar 

  • Meegoda, J. N., Kewalramani, J. A., Li, B., & Marsh, R. W. (2020). A review of the applications, environmental release, and remediation technologies of per-and polyfluoroalkyl substances. International Journal of Environmental Research and Public Health, 17(21), 8117.

    CAS  PubMed Central  Google Scholar 

  • Meierjohann, A., Brozinski, J.-M., & Kronberg, L. (2016). Seasonal variation of pharmaceutical concentrations in a river/lake system in Eastern Finland. Environmental Science: Processes & Impacts, 18(3), 342–349.

    CAS  Google Scholar 

  • Montiel, A. (1983). Municipal drinking water treatment procedures for taste and odour abatement – A review. Water Science and Technology, 15(6–7), 279–289.

    CAS  Google Scholar 

  • Mudhoo, A. (2012). Microwave-assisted organic pollutants degradation. In Advances in water treatment and pollution prevention (pp. 177–200). Springer.

    Google Scholar 

  • Mulay, M. R., & Martsinovich, N. (2021). TiO2 photocatalysts for degradation of micropollutants in water. In W. Leal Filho, A. M. Azul, L. Brandli, A. Lange Salvia, & T. Wall (Eds.), Clean water and sanitation (pp. 1–19). Springer International Publishing. https://doi.org/10.1007/978-3-319-70061-8_194-1.

    Chapter  Google Scholar 

  • Mutiyar, P. K., Gupta, S. K., & Mittal, A. K. (2018). Fate of pharmaceutical active compounds (PhACs) from River Yamuna, India: An ecotoxicological risk assessment approach. Ecotoxicology and Environmental Safety, 150, 297–304. https://doi.org/10.1016/j.ecoenv.2017.12.041.

    Article  CAS  PubMed  Google Scholar 

  • Neppolian, B., Ashokkumar, M., Tudela, I., & González-García, J. (2012). Hybrid Sonochemical treatment of contaminated wastewater: Sonophotochemical and sonoelectrochemical approaches. Part I: Description of the techniques. In Advances in water treatment and pollution prevention (pp. 267–302). Springer.

    Google Scholar 

  • Oller, I., Malato, S., & Sánchez-Pérez, J. (2011). Combination of advanced oxidation processes and biological treatments for wastewater decontamination – A review. Science of the Total Environment, 409(20), 4141–4166.

    ADS  CAS  Google Scholar 

  • Osorio, V., Larrañaga, A., Aceña, J., Pérez, S., & Barceló, D. (2016). Concentration and risk of pharmaceuticals in freshwater systems are related to the population density and the livestock units in Iberian Rivers. Science of the Total Environment, 540, 267–277.

    ADS  CAS  Google Scholar 

  • Parsons, S. A., & Jefferson, B. (2006). Introduction to potable water treatment processes. Wiley Online Library.

    Google Scholar 

  • Pérez, S., & Barceló, D. (2008). Advances in the analysis of pharmaceuticals in the aquatic environment. In D. S. Aga (Ed.), Fate of pharmaceuticals in the environment and water treatment systems. Boca Raton: CRC Press.

    Google Scholar 

  • Ridal, J., Brownlee, B., McKenna, G., & Levac, N. (2001). Removal of taste and odour compounds by conventional granular activated carbon filtration. Water Quality Research Journal, 36(1), 43–54.

    CAS  Google Scholar 

  • Salimi, M., Esrafili, A., Gholami, M., Jafari, A. J., Kalantary, R. R., Farzadkia, M., … Sobhi, H. R. (2017). Contaminants of emerging concern: A review of new approach in AOP technologies. Environmental Monitoring and Assessment, 189(8), 414.

    Google Scholar 

  • Sánchez-Martín, J., & Beltrán-Heredia, J. (2012). Nature is the answer: Water and wastewater treatment by new natural-based agents. In Advances in water treatment and pollution prevention (pp. 337–375). Springer.

    Google Scholar 

  • Schröder, P., Helmreich, B., Škrbić, B., Carballa, M., Papa, M., Pastore, C., … Molinos, M. (2016). Status of hormones and painkillers in wastewater effluents across several European states – Considerations for the EU watch list concerning estradiols and diclofenac. Environmental Science and Pollution Research, 23(13), 12835–12866.

    Google Scholar 

  • Sharma, S. K., Sanghi, R., & Mudhoo, A. (2012). Green practices to save our precious “water resource”. In Advances in water treatment and pollution prevention (pp. 1–36). Springer.

    Google Scholar 

  • Sharma, R. K., Alok, A., Manab, D., & Aditi, P. (2013). Green materials for sustainable remediation of metals in water. In A. Mishra & J. H. Clark (Eds.), Green materials for sustainable water remediation and treatment (p. 11). RSC Publishing.

    Google Scholar 

  • Shen, M., Song, B., Zhu, Y., Zeng, G., Zhang, Y., Yang, Y., … Yi, H. (2020). Removal of microplastics via drinking water treatment: Current knowledge and future directions. Chemosphere, 251, 126612.

    Google Scholar 

  • Singh, R., & Hankins, N. P. (2016). Introduction to membrane processes for water treatment. In R. Singh & N. P. Hankins (Eds.), Emerging membrane technology for sustainable water treatment (pp. 15–52). Elsevier.

    Google Scholar 

  • Srinivasan, R. (2013). Role of plant biomass in heavy metal treatment of contaminated water. In A. Mishra & J. H. Clark (Eds.), Green materials for sustainable water remediation and treatment (p. 30). RSC Publishing.

    Google Scholar 

  • Stasinakis, A. S., & Gatidou, G. (2010). Micropollutants and aquatic environment. In J. Virkutyte, R. Varma, & V. Jegatheesan (Eds.), Treatment of micropollutants in water and wastewater. IWA Publishing.

    Google Scholar 

  • Sun, J., Ji, Y., Cai, F., & Li, J. (2012). Heavy metal removal through biosorptive pathways. In Advances in water treatment and pollution prevention (pp. 95–145). Springer.

    Google Scholar 

  • Talbot, C. J., Bennett, E. M., Cassell, K., Hanes, D. M., Minor, E. C., Paerl, H., … Xenopoulos, M. A. (2018). The impact of flooding on aquatic ecosystem services. Biogeochemistry, 141(3), 439–461.

    Google Scholar 

  • Teng, T. T., & Low, L. W. (2012). Removal of dyes and pigments from industrial effluents. In Advances in water treatment and pollution prevention (pp. 65–93). Springer.

    Google Scholar 

  • Torres, R. A., Pétrier, C., Combet, E., Moulet, F., & Pulgarin, C. (2007). Bisphenol a mineralization by integrated ultrasound-UV-iron (II) treatment. Environmental Science & Technology, 41(1), 297–302.

    ADS  CAS  Google Scholar 

  • UN. (2018). SDG 6 synthesis report 2018 on water and sanitation. United Nations. https://doi.org/10.18356/e8fc060b-en.

    Book  Google Scholar 

  • UN-DESA. (2018). 68% of the world population projected to live in urban areas by 2050, says UN. United Nations Department of Economic and Social Affairs. Retrieved 26 Oct 2021 from https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html

  • UNESCO, U.-W. (2020). United Nations World Water development report 2020. UNESCO.

    Google Scholar 

  • UN-Water. (2015). Compendium of water quality regulatory frameworks: Which water for which use? UN-Water.

    Google Scholar 

  • UN-Water. (2021). Summary Progress Update 2021 – SDG 6 – water and sanitation for all. UN-Water.

    Google Scholar 

  • Václavíková, M., Vitale, K., Gallios, G. P., & Ivanicová, L. (2009). Water treatment technologies for the removal of high-toxity pollutants. Springer.

    Google Scholar 

  • Vandevivere, P. C., Bianchi, R., & Verstraete, W. (1998). Treatment and reuse of wastewater from the textile wet-processing industry: Review of emerging technologies. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental AND Clean Technology, 72(4), 289–302.

    CAS  Google Scholar 

  • Wang, S., & Peng, Y. (2010). Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal, 156(1), 11–24.

    MathSciNet  CAS  Google Scholar 

  • WHO. (2017). Guidelines for drinking-water quality: Fourth edition incorporating the first addendum. WHO.

    Google Scholar 

  • WHO. (2019). Drinking water. World Health Organisation. Retrieved 26 Oct 2021 from https://www.who.int/news-room/fact-sheets/detail/drinking-water

  • WWF. (2019). Drought risk: The global thirst for water in the era of climate crisis. WWF Report. https://www.wwf.de/fileadmin/fm-wwf/Publikationen-PDF/WWF_DroughtRisk_EN_WEB.pdf

  • Xue, Z., Cao, Y., Liu, N., Feng, L., & Jiang, L. (2014). Special wettable materials for oil/water separation. Journal of Materials Chemistry A, 2(8), 2445–2460.

    CAS  Google Scholar 

  • Zoschke, K., Dietrich, N., Börnick, H., & Worch, E. (2012). UV-based advanced oxidation processes for the treatment of odour compounds: Efficiency and by-product formation. Water Research, 46(16), 5365–5373. 

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Grantham Centre for Sustainable Futures for funding, training, and scholarship for MRM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Martsinovich .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mulay, M.R., Martsinovich, N. (2022). Water Pollution and Advanced Water Treatment Technologies. In: The Palgrave Encyclopedia of Urban and Regional Futures. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-51812-7_189-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-51812-7_189-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Palgrave Macmillan, Cham

  • Print ISBN: 978-3-030-51812-7

  • Online ISBN: 978-3-030-51812-7

  • eBook Packages: Springer Reference Social SciencesReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics