Skip to main content

Network Science and e-Tourism

  • Reference work entry
  • First Online:
Handbook of e-Tourism
  • 2215 Accesses

Abstract

This chapter provides an introduction to network science and its applications within e-tourism research. In the first part, an overview of network science as a continuously growing scientific field is given. Network science provides various concepts and methods for the analysis of the structure and dynamics of all kinds of networks such as social networks, information networks, and economic networks. Afterward, popular software and tools to model, analyze, and visualize network data are briefly discussed. In the third part, an overview of research in e-tourism that utilized network science methods is provided. In existing studies, different types of networks were constructed and analyzed, in particular networks of travelers, networks of tourism websites, networks capturing behavioral patterns of travelers, or text networks of travel-related posts. Furthermore, it is briefly discussed, which data sources are typically used in the literature. Finally, the main points are summarized and conclusions are drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akbar Z, Toma I, Fensel D (2016) Optimizing the publication flow of touristic service providers on multiple social media channels. In: Information and communication technologies in tourism 2016. Springer, pp 211–224

    Google Scholar 

  • Baggio R (2017) Network science and tourism–the state of the art. Tour Rev 72:120–131

    Article  Google Scholar 

  • Baggio R, Corigliano MA (2009) On the importance of hyperlinks: a network science approach. In: Information and communication technologies in tourism 2009, pp 309–318

    Google Scholar 

  • Baggio R, Del Chiappa G (2013) Tourism destinations as digital business ecosystems. In: Information and communication technologies in tourism 2013. Springer, pp 183–194

    Google Scholar 

  • Baggio R, Fuchs M (2018) Network science and e-tourism

    Google Scholar 

  • Baggio R, Corigliano MA, Tallinucci V (2007) The websites of a tourism destination: a network analysis. In: ENTER, pp 279–288

    Google Scholar 

  • Barabási AL (2013) Network science. Philos Trans R Soc A Math Phys Eng Sci 371(1987):20120375

    Article  Google Scholar 

  • Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. In: Third international AAAI conference on weblogs and social media

    Google Scholar 

  • Casanueva C, Gallego Á, García-Sánchez MR (2016) Social network analysis in tourism. Current Issues Tour 19(12):1190–1209

    Article  Google Scholar 

  • Cheng A, Ren G, Hong T, Nam K, Koo C (2019) An exploratory analysis of travel-related wechat mini program usage: affordance theory perspective. In: Information and communication technologies in tourism 2019. Springer, pp 333–343

    Google Scholar 

  • Csardi G, Nepusz T (2006) The igraph software package for complex network research. InterJournal Complex Systems, 1695. https://igraph.org

  • Delic A, Masthoff J, Neidhardt J, Werthner H (2018) How to use social relationships in group recommenders: empirical evidence. In: Proceedings of the 26th conference on user modeling, adaptation and personalization, pp 121–129

    Google Scholar 

  • Easley D, Kleinberg J et al (2012) Networks, crowds, and markets. Cambridge Books. New York

    Google Scholar 

  • Hagberg A, Swart P, Chult DS (2008) Exploring network structure, dynamics, and function using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos

    Google Scholar 

  • Hamilton WL (2020) Graph representation learning. Synth Lect Artif Intell Mach Learn 14(3): 1–159

    Google Scholar 

  • Hansen D, Shneiderman B, Smith MA (2010) Analyzing social media networks with NodeXL: insights from a connected world. Morgan Kaufmann, Amsterdam

    Google Scholar 

  • Inversini A, Sage R, Williams N, Buhalis D (2015) The social impact of events in social media conversation. In: Information and communication technologies in tourism 2015. Springer, pp 283–294

    Google Scholar 

  • Li Y, Fu K, Wang Z, Shahabi C, Ye J, Liu Y (2018) Multi-task representation learning for travel time estimation. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, pp 1695–1704

    Google Scholar 

  • Marchiori E, Casnati F, Cantoni L (2016) The role of destination in hotels’ online communications: a bottom-up approach. In: Information and communication technologies in tourism 2016. Springer, pp 113–125

    Google Scholar 

  • Neidhardt J, Werthner H (2018) It and tourism: still a hot topic, but do not forget it. Inf Technol Tour 20(1–4):1–7

    Google Scholar 

  • Neidhardt J, Rxxxomluxxxmmele N, Werthner H (2016) Can we predict your sentiments by listening to your peers? In: Information and communication technologies in tourism 2016. Springer, pp 593–603

    Google Scholar 

  • Newman M (2018) Networks. Oxford University Press, Oxford

    Book  Google Scholar 

  • Page L, Brin S, Motwani R, Winograd T (1999) The pagerank citation ranking: bringing order to the web. Technical report, Stanford InfoLab

    Google Scholar 

  • Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L et al (2019) Pytorch: an imperative style, high-performance deep learning library. Adv Neural Inf Process Syst 32:8026–8037

    Google Scholar 

  • Peixoto TP (2014) The graph-tool python library. figshare. https://doi.org/10.6084/m9.figshare.1164194. http://figshare.com/articles/graph_tool/1164194

  • Piazzi R, Baggio R, Neidhardt J, Werthner H (2011) Destinations and the web: a network analysis view. Inf Technol Tour 13(3):215–228

    Article  Google Scholar 

  • Piazzi R, Baggio R, Neidhardt J, Werthner H (2012) Network analysis of the austrian etourism web. In: Information and communication technologies in tourism 2012. Springer, pp 356–367

    Google Scholar 

  • R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

    Google Scholar 

  • Stienmetz JL (2018) Deconstructing visitor experiences: structure and sentiment. In: Information and communication technologies in tourism 2018. Springer, pp 489–500

    Google Scholar 

  • Stienmetz JL, Fesenmaier DR (2014) Analysing the traveller activities network for strategic design: a case study of baltimore, md. In: Information and communication technologies in tourism 2014. Springer, pp 453–465

    Google Scholar 

  • Stienmetz JL, Fesenmaier DR (2017) Structural implications of destination value system networks. In: Information and communication technologies in tourism 2017. Springer, pp 159–171

    Google Scholar 

  • Tiropanis T, Hall W, Crowcroft J, Contractor N, Tassiulas L (2015) Network science, web science, and internet science. Commun ACM 58(8):76–82

    Article  Google Scholar 

  • Van Rossum G, Drake FL (2009) Python 3 reference manual. CreateSpace, Scotts Valley

    Google Scholar 

  • Vespignani A (2018) Twenty years of network science

    Google Scholar 

  • Wasserman S, Faust K et al (1994) Social network analysis: methods and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Werthner H, Klein S et al (1999) Information technology and tourism: a challenging ralationship. Springer, Wien

    Book  Google Scholar 

  • Werthner H, Alzua-Sorzabal A, Cantoni L, Dickinger A, Gretzel U, Jannach D, Neidhardt J, Pröll B, Ricci F, Scaglione M et al (2015) Future research issues in it and tourism. Inf Technol Tour 15(1):1–15

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Neidhardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Neidhardt, J. (2022). Network Science and e-Tourism. In: Xiang, Z., Fuchs, M., Gretzel, U., Höpken, W. (eds) Handbook of e-Tourism. Springer, Cham. https://doi.org/10.1007/978-3-030-48652-5_33

Download citation

Publish with us

Policies and ethics