Skip to main content

Image Processing 2D/3D with Emphasis on Image Segmentation

  • Living reference work entry
  • First Online:
Handbook of Nondestructive Evaluation 4.0

Abstract

This chapter highlights the application of image processing for automated analysis of images generated by reconstructive imaging techniques (CT, MRI). It is shown that, in addition to the pure image information, contextual knowledge about the imaged structures as well as knowledge about acquisition- or reconstruction-related artifacts is always necessary in order to obtain qualitatively good results. The consideration of this contextual information, however, is complicated in the classical way and is rarely directly transferable to modified questions. The application of deep neural networks to such questions offers a great potential. This is explained, demonstrated, and discussed using the semantic segmentation of image data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–5. PMID 22930834.

    Article  CAS  Google Scholar 

  2. Creuz A, 3D-dimensionelles Messen im μm-Bereich: Möglichkeiten und Grenzen der Nanofokus-Tomographie zur korrekten Geometrieermittlung von Dieselinjektoren. Bachelor thesis, Beuth University for Applied Sciences; 2015.

    Google Scholar 

  3. Hubel D, Wiesel T. Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex. J Physiol. 1962;160:106–54.

    Article  CAS  Google Scholar 

  4. LeCun Y, Haffner P, Bottou L, Bengio Y. Object recognition with gradient-based learning. In: Shape, contour and grouping in computer vision. Berlin/Heidelberg: Springer; 1999. p. 319–45.

    Chapter  Google Scholar 

  5. Badrinarayanan V, Handa A, Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for robust semantic pixel-wise labeling. CoRR; 2015.

    Google Scholar 

  6. Badrinarayanan V, Kendall A, Cipolla R. Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–95.

    Article  Google Scholar 

  7. Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd international conference on machine learning, vol. 37; 2015. p. 448–56.

    Google Scholar 

  8. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention (MICCAI), vol. 9351. Springer; 2015. p. 234–41.

    Google Scholar 

  9. Chu C, Belavy DL, Armbrecht G, Bansmann M, Felsenberg D, Zheng G. Annotated T2-weighted MR images of the lower spine. Zenodo; 2015.

    Google Scholar 

  10. Dumoulin V, Visin F. A guide to convolution arithmetic for deep learning, arXiv; 2018.

    Google Scholar 

  11. Jegou S, Vazquez D, Romero A, Bengio Y. The one hundred layers tiramisu: fully convolutional densenets for semantic segmentation. In: IEEE conference on computer vision and pattern recognition workshops (CVPRW); 2017. p. 1175–83

    Google Scholar 

  12. Cicek O, Abdulkdair A, Lienkamp SS, Brox T, Ronneberger O. 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Medical image computing and computer-assisted intervention (MICCAI). Springer International Publishing; 2016. p. 424–32.

    Google Scholar 

  13. Zhao W, Jiang D, Queralta J, Westerlund T. MSS U-Net: 3D segmentation of kidneys and tumors from CT images with a multi-scale supervised U-Net. Inform Med Unlocked. 2020;19:100357.

    Article  Google Scholar 

  14. Fang Q, Ibarra-Castanedo C, Maldague X. Automatic defects segmentation and identification by deep learning algorithm with pulsed thermography: synthetic and experimental data. Big Data Cogn Comput. 2021;5(1):9.

    Article  Google Scholar 

  15. He K, Gkioxari G, Dollar P, Girshick R. Mask R-CNN. In: Proceedings of the IEEE international conference on computer vision, Venice; 2017. p. 2961–9

    Google Scholar 

  16. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: visual explanations from deep networks via gradient-based localization. In: 2017 IEEE international conference on computer vision (ICCV); 2017. p. 618–26.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas H. J. Tewes .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tewes, A.H.J., Haibel, A., Schneider, R.P. (2021). Image Processing 2D/3D with Emphasis on Image Segmentation. In: Meyendorf, N., Ida, N., Singh, R., Vrana, J. (eds) Handbook of Nondestructive Evaluation 4.0. Springer, Cham. https://doi.org/10.1007/978-3-030-48200-8_59-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48200-8_59-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48200-8

  • Online ISBN: 978-3-030-48200-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics