Advertisement

Betalains as Antioxidants

Living reference work entry

Latest version View entry history

  • 21 Downloads
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

An overview is provided of the status of research on the antioxidant and radical-scavenging properties of betalains, water-soluble pigments found in plants, fungi, and bacteria. Together with anthocyanins, betalains are responsible for most of the red, purple, and blue colors of fruits and flowers, although both classes of secondary metabolites are mutually exclusive in nature. The 1,7-diazaheptamethinium scaffold of betalains promotes their radical-scavenging properties, which involve the occurrence of proton-coupled electron transfer. Betalains derived from cyclo-DOPA, namely betacyanins, are antioxidants as potent as epicatechin gallate from green tea. The other betalains, classified as betaxanthins, also show high antioxidant potential whether they are phenolic or not. Since much of the current understanding of the antioxidant properties of betalains has been derived from studies of model compounds that mimic the reactivity patterns of natural pigments, comprehensive data on the antioxidant action of both natural and pseudo-natural betalains are presented.

Keywords

Betalains Betacyanins Betaxanthins Antioxidants Radical scavenging Proton-coupled electron transfer Caryophyllales Basidiomycete 

Notes

Acknowledgments

E.L.B thanks the São Paulo Research Foundation – FAPESP (ELB, 2014/14866-2 and 2019/06391-8), the Brazilian National Council for Scientific and Technological Development – CNPq (ELB, 304094/2013-7), and the Coordination for the Improvement of Higher Education Personnel (CAPES, Finance code 001) for financial support.

References

  1. 1.
    Wink M (2010) Introduction: biochemistry, physiology and ecological functions of secondary metabolites. In: Wink M (ed) Annual plant reviews volume 40: Biochemistry of plant secondary metabolism, vol 40. Wiley-Blackwell, Chichester, pp 1–19.  https://doi.org/10.1002/9781444320503.ch1
  2. 2.
    Market Research Future (2020) Global natural antioxidants market research report, MRFR/F-B & N/3693-HCR. https://www.marketresearchfuture.com/reports/natural-antioxidants-market-5129. Accessed 10/30/2020
  3. 3.
    Delgado-Vargas F, Paredes-López O (2002) Chemicals and colorants as nutraceuticals. In: Delgado-Vargas F, Paredes-López O (eds) Natural colorants for food and nutraceutical uses. CRC Press, Boca Raton.  https://doi.org/10.1201/9781420031713.ch10CrossRefGoogle Scholar
  4. 4.
    Lila MA (2004) Plant pigments and human health. In: Davies K (ed) Plant pigments and their manipulation. Blackwell Publishing Ltd, Oxford, pp 248–274Google Scholar
  5. 5.
    Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54:733–749PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Stafford HA (1994) Anthocyanins and betalains: evolution of the mutually exclusive pathways. Plant Sci 101:91–98.  https://doi.org/10.1016/0168-9452(94)90244-5CrossRefGoogle Scholar
  7. 7.
    Brockington SF, Walker RH, Glover BJ et al (2011) Complex pigment evolution in the Caryophyllales. New Phytol 190:854–864.  https://doi.org/10.1111/j.1469-8137.2011.03687.xCrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kimler L, Mears J, Mabry TJ et al (1970) On the question of the mutual exclusiveness of betalains and anthocyanins. Taxon 19:875–878.  https://doi.org/10.2307/1218301CrossRefGoogle Scholar
  9. 9.
    Mabry TJ, Taylor A, Turner BL (1963) The betacyanins and their distribution. Phytochemistry 2:61–64CrossRefGoogle Scholar
  10. 10.
    Davies KM (2015) Swapping one red pigment for another. Nat Genet 47:5–6.  https://doi.org/10.1038/ng.3174CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lodge DJ, Padamsee M, Matheny PB et al (2013) Molecular phylogeny, morphology, pigment chemistry and ecology in Hygrophoraceae (Agaricales). Fungal Divers 64:1–99.  https://doi.org/10.1007/s13225-013-0259-0CrossRefGoogle Scholar
  12. 12.
    Polturak G, Aharoni A (2018) La vie en rose'': biosynthesis, sources, and applications of betalain pigments. Mol Plant 11:7–22.  https://doi.org/10.1016/j.molp.2017.10.008CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Khan MI, Giridhar P (2015) Plant betalains: chemistry and biochemistry. Phytochemistry 117:267–295.  https://doi.org/10.1016/j.phytochem.2015.06.008CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Contreras-Llano LE, Guerrero-Rubio MA, Lozada-Ramirez JD et al (2019) First betalain-producing bacteria break the exclusive presence of the pigments in the plant kingdom. mBio 10:e00345-00319.  https://doi.org/10.1128/mBio.00345-19
  15. 15.
    Gil-Ramírez A, Pavo-Caballero C, Baeza E et al (2016) Mushrooms do not contain flavonoids. J Funct Foods 25:1–13.  https://doi.org/10.1016/j.jff.2016.05.005CrossRefGoogle Scholar
  16. 16.
    Dreiding AS (1961) The betacyanins, a class of red pigments in the centrospermae. In: Ollis WD (ed) Recent developments in the chemistry of natural phenolic compounds. Pergamon Press Ltd, London, pp 194–211CrossRefGoogle Scholar
  17. 17.
    Mabry TJ, Dreiding AS (1968) The betalains. In: Mabry TJ, Alston RE, Runeckles VC (eds) Recent advances in phytochemistry, vol 1. Appleton-Century Crofts, New York, pp 145–160Google Scholar
  18. 18.
    Nilsson T (1970) Studies into the pigments in beetroot (Beta vulgaris L. ssp. vulgaris var. rubra L.). Lantbr högsk Annlr 36:179–219Google Scholar
  19. 19.
    Lawrence WJC, Price JR, Robinson GM et al (1997) The distribution of anthocyanins in flowers, fruits and leaves. Philos Trans R Soc B 230:149–178.  https://doi.org/10.1098/rstb.1939.0006CrossRefGoogle Scholar
  20. 20.
    Quina FH, Bastos EL (2018) Chemistry inspired by the colors of fruits, flowers and wine. An Acad Bras Cienc 90:681–695.  https://doi.org/10.1590/0001-3765201820170492CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Robinson AM, Robinson R (1932) Synthetical experiments on the nature of betanin and related nitrogenous anthocyanins. Part I. J Chem Soc:1439–1445Google Scholar
  22. 22.
    Ainley AD, Robinson R (1937) Nitrogenous anthocyanins. Part V. Synthesis of substituted aminoflavylium salts. J Chem Soc: 453–456.  https://doi.org/10.1039/JR9370000453
  23. 23.
    Wyler H, Dreiding AS (1957) Kristallisiertes betanin. Helv Chim Acta 40:191–192CrossRefGoogle Scholar
  24. 24.
    Wyler H, Vincenti G, Mercier M et al (1959) Zur Konstitution des Randenfarbstoffes Betanin. 2. Vorläufige Mitteilung. Helv Chim Acta 42:1696–1698CrossRefGoogle Scholar
  25. 25.
    Wyler H, Dreiding AS (1959) Darstellung und Abbauprodukte des Betanidins. 3. Vorläufige Mitteilung. Über die Konstitution des Randenfarbstoffes Betanin. Helv Chim Acta 42:1699–1702CrossRefGoogle Scholar
  26. 26.
    Wyler H, Dreiding AS (1961) Über Betacyane, die stickstoffhaltigen Farbstoffe der Centrospermen. Vorläufige Mitteilung Experientia 17:23–25CrossRefGoogle Scholar
  27. 27.
    Piattelli M, Minale L (1964) Pigments of Centrospermae. I Betacyanins from Phyllocactus hybridus Hort and Opuntia ficus-indica Mill. Phytochemistry 3:307–311CrossRefGoogle Scholar
  28. 28.
    Piattelli M, Minale L, Prota G (1964) Isolation, structure and absolute configuration of indicaxanthin. Tetrahedron 20:2325–2329CrossRefGoogle Scholar
  29. 29.
    Wyler H, Wilcox ME, Dreiding AS (1965) Umwandlung eines Betacyans in ein Betaxanthin. Synthese von Indicaxanthin aus Betanin. Helv Chim Acta 48:361–366CrossRefGoogle Scholar
  30. 30.
    Khan MI (2016) Plant betalains: safety, antioxidant activity, clinical efficacy, and bioavailability. Compr Rev Food Sci Food Saf 15:316–330.  https://doi.org/10.1111/1541-4337.12185CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Gliszczyńska-Świgło A, Szymusiak H, Malinowska P (2006) Betanin, the main pigment of red beet: molecular origin of its exceptionally high free radical-scavenging activity. Food Addit Contam A 23:1079–1087CrossRefGoogle Scholar
  32. 32.
    Gliszczyńska-Świgło A, Oszmianski J (2013) Antioxidant and prooxidant activity of food components. In: Bartosz G (ed) Food oxidants and antioxidants: chemical, biological, and functional properties. CRC Press, Boca Raton, pp 375–431Google Scholar
  33. 33.
    Parikh I, Hilpert H, Hermann K et al (1986) Synthese von Betenamin und von Betalain-Modellsubstanzen. Helv Chim Acta 69:1588–1596.  https://doi.org/10.1002/hlca.19860690712CrossRefGoogle Scholar
  34. 34.
    Albano C, Negro C, Tommasi N et al (2015) Betalains, phenols and antioxidant capacity in cactus pear [Opuntia ficus-indica (L.) Mill.] fruits from Apulia (South Italy) genotypes. Antioxidants 4:269–280.  https://doi.org/10.3390/antiox4020269
  35. 35.
    Nakashima KK, Bastos EL (2019) Rationale on the high radical scavenging capacity of betalains. Antioxidants 8:222.  https://doi.org/10.3390/antiox8070222CrossRefPubMedCentralGoogle Scholar
  36. 36.
    Gonçalves LCP, Lopes NB, Augusto FA et al (2020) Phenolic betalain as antioxidants: meta means more. Pure Appl Chem 92:243–253.  https://doi.org/10.1515/pac-2019-0108CrossRefGoogle Scholar
  37. 37.
    Gandia-Herrero F, Escribano J, Garcia-Carmona F (2010) Structural implications on color, fluorescence, and antiradical activity in betalains. Planta 232:449–460.  https://doi.org/10.1007/s00425-010-1191-0CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    da Silva DVT, Baiao DD, Silva FD et al (2019) Betanin, a natural food additive: stability, bioavailability, antioxidant and preservative ability assessments. Molecules 24:458.  https://doi.org/10.3390/molecules24030458CrossRefGoogle Scholar
  39. 39.
    Steglich W, Strack D (1990) Betalains. In: Brossi A (ed) The alkaloids, vol 39. Academic Press, London, pp 1–62Google Scholar
  40. 40.
    Guerrero-Rubio MA, Escribano J, Garcia-Carmona F et al (2020) Light emission in betalains: from fluorescent flowers to biotechnological applications. Trends Plant Sci 25:159–175.  https://doi.org/10.1016/j.tplants.2019.11.001CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Rahimi P, Abedimanesh S, Mesbah-Namin SA et al (2019) Betalains, the nature-inspired pigments, in health and diseases. Crit Rev Food Sci Nutr 59:2949–2978.  https://doi.org/10.1080/10408398.2018.1479830CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Slimen IB, Najar T, Abderrabba M (2017) Chemical and antioxidant properties of betalains. J Agric Food Chem 65:675–689.  https://doi.org/10.1021/acs.jafc.6b04208CrossRefGoogle Scholar
  43. 43.
    Gandia-Herrero F, Escribano J, Garcia-Carmona F (2016) Biological activities of plant pigments betalains. Crit Rev Food Sci Nutr 56:937–945.  https://doi.org/10.1080/10408398.2012.740103CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Esatbeyoglu T, Wagner AE, Schini-Kerth VB et al (2015) Betanin – a food colorant with biological activity. Mol Nutr Food Res 59:36–47.  https://doi.org/10.1002/mnfr.201400484CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Zrÿd J-P, Christinet L (2004) Betalains. In: Davies K (ed) Annual plant reviews: plant pigments and their manipulation, vol 14. Wiley-Blackwell, Chichester, pp 185–213Google Scholar
  46. 46.
    von Elbe JH (2005) Betalains. In: Wrolstad RE (ed) Handbook of food analytical chemistry. John Wiley & Sons, New York, pp 123–129Google Scholar
  47. 47.
    Herbach KM, Stintzing FC, Carle R (2006) Betalain stability and degradation - structural and chromatic aspects. J Food Sci 71:R41–R50CrossRefGoogle Scholar
  48. 48.
    Strack D, Vogt T, Schliemann W (2003) Recent advances in betalain research. Phytochemistry 62:247–269PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Azeredo HMC (2009) Betalains: properties, sources, applications, and stability - a review. Int J Food Sci Technol 44:2365–2376CrossRefGoogle Scholar
  50. 50.
    Gandía-Herrero F, García-Carmona F, Escribano J (2005) Floral fluorescence effect. Nature 437:334–334.  https://doi.org/10.1038/437334aCrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Mabry TJ, Kimler L, Chang C (1972) The betalains: structure, function, and biogenesis, and the plant order Centrospermae. In: Runeckles VC, Tso TC (eds) Recent advances in phytochemistry, vol 5. Elsevier, pp 105–134.  https://doi.org/10.1016/B978-0-12-612405-7.50010-2
  52. 52.
    Carrillo C, Rey R, Hendrickx M et al (2017) Antioxidant capacity of beetroot: traditional vs novel approaches. Plant Food Hum Nutr 72:266–273.  https://doi.org/10.1007/s11130-017-0617-2CrossRefGoogle Scholar
  53. 53.
    Georgiev VG, Weber J, Kneschke E-M et al (2010) Antioxidant activity and phenolic content of betalain extracts from intact plants and hairy root cultures of the red beetroot Beta vulgaris cv. Detroit dark red. Plant Food Hum Nutr 65:105–111.  https://doi.org/10.1007/s11130-010-0156-6CrossRefGoogle Scholar
  54. 54.
    Czapski J, Mikołajczyk K, Kaczmarek M (2009) Relationship between antioxidant capacity of red beet juice and contents of its betalain pigments. Pol J Food Nutr Sci 59:119–122Google Scholar
  55. 55.
    Wootton-Beard PC, Ryan L (2011) A beetroot juice shot is a significant and convenient source of bioaccessible antioxidants. J Funct Foods 3:329–334.  https://doi.org/10.1016/j.jff.2011.05.007CrossRefGoogle Scholar
  56. 56.
    Vulic J, Canadanovic-Brunet J, Cetkovic G et al (2012) Antioxidant and cell growth activities of beet root pomace extracts. J Funct Foods 4:670–678.  https://doi.org/10.1016/J.Jff.2012.04.008CrossRefGoogle Scholar
  57. 57.
    Vulic JJ, Cebovic TN, Canadanovic-Brunet JM et al (2014) In vivo and in vitro antioxidant effects of beetroot pomace extracts. J Funct Foods 6:168–175.  https://doi.org/10.1016/J.Jff.2013.10.003CrossRefGoogle Scholar
  58. 58.
    Koubaier HB, Snoussi A, Essaidi I et al (2014) Betalain and phenolic compositions, antioxidant activity of tunisian red beet (Beta vulgaris L. conditiva) roots and stems extracts. Int J Food Prop 17:1934–1945.  https://doi.org/10.1080/10942912.2013.772196CrossRefGoogle Scholar
  59. 59.
    Stintzing FC, Schieber A, Carle R (2002) Identification of betalains from yellow beet (Beta vulgaris L.) and cactus pear [Opuntia ficus-indica (L.) Mill.] by high-performance liquid chromatography-electrospray ionization mass spectrometry. J Agric Food Chem 50:2302–2307Google Scholar
  60. 60.
    Wettasinghe M, Bolling B, Plhak L et al (2002) Phase II enzyme-inducing and antioxidant activities of beetroot (Beta vulgaris L.) extracts from phenotypes of different pigmentation. J Agric Food Chem 50:6704–6709PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Takahashi A, Okumura J, Morita Y et al (2017) Intestinal absorption and antioxidant activity of betalain: a nitrogen-containing pigment from table beets and cactus pear fruit juice. J Jpn Soc Food Sci 64:51–58.  https://doi.org/10.3136/nskkk.64.51CrossRefGoogle Scholar
  62. 62.
    Stintzing FC, Herbach KM, Mosshammer MR et al (2005) Color, betalain pattern, and antioxidant properties of cactus pear (Opuntia spp.) clones. J Agric Food Chem 53:442–451.  https://doi.org/10.1021/jf048751yCrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Gentile C, Tesoriere L, Allegra M et al (2004) Antioxidant betalains from cactus pear (Opuntia ficus-indica) inhibit endothelial ICAM-1 expression. Ann N Y Acad Sci 1028:481–486.  https://doi.org/10.1196/annals.1322.057CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Butera D, Tesoriere L, Di Gaudio F et al (2002) Antioxidant activities of sicilian prickly pear (Opuntia ficus-indica) fruit extracts and reducing properties of its betalains: betanin and indicaxanthin. J Agric Food Chem 50:6895–6901PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Tesoriere L, Butera D, Pintaudi AM et al (2004) Supplementation with cactus pear (Opuntia ficus-indica) fruit decreases oxidative stress in healthy humans: a comparative study with vitamin C. Am J Clin Nutr 80:391–395PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Abdel-Hameed ESS, Nagaty MA, Salman MS et al (2014) Phytochemicals, nutritionals and antioxidant properties of two prickly pear cactus cultivars (Opuntia ficus-indica Mill.) growing in Taif, KSA. Food Chem 160:31–38.  https://doi.org/10.1016/J.Foodchem.2014.03.060
  67. 67.
    Patel S (2013) Reviewing the prospects of Opuntia pears as low cost functional foods. Rev Environ Sci Biotechnol 12:223–234.  https://doi.org/10.1007/s11157-012-9295-6CrossRefGoogle Scholar
  68. 68.
    Gouws CA, D'Cunha NM, Georgousopoulou EN et al (2019) The effect of different drying techniques on phytochemical content and in vitro antioxidant properties of Australian-grown prickly pears (Opuntia ficus-indica). J Food Process Pres 43.  https://doi.org/10.1111/jfpp.13900
  69. 69.
    Smeriglio A, Bonasera S, Germano MP et al (2019) Opuntia ficus-indica (L.) Mill. Fruit as source of betalains with antioxidant, cytoprotective, and anti-angiogenic properties. Phytother Res 33:1526–1537.  https://doi.org/10.1002/ptr.6345
  70. 70.
    Stintzing FC, Schieber A, Carle R (2002) Betacyanins in fruits from red-purple pitaya, Hylocereus polyrhizus (Weber) Britton & Rose. Food Chem 77:101–106Google Scholar
  71. 71.
    Wu LC, Hsu HW, Chen YC et al (2006) Antioxidant and antiproliferative activities of red pitaya. Food Chem 95:319–327CrossRefGoogle Scholar
  72. 72.
    Suh DH, Lee S, Heo DY et al (2014) Metabolite profiling of red and white pitayas (Hylocereus polyrhizus and Hylocereus undatus) for comparing betalain biosynthesis and antioxidant activity. J Agric Food Chem 62:8764–8771.  https://doi.org/10.1021/Jf5020704CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Montes-Lora S, Hurtado N, Mosquera N et al (2016) Effect of technological practices on individual betalains and antioxidant activity of Columbian betalain-rich raw materials. Int J Food Sci Tech 51:1041–1047.  https://doi.org/10.1111/ijfs.13056CrossRefGoogle Scholar
  74. 74.
    Cai YZ, Sun M, Corke H (2003) Antioxidant activity of betalains from plants of the Amaranthaceae. J Agric Food Chem 51:2288–2294PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Li HY, Deng ZY, Liu RH et al (2015) Characterization of phenolics, betacyanins and antioxidant activities of the seed, leaf, sprout, flower and stalk extracts of three Amaranthus species. J Food Compos Anal 37:75–81.  https://doi.org/10.1016/j.jfca.2014.09.003CrossRefGoogle Scholar
  76. 76.
    Sarker U, Oba S (2019) Antioxidant constituents of three selected red and green color Amaranthus leafy vegetable. Sci Rep 9:18233.  https://doi.org/10.1038/s41598-019-52033-8CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Venskutonis PR, Kraujalis P (2013) Nutritional components of amaranth seeds and vegetables: a review on composition, properties, and uses. Compr Rev Food Sci Food Saf 12:381–412.  https://doi.org/10.1111/1541-4337.12021CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Graf BL, Rojas-Silva P, Rojo LE et al (2015) Innovations in health value and functional food development of quinoa (Chenopodium quinoa Willd.). Compr Rev Food Sci Food Saf 14:431–445.  https://doi.org/10.1111/1541-4337.12135CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Pyo YH, Lee TC, Logendra L et al (2004) Antioxidant activity and phenolic compounds of Swiss chard (Beta vulgaris subspecies cycla) extracts. Food Chem 85:19–26.  https://doi.org/10.1016/S0308-8146(03)00294-2CrossRefGoogle Scholar
  80. 80.
    Caldas-Cueva JP, Morales P, Ludena F et al (2016) Stability of betacyanin pigments and antioxidants in ayrampo (Opuntia soehrensii Britton & Rose) seed extracts and as a yogurt natural colorant. J Food Process Pres 40:541–549.  https://doi.org/10.1111/jfpp.12633
  81. 81.
    Herrera-Hernández MG, Guevara-Lara F, Reynoso-Camacho R et al (2011) Effects of maturity stage and storage on cactus berry (Myrtillocactus geometrizans) phenolics, vitamin C, betalains and their antioxidant properties. Food Chem 129:1744–1750.  https://doi.org/10.1016/j.foodchem.2011.06.042CrossRefGoogle Scholar
  82. 82.
    Montiel-Sánchez M, García-Cayuela T, Gómez-Maqueo A et al. (2020) In vitro gastrointestinal stability, bioaccessibility and potential biological activities of betalains and phenolic compounds in cactus berry fruits (Myrtillocactus geometrizans). Food Chem:128087.  https://doi.org/10.1016/j.foodchem.2020.128087
  83. 83.
    Tsai P-J, Sheu C-H, Wu P-H et al (2010) Thermal and pH stability of betacyanin pigment of djulis (Chenopodium formosanum) in Taiwan and their relation to antioxidant activity. J Agric Food Chem 58:1020–1025.  https://doi.org/10.1021/jf9032766CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Lavanya V, Thamaraiselvi SP, Uma D (2019) Studies on extraction of betalain pigments by different solvents and assessing antioxidant activity of Bougainvillea spectabilis and Celosia argentea flowers. Madras Agric J 106:104-108.  https://doi.org/10.29321/MAJ 2019.000230
  85. 85.
    Rodriguez-Sanchez JA, Victoria MTCY, Barragan-Huerta BE (2017) Betaxanthins and antioxidant capacity in Stenocereus pruinosus: stability and use in food. Food Res Int 91:63–71.  https://doi.org/10.1016/j.foodres.2016.11.023CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Bastos EL, Gonçalves LCP (2017) Microwave-assisted extraction of betalains. In: González Muñoz MJ (ed) Dominguez González H. Elsevier, Water extraction of bioactive compounds, pp 245–268.  https://doi.org/10.1016/B978-0-12-809380-1.00009-7CrossRefGoogle Scholar
  87. 87.
    Gandía-Herrero F, García-Carmona F (2013) Biosynthesis of betalains: yellow and violet plant pigments. Trends Plant Sci 18:334–343.  https://doi.org/10.1016/j.tplants.2013.01.003CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Chen N, Yu ZH, Xiao XG (2017) Cytosolic and nuclear co-localization of betalain biosynthetic enzymes in tobacco suggests that betalains are synthesized in the cytoplasm and/or nucleus of betalainic plant cells. Front Plant Sci 8:831.  https://doi.org/10.3389/fpls.2017.00831CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Reichardt C (1995) Chiral polymethine dyes: a remarkable but forgotten conjugated π system. J Phys Org Chem 8:761–773.  https://doi.org/10.1002/poc.610081202CrossRefGoogle Scholar
  90. 90.
    Schliemann W, Kobayashi N, Strack D (1999) The decisive step in betaxanthin biosynthesis is a spontaneous reaction. Plant Physiol 119:1217–1232PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Heuer S, Richter S, Metzger JW et al (1994) Betacyanins from bracts of Bougainvillea glabra. Phytochemistry 37:761–767PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Heuer S, Wray V, Metzger JW et al (1992) Betacyanins from flowers of Gomphrena globosa. Phytochemistry 31:1801–1807CrossRefGoogle Scholar
  93. 93.
    Schliemann W, Strack D (1998) Intramolecular stabilization of acylated betacyanins. Phytochemistry 49:585–588.  https://doi.org/10.1016/S0031-9422(98)00047-8CrossRefGoogle Scholar
  94. 94.
    Miguel MG (2018) Betalains in some species of the Amaranthaceae family: a review. Antioxidants 7.  https://doi.org/10.3390/antiox7040053
  95. 95.
    Sepulveda-Jimenez G, Rueda-Benitez P, Porta H et al (2004) Betacyanin synthesis in red beet (Beta vulgaris) leaves induced by wounding and bacterial infiltration is preceded by an oxidative burst. Physiol Mol Plant Pathol 64:125–133CrossRefGoogle Scholar
  96. 96.
    Terradas F, Wyler H (1991) The secodopas, natural pigments in Hygrocybe conica and Amanita muscaria. Phytochemistry 30:3251–3253CrossRefGoogle Scholar
  97. 97.
    Michelot D, Melendez-Howell LM (2003) Amanita muscaria: chemistry, biology, toxicology, and ethnomycology. Mycol Res 107:131–146.  https://doi.org/10.1017/s0953756203007305CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Musso H (1979) The pigments of fly agaric, Amanita muscaria. Tetrahedron 35:2843–2853CrossRefGoogle Scholar
  99. 99.
    König-Bersin P, Waser PG, Langemann H et al (1970) Monoamines in the brain under the influence of muscimol and ibotenic acid, two psychoactive principles of Amanita muscaria. Psychopharmacologia 18:1–10PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Bowden K, Drysdale AC, Mogey GA (1965) Constituents of Amanita muscaria. Nature 206:1359–1360PubMedCrossRefGoogle Scholar
  101. 101.
    Stintzing F, Schliemann W (2007) Pigments of fly agaric (Amanita muscaria). Z Naturforsch C 62:779–785PubMedCrossRefGoogle Scholar
  102. 102.
    Döpp H, Musso H (1973) Fliegenpilzfarbstoffe, II. Isolierung und Chromophore der Farbstoffe aus Amanita muscaria. Chem Ber 106:3473–3482.  https://doi.org/10.1002/cber.19731061103CrossRefGoogle Scholar
  103. 103.
    Girod PA, Zryd JP (1991) Biogenesis of betalains: purification and partial characterization of DOPA 4,5-dioxygenase from Amanita muscaria. Phytochemistry 30:169–174CrossRefGoogle Scholar
  104. 104.
    Hinz UG, Fivaz J, Girod PA et al (1997) The gene coding for the DOPA dioxygenase involved in betalain biosynthesis in Amanita muscaria and its regulation. Mol Gen Genet 256:1–6PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Barth H, Burger G, Döpp H et al (1981) Fliegenpilzfarbstoffe, VII. Konstitution und Synthese des Muscaflavins. Liebigs Ann Chem 1981:2164–2179CrossRefGoogle Scholar
  106. 106.
    Nowacka N, Nowak R, Drozd M et al (2015) Antibacterial, antiradical potential and phenolic compounds of thirty-one polish mushrooms. PLoS One 10:e0140355.  https://doi.org/10.1371/journal.pone.0140355CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    El Babili F, Chatelain C, Souchard JP (2019) Chemical study of some fungi: evaluation of their antioxidant and xanthine oxidase effects. Jpn J Med 2:389–393.  https://doi.org/10.31488/jjm.1000147
  108. 108.
    Reis FS, Heleno SA, Barros L et al (2011) Toward the antioxidant and chemical characterization of mycorrhizal mushrooms from Northeast Portugal. J Food Sci 76:C824–C830.  https://doi.org/10.1111/j.1750-3841.2011.02251.xCrossRefPubMedGoogle Scholar
  109. 109.
    Harmer RA (1980) Occurrence, chemistry and application of betanin. Food Chem 5:81–90.  https://doi.org/10.1016/0308-8146(80)90066-7CrossRefGoogle Scholar
  110. 110.
    Stintzing FC, Carle R (2008) Betalains in food: occurrence, stability, and postharvest modifications. In: Socaciu C (ed) Food colorants: chemical and functional properties. CRC Press, Boca Raton, pp 277–299Google Scholar
  111. 111.
    Delgado-Vargas F, Jimenez AR, Paredes-Lopez O (2000) Natural pigments: carotenoids, anthocyanins, and betalains - characteristics, biosynthesis, processing, and stability. Crit Rev Food Sci Nutr 40:173–289PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Roberts MF, Strack D, Wink M (2010) Biosynthesis of alkaloids and betalains. In: Wink M (ed) Annual plant reviews, volume 40: biochemistry of plant secondary metabolism, 2nd edn, vol 40. Wiley-Blackwell, Chichester, pp 20–91CrossRefGoogle Scholar
  113. 113.
    Vogt T, Grimm R, Strack D (1999) Cloning and expression of a cDNA encoding betanidin 5-O-glucosyltransferase, a betanidin- and flavonoid-specific enzyme with high homology to inducible glucosyltransferases from the Solanaceae. Plant J 19:509–519PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Vogt T (2002) Substrate specificity and sequence analysis define a polyphyletic origin of betanidin 5- and 6-O-glucosyltransferase from Dorotheanthus bellidiformis. Planta 214:492–495PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Büchi G, Fliri H, Shapiro R (1977) A synthesis of betalamic acid. J Org Chem 42:2192–2194.  https://doi.org/10.1021/jo00432a048CrossRefGoogle Scholar
  116. 116.
    Hermann K, Dreiding AS (1977) Totalsynthese von Betalainen. Helv Chim Acta 60:673–683CrossRefGoogle Scholar
  117. 117.
    Büchi G, Fliri H, Shapiro R (1978) Synthesis of betalains. J Org Chem 43:4765–4769.  https://doi.org/10.1021/jo00419a013CrossRefGoogle Scholar
  118. 118.
    Hilpert H, Dreiding AS (1984) Über die Totalsynthese von Betalainen. Helv Chim Acta 67:1547–1561CrossRefGoogle Scholar
  119. 119.
    Guimond N, Mayer P, Trauner D (2014) Development of an iron(II)-catalyzed aerobic catechol cleavage and biomimetic synthesis of betanidin. Chem Eur J 20:9519–9523.  https://doi.org/10.1002/Chem.201403436CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Pavokovic D, Krsnik-Rasol M (2011) Complex biochemistry and biotechnological production of betalains. Food Technol Biotech 49:145–155Google Scholar
  121. 121.
    Cebi K, Yangilar F (2016) Biotechnological production and application of betalain pigments for food plants. J Biotechnol 231:S42–S43.  https://doi.org/10.1016/j.jbiotec.2016.05.165CrossRefGoogle Scholar
  122. 122.
    Polturak G, Grossman N, Vela-Corcia D et al (2017) Engineered gray mold resistance, antioxidant capacity, and pigmentation in betalain-producing crops and ornamentals. Proc Natl Acad Sci U S A 114:9062–9067.  https://doi.org/10.1073/pnas.1707176114CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Guerrero-Rubio MA, López-Llorca R, Henarejos-Escudero P et al (2019) Scaled-up biotechnological production of individual betalains in a microbial system. Microb Biotechnol 12:993–1002.  https://doi.org/10.1111/1751-7915.13452CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Grewal PS, Modavi C, Russ ZN et al (2018) Bioproduction of a betalain color palette in Saccharomyces cerevisiae. Metab Eng 45:180–188.  https://doi.org/10.1016/j.ymben.2017.12.008CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Polturak G, Aharoni A (2019) Advances and future directions in betalain metabolic engineering. New Phytol 224:1472–1478.  https://doi.org/10.1111/nph.15973CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Girod PA, Zryd JP (1987) Clonal variability and light induction of betalain synthesis in red beet cell-cultures. Plant Cell Rep 6:27–30PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Taya M, Mine K, Kinooka M et al (1992) Production and release of pigments by culture of transformed hairy root of red beet. J Ferment Bioeng 73:31–36CrossRefGoogle Scholar
  128. 128.
    Rodriguez-Monroy M, Galindo E (1999) Broth rheology, growth and metabolite production of Beta vulgaris suspension culture: a comparative study between cultures grown in shake flasks and in a stirred tank. Enzym Microb Technol 24:687–693CrossRefGoogle Scholar
  129. 129.
    Guadarrama-Flores B, Rodriguez-Monroy M, Cruz-Sosa F et al (2015) Production of dihydroxylated betalains and dopamine in cell suspension cultures of Celosia argentea var. plumosa. J Agric Food Chem 63:2741–2749.  https://doi.org/10.1021/acs.jafc.5b00065CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Bodhipadma K, Noichinda S, Wachirabongkoth P et al (2017) Callus induction and influence of UV-C on betalain content in the callus of an amaranth. Rom Biotech Lett 22:12793–12801Google Scholar
  131. 131.
    Henarejos-Escudero P, Guadarrama-Flores B, Guerrero-Rubio MA et al (2018) Development of betalain producing callus lines from colored quinoa varieties (Chenopodium quinoa Willd). J Agric Food Chem 66:467–474.  https://doi.org/10.1021/acs.jafc.7b04642CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Karageorgis G, Foley DJ, Laraia L et al (2020) Principle and design of pseudo-natural products. Nat Chem 12:227–235.  https://doi.org/10.1038/s41557-019-0411-xCrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Gandia-Herrero F, Escribano J, Garcia-Carmona F (2012) Purification and antiradical properties of the structural unit of betalains. J Nat Prod 75:1030–1036.  https://doi.org/10.1021/np200950nCrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Wendel M, Szot D, Starzak K et al (2015) Photophysical properties of betaxanthins: vulgaxanthin I in aqueous and alcoholic solutions. J Lumin 167:289–295.  https://doi.org/10.1016/j.jlumin.2015.06.030CrossRefGoogle Scholar
  135. 135.
    Freitas-Dörr BC, Machado CO, Pinheiro AC et al. (2020) A metal-free blue chromophore derived from plant pigments. Sci Adv 6:eaaz0421Google Scholar
  136. 136.
    Esteves LC, Pinheiro AC, Pioli RM et al (2018) Revisiting the mechanism of hydrolysis of betanin. Photochem Photobiol 94:853–864.  https://doi.org/10.1111/php.12897CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Treat NA, Knorr FJ, McHale JL (2016) Templated assembly of betanin chromophore on TiO2: aggregation-enhanced light-harvesting and efficient electron injection in a natural dye-sensitized solar cell. J Phys Chem C 120:9122–9131.  https://doi.org/10.1021/acs.jpcc.6b02532CrossRefGoogle Scholar
  138. 138.
    Pavliuk MV, Cieslak AM, Abdellah M et al (2017) Hydrogen evolution with nanoengineered ZnO interfaces decorated using a beetroot extract and a hydrogenase mimic. Sust Energy Fuels 1:69–73.  https://doi.org/10.1039/C6SE00066ECrossRefGoogle Scholar
  139. 139.
    Pavliuk MV, Fernandes AB, Abdellah M et al (2017) Nano-hybrid plasmonic photocatalyst for hydrogen production at 20% efficiency. Sci Rep 7:8670.  https://doi.org/10.1038/s41598-017-09261-7CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Bartoloni FH, Goncalves LCP, Rodrigues ACB et al (2013) Photophysics and hydrolytic stability of betalains in aqueous trifluoroethanol. Monatsh Chem 144:567–571.  https://doi.org/10.1007/s00706-012-0883-5CrossRefGoogle Scholar
  141. 141.
    Rodrigues ACB, Mariz IDA, Macoas EMS et al (2018) Bioinspired water-soluble two-photon fluorophores. Dyes Pigments 150:105–111.  https://doi.org/10.1016/j.dyepig.2017.11.020CrossRefGoogle Scholar
  142. 142.
    Oliveira E, Bertolo E, Nunez C et al (2018) Green and red fluorescent dyes for translational applications in imaging and sensing analytes: a dual-color flag. ChemistryOpen 7:9–52.  https://doi.org/10.1002/open.201700135CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Gonçalves LCP, Da Silva SM, DeRose P et al (2013) Beetroot-pigment-derived colorimetric sensor for detection of calcium dipicolinate in bacterial spores. PLoS One 8:e73701PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Fernandes DLA, Paun C, Pavliuk MV et al (2016) Green microfluidic synthesis of monodisperse silver nanoparticles via genetic algorithm optimization. RSC Adv 6:95693–95697.  https://doi.org/10.1039/C6RA20877KCrossRefGoogle Scholar
  145. 145.
    Gandia-Herrero F, Garcia-Carmona F (2020) The dawn of betalains. New Phytol 227:664–666.  https://doi.org/10.1111/nph.16295CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Martinez RM, Longhi-Balbinot DT, Zarpelon AC et al (2015) Anti-inflammatory activity of betalain-rich dye of Beta vulgaris: effect on edema, leukocyte recruitment, superoxide anion and cytokine production. Arch Pharm Res 38:494–504.  https://doi.org/10.1007/s12272-014-0473-7CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Klewicka E (2012) Betacyanins - bioavailability and biological activity. Zywn-Nauk Technol Ja 19:5–21Google Scholar
  148. 148.
    Madadi E, Mazloum-Ravasan S, Yu JS et al (2020) Therapeutic application of betalains: a review. Plan Theory 9:1219.  https://doi.org/10.3390/plants9091219CrossRefGoogle Scholar
  149. 149.
    Silva D, Baiao DDS, Ferreira VF et al (2020) Betanin as a multipath oxidative stress and inflammation modulator: a beetroot pigment with protective effects on cardiovascular disease pathogenesis. Crit Rev Food Sci Nutr:1–16.  https://doi.org/10.1080/10408398.2020.1822277
  150. 150.
    Pisoschi AM, Pop A (2015) The role of antioxidants in the chemistry of oxidative stress: a review. Eur J Med Chem 97:55–74.  https://doi.org/10.1016/j.ejmech.2015.04.040CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Liu RH (2004) Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr 134:3479S–3485SPubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Liu RH (2003) Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am J Clin Nutr 78:517S–520SPubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Prior RL, Cao G (2000) Antioxidant phytochemicals in fruits and vegetables: diet and health implications. HortScience 35:588–592CrossRefGoogle Scholar
  154. 154.
    Koppenol WH, Hider RH (2019) Iron and redox cycling. Do's and don'ts. Free Radic Biol Med 133:3–10.  https://doi.org/10.1016/j.freeradbiomed.2018.09.022CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399.  https://doi.org/10.1146/annurev.arplant.55.031903.141701CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Winterbourn CC (2008) Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 4:278–286.  https://doi.org/10.1038/nchembio.85CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Sies H (2015) Oxidative stress: a concept in redox biology and medicine. Redox Biol 4:180–183.  https://doi.org/10.1016/j.redox.2015.01.002CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Mittler R (2017) ROS are good. Trends Plant Sci 22:11–19.  https://doi.org/10.1016/j.tplants.2016.08.002CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Bartosz G (2014) Food oxidants and antioxidants: chemical, biological, and functional properties. CRC Press, Boca RatonGoogle Scholar
  160. 160.
    Cömert ED, Gökmen V (2017) Antioxidants bound to an insoluble food matrix: their analysis, regeneration behavior, and physiological importance. Compr Rev Food Sci Food Saf 16:382–399.  https://doi.org/10.1111/1541-4337.12263CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Gutteridge JMC, Halliwell B (2010) Antioxidants: molecules, medicines, and myths. Biochem Biophys Res Commun 393:561–564PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Herbert V (1994) The antioxidant supplement myth. Am J Clin Nutr 60:157–158.  https://doi.org/10.1093/ajcn/60.2.157CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Prior RL, Cao G (2000) Analysis of botanicals and dietary supplements for antioxidant capacity: a review. J AOAC Int 83:950–956PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Frei B (1994) Reactive oxygen species and antioxidant vitamins: mechanisms of action. Am J Med 97:5S–13S.  https://doi.org/10.1016/0002-9343(94)90292-5CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Salehi B, Martorell M, Arbiser JL et al (2018) Antioxidants: positive or negative actors? Biomol Ther 8.  https://doi.org/10.3390/biom8040124
  166. 166.
    Apak R, Gorinstein S, Böhm V et al (2013) Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC technical report). Pure Appl Chem 85:957–998.  https://doi.org/10.1351/pac-rep-12-07-15CrossRefGoogle Scholar
  167. 167.
    Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53:1841–1856PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Apak R, Ozyurek M, Guclu K et al (2016) Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. J Agric Food Chem 64:997–1027.  https://doi.org/10.1021/acs.jafc.5b04739CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Darcy JW, Koronkiewicz B, Parada GA et al (2018) A continuum of proton-coupled electron transfer reactivity. Acc Chem Res 51:2391–2399.  https://doi.org/10.1021/acs.accounts.8b00319CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Bastos EL, Romoff P, Eckert CR et al (2003) Evaluation of antiradical capacity by H2O2-hemin-induced luminol chemiluminescence. J Agric Food Chem 51:7481–7488.  https://doi.org/10.1021/Jf0345189CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Amorati R, Valgimigli L (2018) Methods to measure the antioxidant activity of phytochemicals and plant extracts. J Agric Food Chem 66:3324–3329.  https://doi.org/10.1021/acs.jafc.8b01079CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Kumar S, Sharma S, Vasudeva N (2017) Review on antioxidants and evaluation procedures. Chin J Integr Med.  https://doi.org/10.1007/s11655-017-2414-z
  173. 173.
    Re R, Pellegrini N, Proteggente A et al (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Cano A, Arnao MB (2018) ABTS/TEAC (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)/Trolox®-equivalent antioxidant capacity) radical scavenging mixed-mode assay. In: Apak R, Capanoglu E, Shahidi F (eds) Measurement of antioxidant activity & capacity: recent trends and applications. John Wiley & Sons Ltd, Chichester, pp 117–139Google Scholar
  175. 175.
    Tian X, Schaich KM (2013) Effects of molecular structure on kinetics and dynamics of the Trolox equivalent antioxidant capacity assay with ABTS+•. J Agric Food Chem 61:5511–5519.  https://doi.org/10.1021/jf4010725CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    de Oliveira S, de Souza GA, Eckert CR et al (2014) Evaluation of antiradical assays used in determining the antioxidant capacity of pure compounds and plant extracts. Quim Nova 37:497–503.  https://doi.org/10.5935/0100-4042.20140076
  177. 177.
    Alberto ME, Russo N, Grand A et al (2013) A physicochemical examination of the free radical scavenging activity of Trolox: mechanism, kinetics and influence of the environment. Phys Chem Chem Phys 15:4642–4650.  https://doi.org/10.1039/c3cp43319fCrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Burton GW, Doba T, Gabe E et al (1985) Autoxidation of biological molecules. 4. Maximizing the antioxidant activity of phenols. J Am Chem Soc 107:7053–7065.  https://doi.org/10.1021/ja00310a049CrossRefGoogle Scholar
  179. 179.
    Gulcin I (2020) Antioxidants and antioxidant methods: an updated overview. Arch Toxicol 94:651–715.  https://doi.org/10.1007/s00204-020-02689-3CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    Xiao F, Xu T, Lu B et al (2020) Guidelines for antioxidant assays for food components. Food Front 1:60–69.  https://doi.org/10.1002/fft2.10CrossRefGoogle Scholar
  181. 181.
    Apak R, Capanoglu E, Demirci CS et al (in press) Antioxidant acitivity/capacity measurement. In: Arora J (ed) Screening, preservation and determination methods for antioxidants, vol 4. Springer, Plant Antioxidants and HealthGoogle Scholar
  182. 182.
    Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem 239:70–76.  https://doi.org/10.1006/abio.1996.0292CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Ou B, Hampsch-Woodill M, Prior RL (2001) Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J Agric Food Chem 49:4619–4626.  https://doi.org/10.1021/jf010586oCrossRefPubMedPubMedCentralGoogle Scholar
  184. 184.
    Velioglu YS, Mazza G, Gao L et al (1998) Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem 46:4113–4117.  https://doi.org/10.1021/jf9801973CrossRefGoogle Scholar
  185. 185.
    Miller NJ, Rice-Evans CA, Davies MJ et al (1993) A novel method for measuring antioxidant capacity and its application to monitoring antioxidant status in premature neonates. Clin Sci 84:407–412CrossRefGoogle Scholar
  186. 186.
    Rice-Evans C, Miller NJ (1994) Total antioxidant status in plasma and body fluids. In: Packer L (ed) Methods in Enzymology, vol 234. Academic Press, pp 279–293.  https://doi.org/10.1016/0076-6879(94)34095-1
  187. 187.
    Cano A, Hernández-Ruíz J, García-Cánovas F et al (1998) An end-point method for estimation of the total antioxidant activity in plant material. Phytochem Anal 9:196–202.  https://doi.org/10.1002/(SICI)1099-1565(199807/08)9:4<196::AID-PCA395>3.0.CO;2-WCrossRefGoogle Scholar
  188. 188.
    Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT 28:25–30.  https://doi.org/10.1016/S0023-6438(95)80008-5CrossRefGoogle Scholar
  189. 189.
    Bondet V, Brand-Williams W, Berset C (1997) Kinetics and mechanisms of antioxidant activity using the DPPH• free radical method. LWT 30:609–615.  https://doi.org/10.1006/fstl.1997.0240CrossRefGoogle Scholar
  190. 190.
    Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53:4290–4302PubMedCrossRefPubMedCentralGoogle Scholar
  191. 191.
    Rufián-Henares JA, Delgado-Andrade C (2009) Effect of digestive process on Maillard reaction indexes and antioxidant properties of breakfast cereals. Food Res Int 42:394–400.  https://doi.org/10.1016/j.foodres.2009.01.011CrossRefGoogle Scholar
  192. 192.
    Pastoriza S, Delgado-Andrade C, Haro A et al (2011) A physiologic approach to test the global antioxidant response of foods. The GAR method. Food Chem 129:1926–1932.  https://doi.org/10.1016/j.foodchem.2011.06.009CrossRefGoogle Scholar
  193. 193.
    Gökmen V, Serpen A, Fogliano V (2009) Direct measurement of the total antioxidant capacity of foods: the ‘QUENCHER’ approach. Trends Food Sci Technol 20:278–288.  https://doi.org/10.1016/j.tifs.2009.03.010CrossRefGoogle Scholar
  194. 194.
    Cao G, Sofic E, Prior RL (1996) Antioxidant capacity of tea and common vegetables. J Agric Food Chem 44:3426–3431.  https://doi.org/10.1021/jf9602535CrossRefGoogle Scholar
  195. 195.
    Kugler F, Stintzing FC, Carle R (2007) Evaluation of the antioxidant capacity of betalainic fruits and vegetables. J Appl Bot Food Qual 81:69–76Google Scholar
  196. 196.
    Ou B, Huang D, Hampsch-Woodill M et al (2002) Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: a comparative study. J Agric Food Chem 50:3122–3128.  https://doi.org/10.1021/jf0116606CrossRefPubMedPubMedCentralGoogle Scholar
  197. 197.
    Vinson JA, Hao Y, Su XH et al (1998) Phenol antioxidant quantity and quality in foods: vegetables. J Agric Food Chem 46:3630–3634.  https://doi.org/10.1021/jf980295oCrossRefGoogle Scholar
  198. 198.
    Žitňanová I, Ranostajová S, Sobotová H et al (2006) Antioxidative activity of selected fruits and vegetables. Biologia 61:279–284.  https://doi.org/10.2478/s11756-006-0051-7CrossRefGoogle Scholar
  199. 199.
    Kanner J, Harel S, Granit R (2001) Betalains – a new class of dietary cationized antioxidants. J Agric Food Chem 49:5178–5185.  https://doi.org/10.1021/jf010456fCrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Hadipour E, Taleghani A, Tayarani-Najaran N et al (2020) Biological effects of red beetroot and betalains: a review. Phytother Res 34:1847–1867.  https://doi.org/10.1002/ptr.6653CrossRefPubMedPubMedCentralGoogle Scholar
  201. 201.
    Hunyadi A (2019) The mechanism(s) of action of antioxidants: from scavenging reactive oxygen/nitrogen species to redox signaling and the generation of bioactive secondary metabolites. Med Res Rev 39:2505–2533.  https://doi.org/10.1002/med.21592CrossRefPubMedPubMedCentralGoogle Scholar
  202. 202.
    Biancardi E, McGrath JM, Panella LW et al (2010) Sugar beet. In: Bradshaw JE (ed) Root and tuber crops, Handbook of plant breeding, vol 7. Springer Science+Business Media LLC, New York, pp 173–219.  https://doi.org/10.1007/978-0-387-92765-7_6CrossRefGoogle Scholar
  203. 203.
    Kubis S, Heslop-Harrison JS, Schmidt T (1997) A family of differentially amplified repetitive DNA sequences in the genus Beta reveals genetic variation in Beta vulgaris subspecies and cultivars. J Mol Evol 44:310–320.  https://doi.org/10.1007/pl00006148CrossRefPubMedPubMedCentralGoogle Scholar
  204. 204.
    Lange W (1999) Taxonomy and cultonomy of beet (Beta vulgaris L.). Bot J Linn Soc 130:81–96.  https://doi.org/10.1111/j.1095-8339.1999.tb00785.xCrossRefGoogle Scholar
  205. 205.
    McGrath JM, Saccomani M, Stevanato P et al (2007) Beet. In: Kole C (ed) Vegetables. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 191–207.  https://doi.org/10.1007/978-3-540-34536-7_6CrossRefGoogle Scholar
  206. 206.
    Slatnar A, Stampar F, Veberic R et al (2015) HPLC-MSn identification of betalain profile of different beetroot (Beta vulgaris L. ssp. vulgaris) parts and cultivars. J Food Sci 80:C1952–C1958.  https://doi.org/10.1111/1750-3841.12977CrossRefPubMedPubMedCentralGoogle Scholar
  207. 207.
    McGrath JM, Panella L (2018) Sugar beet breeding. Plant breed rev: 167-218.  https://doi.org/10.1002/9781119521358.ch5
  208. 208.
    Kujala T, Vienola M, Klika K et al (2002) Betalain and phenolic compositions of four beetroot (Beta vulgaris) cultivars. Eur Food Res Technol 214:505–510.  https://doi.org/10.1007/s00217-001-0478-6CrossRefGoogle Scholar
  209. 209.
    Sawicki T, Bączek N, Wiczkowski W (2016) Betalain profile, content and antioxidant capacity of red beetroot dependent on the genotype and root part. J Funct Foods 27:249–261.  https://doi.org/10.1016/j.jff.2016.09.004CrossRefGoogle Scholar
  210. 210.
    Choo WS (2018) Betalains: application in functional foods. In: Mérillon JM, Ramawat K (eds) Bioactive molecules in food. Reference Series in Phytochemistry. Springer, Cham, pp 1–28.  https://doi.org/10.1007/978-3-319-54528-8_38-2CrossRefGoogle Scholar
  211. 211.
    Gengatharan A, Dykes GA, Choo WS (2015) Betalains: natural plant pigments with potential application in functional foods. LWT 64:645–649.  https://doi.org/10.1016/j.lwt.2015.06.052CrossRefGoogle Scholar
  212. 212.
    Dörnenburg H, Knorr D (1996) Generation of colors and flavors in plant cell and tissue cultures. Crit Rev Plant Sci 15:141–168.  https://doi.org/10.1080/07352689.1996.10393184CrossRefGoogle Scholar
  213. 213.
    Wu X, Beecher GR, Holden JM et al (2004) Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J Agric Food Chem 52:4026–4037PubMedCrossRefPubMedCentralGoogle Scholar
  214. 214.
    Váli L, Stefanovits-Bányai É, Szentmihályi K et al (2007) Liver-protecting effects of table beet (Beta vulgaris var. rubra) during ischemia-reperfusion. Nutrition 23:172–178.  https://doi.org/10.1016/j.nut.2006.11.004CrossRefPubMedPubMedCentralGoogle Scholar
  215. 215.
    Kujawska M, Ignatowicz E, Murias M et al (2009) Protective effect of red beetroot against carbon tetrachloride- and N-nitrosodiethylamine-induced oxidative stress in rats. J Agric Food Chem 57:2570–2575.  https://doi.org/10.1021/jf803315dCrossRefPubMedPubMedCentralGoogle Scholar
  216. 216.
    Watts AR, Lennard MS, Mason SL et al (1993) Beeturia and the biological fate of beetroot pigments. Pharmacogen Gen 3:302–311.  https://doi.org/10.1097/00008571-199312000-00004CrossRefGoogle Scholar
  217. 217.
    Tesoriere L, Fazzari M, Angileri F et al (2008) In vitro digestion of betalainic foods. Stability and bioaccessibility of betaxanthins and betacyanins and antioxidative potential of food digesta. J Agric Food Chem 56:10487–10492PubMedCrossRefPubMedCentralGoogle Scholar
  218. 218.
    Ravichandran K, Saw NMMT, Mohdaly AAA et al (2013) Impact of processing of red beet on betalain content and antioxidant activity. Food Res Int 50:670–675.  https://doi.org/10.1016/J.Foodres.2011.07.002CrossRefGoogle Scholar
  219. 219.
    Stintzing FC, Carle R (2004) Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends Food Sci Technol 15:19–38CrossRefGoogle Scholar
  220. 220.
    Gomez-Maqueo A, Antunes-Ricardo M, Welti-Chanes J et al (2020) Digestive stability and bioaccessibility of antioxidants in prickly pear fruits from the Canary Islands: healthy foods and ingredients. Antioxidants 9:164.  https://doi.org/10.3390/antiox9020164CrossRefPubMedCentralPubMedGoogle Scholar
  221. 221.
    Wybraniec S, Platzner I, Geresh S et al (2001) Betacyanins from vine cactus Hylocereus polyrhizus. Phytochemistry 58:1209–1212.  https://doi.org/10.1016/S0031-9422(01)00336-3CrossRefPubMedGoogle Scholar
  222. 222.
    Wybraniec S, Mizrahi Y (2002) Fruit flesh betacyanin pigments in Hylocereus cacti. J Agric Food Chem 50:6086–6089.  https://doi.org/10.1021/jf020145kCrossRefPubMedGoogle Scholar
  223. 223.
    Herbach KM, Stintzing FC, Carle R (2006) Stability and color changes of thermally treated betanin, phyllocactin, and hylocerenin solutions. J Agric Food Chem 54:390–398PubMedCrossRefGoogle Scholar
  224. 224.
    Guerrero-Rubio MA, Hernandez-Garcia S, Garcia-Carmona F et al (2019) Extension of life-span using a RNAi model and in vivo antioxidant effect of Opuntia fruit extracts and pure betalains in Caenorhabditis elegans. Food Chem 274:840–847.  https://doi.org/10.1016/j.foodchem.2018.09.067CrossRefPubMedGoogle Scholar
  225. 225.
    Iriel A, Lagorio M (2010) Is the flower fluorescence relevant in biocommunication? Naturwissenschaften 97:915–924.  https://doi.org/10.1007/s00114-010-0709-4CrossRefPubMedPubMedCentralGoogle Scholar
  226. 226.
    Lagorio MG, Cordon GB, Iriel A (2015) Reviewing the relevance of fluorescence in biological systems. Photochem Photobiol Sci 14:1538–1559.  https://doi.org/10.1039/c5pp00122fCrossRefPubMedPubMedCentralGoogle Scholar
  227. 227.
    Gawlik-Dziki U, Dziki L, Anisiewicz J et al (2020) Leaves of white beetroot as a new source of antioxidant and anti-inflammatory compounds. Plan Theory 9.  https://doi.org/10.3390/plants9080944
  228. 228.
    Gościnna K, Wszelaczyńska E, Pobereżny J (2020) Potential of a new beetroot cultivar ‘Śnieżna kula’ (Beta vulgaris L. ssp.). AIMS Agric Food 5:563–577.  https://doi.org/10.3934/agrfood.2020.4.563
  229. 229.
    Kanner J, Harel S, Granit R (1996) Compositions containing antioxidants and a method for their preparation. Patent WO1998026792A1, 06/25/1998Google Scholar
  230. 230.
    Escribano J, Pedreño M, Garcia-Carmona F et al (1998) Characterization of the antiradical activity of betalains from Beta vulgaris L. roots. Phytochem Anal 9:124–127CrossRefGoogle Scholar
  231. 231.
    Zakharova NS, Petrova TA (1998) Relationships between the structure and antioxidant activity of certain betalains. Appl Biochem Microbiol 34:182–185Google Scholar
  232. 232.
    Sekiguchi H, Ozeki Y, Sasaki N (2010) In vitro synthesis of betaxanthins using recombinant DOPA 4,5-dioxygenase and evaluation of their radical-scavenging activities. J Agric Food Chem 58:12504–12509.  https://doi.org/10.1021/jf1030086CrossRefPubMedPubMedCentralGoogle Scholar
  233. 233.
    Herbach KM, Stintzing FC, Carle R (2004) Thermal degradation of betacyanins in juices from purple pitaya [Hylocereus polyrhizus (Weber) Britton & Rose] monitored by high-performance liquid chromatography–tandem mass spectometric analyses. Eur Food Res Technol 219:377–385.  https://doi.org/10.1007/s00217-004-0948-8CrossRefGoogle Scholar
  234. 234.
    Terradas F, Wyler H (1991) 2,3- and 4,5-Secodopa, the biosynthetic intermediates generated from L-DOPA by an enzyme system extracted from the fly agaric, Amanita muscaria L., and their spontaneous conversion to muscaflavin and betalamic acid, respectively, and betalains. Helv Chim Acta 74:124–140.  https://doi.org/10.1002/hlca.19910740115CrossRefGoogle Scholar
  235. 235.
    Esatbeyoglu T, Wagner AE, Motafakkerazad R et al (2014) Free radical scavenging and antioxidant activity of betanin: electron spin resonance spectroscopy studies and studies in cultured cells. Food Chem Toxicol 73:119–126.  https://doi.org/10.1016/j.fct.2014.08.007CrossRefPubMedPubMedCentralGoogle Scholar
  236. 236.
    Gliszczyńska-Świgło A, Szymusiak H (2007) Molecular insight in the pH-dependent radical-scavenging activity of betanidin. Pol J Food Nutr Sci 4:17–25Google Scholar
  237. 237.
    Allegra M, Carletti F, Gambino G et al (2015) Indicaxanthin from Opuntia ficus-indica crosses the blood-brain barrier and modulates neuronal bioelectric activity in rat hippocampus at dietary-consistent amounts. J Agric Food Chem 63:7353–7360.  https://doi.org/10.1021/acs.jafc.5b02612CrossRefPubMedPubMedCentralGoogle Scholar
  238. 238.
    Tesoriere L, Allegra M, Butera D et al (2006) Cytoprotective effects of the antioxidant phytochemical indicaxanthin in beta-thalassemia red blood cells. Free Radic Res 40:753–761PubMedCrossRefPubMedCentralGoogle Scholar
  239. 239.
    Tesoriere L, Attanzio A, Allegra M et al (2014) Indicaxanthin inhibits NADPH oxidase (NOX)-1 activation and NF-κB-dependent release of inflammatory mediators and prevents the increase of epithelial permeability in IL-1β-exposed Caco-2 cells. Br J Nutr 111:415–423.  https://doi.org/10.1017/S0007114513002663CrossRefPubMedPubMedCentralGoogle Scholar
  240. 240.
    Lee C-H, Wettasinghe M, Bolling BW et al (2005) Betalains, phase II enzyme-inducing components from red beetroot (Beta vulgaris L.) extracts. Nutr Cancer 53:91–103.  https://doi.org/10.1207/s15327914nc5301_11CrossRefPubMedPubMedCentralGoogle Scholar
  241. 241.
    Wybraniec S, Stalica P, Jerz G et al (2009) Separation of polar betalain pigments from cacti fruits of Hylocereus polyrhizus by ion-pair high-speed countercurrent chromatography. J Chromatogr A 1216:6890–6899.  https://doi.org/10.1016/j.chroma.2009.08.035CrossRefPubMedPubMedCentralGoogle Scholar
  242. 242.
    Cai Y, Sun M, Corke H (2005) HPLC characterization of betalains from plants in the Amaranthaceae. J Chromatogr Sci 43:454–460.  https://doi.org/10.1093/chromsci/43.9.454CrossRefPubMedPubMedCentralGoogle Scholar
  243. 243.
    Nemzer B, Pietrzkowski Z, Spórna A et al (2011) Betalainic and nutritional profiles of pigment-enriched red beet root (Beta vulgaris L.) dried extracts. Food Chem 127:42–53.  https://doi.org/10.1016/j.foodchem.2010.12.081CrossRefGoogle Scholar
  244. 244.
    Kahkonen MP, Hopia AI, Vuorela HJ et al (1999) Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 47:3954–3962.  https://doi.org/10.1021/jf990146lCrossRefPubMedPubMedCentralGoogle Scholar
  245. 245.
    Sigurdson GT, Tang P, Giusti MM (2017) Natural colorants: food colorants from natural sources. Annu Rev Food Sci Technol 8:261–280.  https://doi.org/10.1146/annurev-food-030216-025923CrossRefPubMedPubMedCentralGoogle Scholar
  246. 246.
    Wrolstad RE, Culver CA (2012) Alternatives to those artificial FD&C food colorants. Annu Rev Food Sci Technol 3:59–77.  https://doi.org/10.1146/Annurev-Food-022811-101118CrossRefPubMedPubMedCentralGoogle Scholar
  247. 247.
    Gonçalves LCP, Trassi MAdS, Lopes NB et al. (2012) A comparative study of the purification of betanin. Food Chem 131:231–238.  https://doi.org/10.1016/j.foodchem.2011.08.067
  248. 248.
    Roy K, Gullapalli S, Chaudhuri UR et al (2004) The use of a natural colorant based on betalain in the manufacture of sweet products in India. Int J Food Sci Tech 39:1087–1091.  https://doi.org/10.1111/j.1365-2621.2004.00879.xCrossRefGoogle Scholar
  249. 249.
    Ciriminna R, Fidalgo A, Danzi C et al (2018) Betanin: a bioeconomy insight into a valued betacyanin. ACS Sustain Chem Eng 6:2860–2865.  https://doi.org/10.1021/acssuschemeng.7b04163CrossRefGoogle Scholar
  250. 250.
    EFSA ANS Panel (2015) Scientific opinion on the re-evaluation of beetroot red (E162) as a food additive. EFSA J 13:4318–4374.  https://doi.org/10.2903/j.efsa.2015.4318
  251. 251.
    EFSA ANS Panel (2016) Safety of the proposed extension of use of beetroot red (E162) in foods for special medical purposes in young children. EFSA J 14:4487–4500.  https://doi.org/10.2903/j.efsa.2016.4487
  252. 252.
    Pasch JH, von Elbe JH (1979) Betanine stability in buffered solutions containing organic acids, metal cations, antioxidants, or sequestrants. J Food Sci 44:72–75CrossRefGoogle Scholar
  253. 253.
    Bilyk A, Kolodij MA, Sapers GM (1981) Stabilization of red beet pigments with isoascorbic acid. J Food Sci 46:1616–1617CrossRefGoogle Scholar
  254. 254.
    Attoe EL, von Elbe JH (1985) Oxygen involvement in betanine degradation: effect of antioxidants. J Food Sci 50:106–110CrossRefGoogle Scholar
  255. 255.
    von Elbe JH, Attoe EL (1985) Oxygen involvement in betalain degradation - measurement of active oxygen species and oxidation redution potentials. Food Chem 16:49–67CrossRefGoogle Scholar
  256. 256.
    Attoe EL, von Elbe JH (1984) Oxygen involvement in betanin degradation. Oxygen uptake and influence of metal ions. Z Lebensm Unters For 179:232–236CrossRefGoogle Scholar
  257. 257.
    Wattananate K, Thanachayanont C, Tonanon N (2014) ORAC and VIS spectroscopy as a guideline for unmodified red purple natural dyes selection in dye-sensitized solar cells. Sol Energy 107:38–43.  https://doi.org/10.1016/J.Solener.2014.05.004CrossRefGoogle Scholar
  258. 258.
    Qin CY, Clark AE (2007) DFT characterization of the optical and redox properties of natural pigments relevant to dye-sensitized solar cells. Chem Phys Lett 438:26–30CrossRefGoogle Scholar
  259. 259.
    Zhang D, Lanier SM, Downing JA et al (2008) Betalain pigments for dye-sensitized solar cells. J Photochem Photobiol A 195:72–80CrossRefGoogle Scholar
  260. 260.
    Gülçin İ (2012) Antioxidant activity of food constituents: an overview. Arch Toxicol 86:345–391.  https://doi.org/10.1007/s00204-011-0774-2CrossRefPubMedPubMedCentralGoogle Scholar
  261. 261.
    Taira J, Tsuchida E, Katoh MC et al (2015) Antioxidant capacity of betacyanins as radical scavengers for peroxyl radical and nitric oxide. Food Chem 166:531–536.  https://doi.org/10.1016/j.foodchem.2014.05.102CrossRefPubMedPubMedCentralGoogle Scholar
  262. 262.
    Rojo de la Vega M, Krajisnik A, Zhang DD et al. (2017) Targeting NRF2 for improved skin barrier function and photoprotection: focus on the achiote-derived apocarotenoid bixin. Nutrients 9.  https://doi.org/10.3390/nu9121371
  263. 263.
    Livrea MA, Tesoriere L (2013) Lipoperoxyl radical scavenging and antioxidative effects of red beet pigments. In: Neelwarne B (ed) Red beet biotechnology: food and pharmaceutical applications. Springer, Boston, pp 105–124.  https://doi.org/10.1007/978-1-4614-3458-0_6CrossRefGoogle Scholar
  264. 264.
    Tesoriere L, Allegra M, Butera D et al (2004) Absorption, excretion, and distribution of dietary antioxidant betalains in LDLs: potential health effects of betalains in humans. Am J Clin Nutr 80:941–945PubMedCrossRefPubMedCentralGoogle Scholar
  265. 265.
    Tesoriere L, Gentile C, Angileri F et al (2013) Trans-epithelial transport of the betalain pigments indicaxanthin and betanin across Caco-2 cell monolayers and influence of food matrix. Eur J Nutr 52:1077–1087.  https://doi.org/10.1007/s00394-012-0414-5CrossRefPubMedPubMedCentralGoogle Scholar
  266. 266.
    Gokhale SV, Lele SS (2014) Betalain content and antioxidant activity of Beta vulgaris: effect of hot air convective drying and storage. J Food Process Pres 38:585–590.  https://doi.org/10.1111/Jfpp.12006CrossRefGoogle Scholar
  267. 267.
    Guldiken B, Toydemir G, Memis KN et al (2016) Home-processed red beetroot (Beta vulgaris L.) products: changes in antioxidant properties and bioaccessibility. Int J Mol Sci 17.  https://doi.org/10.3390/ijms17060858
  268. 268.
    Paciulli M, Medina-Meza IG, Chiavaro E et al (2016) Impact of thermal and high pressure processing on quality parameters of beetroot (Beta vulgaris L.). LWT 68:98–104.  https://doi.org/10.1016/j.lwt.2015.12.029CrossRefGoogle Scholar
  269. 269.
    Gandia-Herrero F, Cabanes J, Escribano J et al (2013) Encapsulation of the most potent antioxidant betalains in edible matrixes as powders of different colors. J Agric Food Chem 61:4294–4302.  https://doi.org/10.1021/Jf400337gCrossRefPubMedPubMedCentralGoogle Scholar
  270. 270.
    Kaimainen M, Marze S, Jarvenpaa E et al (2015) Encapsulation of betalain into W/O/W double emulsion and release during in vitro intestinal lipid digestion. LWT 60:899–904.  https://doi.org/10.1016/j.lwt.2014.10.016CrossRefGoogle Scholar
  271. 271.
    Pagano APE, Khalid N, Kobayashi I et al (2018) Microencapsulation of betanin in monodisperse W/O/W emulsions. Food Res Int 109:489–496.  https://doi.org/10.1016/j.foodres.2018.04.053CrossRefPubMedPubMedCentralGoogle Scholar
  272. 272.
    Otalora MC, Carriazo JG, Iturriaga L et al (2015) Microencapsulation of betalains obtained from cactus fruit (Opuntia ficus-indica) by spray drying using cactus cladode mucilage and maltodextrin as encapsulating agents. Food Chem 187:174–181.  https://doi.org/10.1016/j.foodchem.2015.04.090CrossRefPubMedPubMedCentralGoogle Scholar
  273. 273.
    Saldanha do Carmo C, Nunes AN, Serra AT et al. (2015) A way to prepare a liposoluble natural pink colourant. Green Chem 17:1510–1518.  https://doi.org/10.1039/c4gc01801j
  274. 274.
    Brewer MS (2011) Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Compr Rev Food Sci Food Saf 10:221–247.  https://doi.org/10.1111/j.1541-4337.2011.00156.xCrossRefGoogle Scholar
  275. 275.
    Foti MC (2008) Antioxidant properties of phenols. J Pharm Pharmacol 59:1673–1685CrossRefGoogle Scholar
  276. 276.
    Litwinienko G, Ingold KU (2007) Solvent effects on the rates and mechanisms of reaction of phenols with free radicals. Acc Chem Res 40:222–230PubMedCrossRefPubMedCentralGoogle Scholar
  277. 277.
    Ingold KU (1969) Peroxy radicals. Acc Chem Res 2:1–9CrossRefGoogle Scholar
  278. 278.
    Leopoldini M, Marino T, Russo N et al (2004) Antioxidant properties of phenolic compounds: H-atom versus electron transfer mechanism. J Phys Chem A 108:4916–4922CrossRefGoogle Scholar
  279. 279.
    Viehe HG, Janousek Z, Merenyi R et al (1985) The captodative effect. Acc Chem Res 18:148–154.  https://doi.org/10.1021/ar00113a004CrossRefGoogle Scholar
  280. 280.
    Warren JJ, Tronic TA, Mayer JM (2010) Thermochemistry of proton-coupled electron transfer reagents and its implications. Chem Rev 110:6961–7001.  https://doi.org/10.1021/cr100085kCrossRefPubMedPubMedCentralGoogle Scholar
  281. 281.
    Foti MC, Amorati R (2009) Non-phenolic radical-trapping antioxidants. J Pharm Pharmacol 61:1435–1448PubMedCrossRefPubMedCentralGoogle Scholar
  282. 282.
    Foti MC, Daquino C, Geraci C (2004) Electron-transfer reaction of cinnamic acids and their methyl esters with the DPPH• radical in alcoholic solutions. J Org Chem 69:2309–2314PubMedCrossRefPubMedCentralGoogle Scholar
  283. 283.
    Gryn'ova G, Hodgson JL, Coote ML (2011) Revising the mechanism of polymer autooxidation. Org Biomol Chem 9:480–490.  https://doi.org/10.1039/c0ob00596gCrossRefPubMedPubMedCentralGoogle Scholar
  284. 284.
    Apak R (2018) Electron transfer-based antioxidant capacity assays and the cupric ion reducing antioxidant capacity (CUPRAC) assay. In: Apak R, Capanoglu E, Shahidi F (eds) Measurement of antioxidant activity & capacity: recent trends and applications. John Wiley & Sons Ltd, Chichester, pp 57–75Google Scholar
  285. 285.
    Rietjens IM, Boersma MG, Haan L et al (2002) The pro-oxidant chemistry of the natural antioxidants vitamin C, vitamin E, carotenoids and flavonoids. Environ Toxicol Pharmacol 11:321–333PubMedCrossRefPubMedCentralGoogle Scholar
  286. 286.
    MacLean PD, Chapman EE, Dobrowolski SL et al (2008) Pyrroles as antioxidants: solvent effects and the nature of the attacking radical on antioxidant activities and mechanisms of pyrroles, dipyrrinones, and bile pigments. J Org Chem 73:6623–6635PubMedCrossRefPubMedCentralGoogle Scholar
  287. 287.
    Wybraniec S (2005) Formation of decarboxylated betacyanins in heated purified betacyanin fractions from red beet root (Beta vulgaris L.) monitored by LC-MS/MS. J Agric Food Chem 53:3483–3487PubMedCrossRefPubMedCentralGoogle Scholar
  288. 288.
    Nakagawa S, Tachrim ZP, Kurokawa N et al (2018) pH stability and antioxidant power of cycloDOPA and its derivatives. Molecules 23.  https://doi.org/10.3390/molecules23081943
  289. 289.
    Gonçalves LCP, Di Genova BM, Dörr FA et al (2013) Effect of dielectric microwave heating on color and antiradical capacity of betanin. J Food Eng 118:49–55CrossRefGoogle Scholar
  290. 290.
    Rodriguez SA, Baumgartner MT (2020) Betanidin pKa prediction using DFT methods. ACS Omega 5:13751–13759.  https://doi.org/10.1021/acsomega.0c00904CrossRefPubMedPubMedCentralGoogle Scholar
  291. 291.
    Valero E, Escribano J, Garcia-Carmona F (1988) Reactions of 4-methyl-o-benzoquinone, generated chemically or enzymatically, in the presence of L-proline. Phytochemistry 27:2055–2061.  https://doi.org/10.1016/0031-9422(88)80096-7CrossRefGoogle Scholar
  292. 292.
    Tutone M, Lauria A, Almerico AM (2016) Theoretical determination of the pKa values of betalamic acid related to the free radical scavenger capacity: comparison between empirical and quantum chemical methods. Interdiscip Sci Comput Life Sci 8:177–185.  https://doi.org/10.1007/s12539-015-0101-3CrossRefGoogle Scholar
  293. 293.
    Hider RC, Liu ZD, Khodr HH (2001) Metal chelation of polyphenols. In: Packer L (ed) Methods in Enzymology, vol 335. Academic Press, San Diego, pp 190–203.  https://doi.org/10.1016/s0076-6879(01)35243-6
  294. 294.
    Roy K, Popelier PLA (2009) Predictive QSPR modeling of the acidic dissociation constant (pKa) of phenols in different solvents. J Phys Org Chem 22:186–196CrossRefGoogle Scholar
  295. 295.
    Hider RC, Hall AD (1991) Two clinically useful chelators of tripositive elements. In: Ellis GP, West GB (eds) Progress in medicinal chemistry, vol 28. Elsevier, Amsterdam, pp 41–173.  https://doi.org/10.1016/s0079-6468(08)70363-1CrossRefGoogle Scholar
  296. 296.
    Kremer T, Schleyer PV (1997) Charge-localizing effect in alkali-metal enolates and phenolates. Structure and aromaticity of the phenolate anion. Organometallics 16:737–746CrossRefGoogle Scholar
  297. 297.
    Stylianou M, Keramidas AD (2010) Drouza C (2010) pH-potentiometric investigation towards chelating tendencies of p-hydroquinone and phenol iminodiacetate copper(II) complexes. Bioinorg Chem Appl.  https://doi.org/10.1155/2010/125717
  298. 298.
    Stylianou M, Drouza C, Viskadourakis Z et al (2008) Synthesis, structure, magnetic properties and aqueous solution characterization of p-hydroquinone and phenol iminodiacetate copper(II) complexes. Dalton Trans:6188–6204Google Scholar
  299. 299.
    Atmani D, Chaher N, Atmani D et al (2009) Flavonoids in human health: from structure to biological activity. Curr Nutr Food Sci 5:225–237CrossRefGoogle Scholar
  300. 300.
    Dolatabadi JEN (2011) Molecular aspects on the interaction of quercetin and its metal complexes with DNA. Int J Biol Macromol 48:227–233PubMedCrossRefPubMedCentralGoogle Scholar
  301. 301.
    Galleano M, Verstraeten SV, Oteiza PI et al (2010) Antioxidant actions of flavonoids: thermodynamic and kinetic analysis. Arch Biochem Biophys 501:23–30PubMedCrossRefPubMedCentralGoogle Scholar
  302. 302.
    Wybraniec S, Starzak K, Skopińska A et al (2013) Effects of metal cations on betanin stability in aqueous-organic solutions. Food Sci Technol 22:353–363.  https://doi.org/10.1007/s10068-013-0088-7CrossRefGoogle Scholar
  303. 303.
    Kumorkiewicz A, Szmyr N, Popenda L et al (2019) Alternative mechanisms of betacyanin oxidation by complexation and radical generation. J Agric Food Chem 67:7455–7465.  https://doi.org/10.1021/acs.jafc.9b01168CrossRefPubMedPubMedCentralGoogle Scholar
  304. 304.
    Wybraniec S, Stalica P, Spórna A et al (2011) Antioxidant activity of betanidin: electrochemical study in aqueous media. J Agric Food Chem 59:12163–12170.  https://doi.org/10.1021/jf2024769CrossRefPubMedPubMedCentralGoogle Scholar
  305. 305.
    Wybraniec S, Starzak K, Skopińska A et al (2013) Studies on nonenzymatic oxidation mechanisms in neobetanin, betanin, and decarboxylated betanins. J Agric Food Chem 61:6465–6476.  https://doi.org/10.1021/jf400818sCrossRefPubMedPubMedCentralGoogle Scholar
  306. 306.
    Kumorkiewicz A, Szneler E, Wybraniec S (2018) Conjugation of oxidized betanidin and gomphrenin pigments from Basella alba L. fruits with glutathione. J Agric Food Chem 66:12815–12826.  https://doi.org/10.1021/acs.jafc.8b04941CrossRefPubMedPubMedCentralGoogle Scholar
  307. 307.
    Wybraniec S, Michalowski T (2011) New pathways of betanidin and betanin enzymatic oxidation. J Agric Food Chem 59:9612–9622.  https://doi.org/10.1021/jf2020107CrossRefPubMedPubMedCentralGoogle Scholar
  308. 308.
    Krumova K, Cosa G (2016) Overview of reactive oxygen species. In: Nonell S, Flors C (eds) Singlet oxygen: applications in biosciences and nanosciences, vol 1. The Royal Society of Chemistry, Cambridge, pp 1–21.  https://doi.org/10.1039/9781782622208-00001CrossRefGoogle Scholar
  309. 309.
    Premi S, Wallisch S, Mano CM et al (2015) Photochemistry. Chemiexcitation of melanin derivatives induces DNA photoproducts long after UV exposure. Science 347:842–847.  https://doi.org/10.1126/science.1256022CrossRefPubMedPubMedCentralGoogle Scholar
  310. 310.
    Krajisnik A, Perer J, Wondrak GT (2019) Sunscreen-based skin protection against solar insult: molecular mechanisms and opportunities. In: Alberts DS, Hess LM (eds) Fundamentals of cancer prevention, 4th edn. Springer International Publishing, Cham, pp 377–404.  https://doi.org/10.1007/978-3-030-15935-1_12CrossRefGoogle Scholar
  311. 311.
    Wendel M, Nizinski S, Gierszewski M et al (2016) Chemical quenching of singlet oxygen by betanin. Photoch Photobio Sci 15:872–878.  https://doi.org/10.1039/c6pp00037aCrossRefGoogle Scholar
  312. 312.
    Bonacin JA, Engelmann FM, Severino D et al (2009) Singlet oxygen quantum yields (ΦΔ) in water using beetroot extract and an array of LEDs. J Braz Chem Soc 20:31–36CrossRefGoogle Scholar
  313. 313.
    Nizinski S, Wendel M, Rode MF et al (2017) Photophysical properties of betaxanthins: miraxanthin V - insight into the excited-state deactivation mechanism from experiment and computations. RSC Adv 7:6411–6421.  https://doi.org/10.1039/c6ra28110aCrossRefGoogle Scholar
  314. 314.
    Wendel M, Szot D, Starzak K et al (2015) Photophysical properties of indicaxanthin in aqueous and alcoholic solutions. Dyes Pigments 113:634–639.  https://doi.org/10.1016/j.dyepig.2014.09.036CrossRefGoogle Scholar
  315. 315.
    Gandia-Herrero F, Escribano J, Garcia-Carmona F (2009) The role of phenolic hydroxy groups in the free radical scavenging activity of betalains. J Nat Prod 72:1142–1146PubMedCrossRefPubMedCentralGoogle Scholar
  316. 316.
    Guerrero-Rubio MA, Hernández-García S, García-Carmona F et al (2020) Biosynthesis of a novel polymeric chitosan-betaxanthin and characterization of the first sugar-derived betalains and their effects in the in vivo model Caenorhabditis elegans. Carbohydr. Polym.  https://doi.org/10.1016/j.carbpol.2020.117141
  317. 317.
    Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956.  https://doi.org/10.1016/0891-5849(95)02227-9CrossRefPubMedPubMedCentralGoogle Scholar
  318. 318.
    Stewart AJ, Mullen W, Crozier A (2005) On-line high-performance liquid chromatography analysis of the antioxidant activity of phenolic compounds in green and black tea. Mol Nutr Food Res 49:52–60PubMedCrossRefPubMedCentralGoogle Scholar
  319. 319.
    Pietta P (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042PubMedCrossRefPubMedCentralGoogle Scholar
  320. 320.
    Foti M, Ruberto G (2001) Kinetic solvent effects on phenolic antioxidants determined by spectrophotometric measurements. J Agric Food Chem 49:342–348PubMedCrossRefPubMedCentralGoogle Scholar
  321. 321.
    Schwinn KE (2016) The dope on L-DOPA formation for betalain pigments. New Phytol 210:6–9PubMedCrossRefPubMedCentralGoogle Scholar
  322. 322.
    Sheehan H, Feng T, Walker-Hale N et al (2019) Evolution of L-DOPA 4,5-dioxygenase activity allows for recurrent specialisation to betalain pigmentation in Caryophyllales. New Phytol.  https://doi.org/10.1111/nph.16089
  323. 323.
    Christinet L, Burdet FX, Zaiko M et al (2004) Characterization and functional identification of a novel plant 4,5-extradiol dioxygenase involved in betalain pigment biosynthesis in Portulaca grandiflora. Plant Physiol 134:265–274PubMedPubMedCentralCrossRefGoogle Scholar
  324. 324.
    Chung HH, Schwinn KE, Ngo HM et al (2015) Characterisation of betalain biosynthesis in Parakeelya flowers identifies the key biosynthetic gene DOD as belonging to an expanded LigB gene family that is conserved in betalain-producing species. Front Plant Sci 6:499.  https://doi.org/10.3389/fpls.2015.00499CrossRefPubMedPubMedCentralGoogle Scholar
  325. 325.
    Guerrero-Rubio MA, Garcia-Carmona F, Gandia-Herrero F (2020) First description of betalains biosynthesis in an aquatic organism: characterization of 4,5-DOPA-extradiol-dioxygenase activity in the cyanobacteria Anabaena cylindrica. Microb Biotechnol.  https://doi.org/10.1111/1751-7915.13641
  326. 326.
    Harris N, Javellana J, Davies K et al (2012) Betalain production is possible in anthocyanin-producing plant species given the presence of DOPA-dioxygenase and L-DOPA. BMC Plant Biol 12:34PubMedPubMedCentralCrossRefGoogle Scholar
  327. 327.
    Bean A, Sunnadeniya R, Akhavan N et al (2018) Gain-of-function mutations in beet DODA2 identify key residues for betalain pigment evolution. New Phytol 219:287–296.  https://doi.org/10.1111/nph.15159CrossRefPubMedPubMedCentralGoogle Scholar
  328. 328.
    Pioli RM, Mattioli RR, Esteves LC et al (2020) Comparison of the effect of N-methyl and N-aryl groups on the hydrolytic stability and electronic properties of betalain dyes. Dyes Pigments 183.  https://doi.org/10.1016/j.dyepig.2020.108609
  329. 329.
    Graham HN (1992) Green tea composition, consumption, and polyphenol chemistry. Prev Med 21:334–350.  https://doi.org/10.1016/0091-7435(92)90041-fCrossRefPubMedPubMedCentralGoogle Scholar

Authors and Affiliations

  1. 1.Departamento de Química Fundamental, Instituto de QuímicaUniversidade de São PauloSão PauloBrazil
  2. 2.Leibniz Institute of Plant BiochemistryDepartment of Secondary MetabolismHalle (Saale)Germany

Section editors and affiliations

  • K. G. Ramawat
    • 1
  1. 1.Department of BotanyUniversity College of Science, M. L. Sukhadia UniversityUdaipurIndia

Personalised recommendations