Poisonous Mushroom (Nonedible) as an Antioxidant Source

Living reference work entry

Latest version View entry history

Part of the Reference Series in Phytochemistry book series (RSP)


Antioxidants play an important role in suppressing oxidative stress. Natural sources contain many compounds that have antioxidant properties. Mushrooms that produce biologically active compounds can be classified as poisonous, edible, and inedible. In this study, antioxidant potentials of poisonous mushrooms were investigated. In the literature, the general characteristics of poisonous mushrooms, whose antioxidant potentials were determined by different methods, were reported. In addition, the symptoms arising from the consumption of these mushrooms were mentioned. There are also studies on the toxic compounds of poisonous mushrooms with the reported antioxidant activity. As a result, it was determined that poisonous mushrooms have antioxidant potentials besides their toxic effects.


Antioxidant Natural resource Poisonous Toxic Wild mushroom 


  1. 1.
    Sies H, Berndt C, Jones DP (2017) Oxidative stress. Annu Rev Biochem 86:715–748PubMedGoogle Scholar
  2. 2.
    Mushtaq W, Baba H, Akata İ, Sevindik M (2020) Antioxidant potential and element contents of wild edible mushroom Suillus granulatus. Kahramanmaraş Sütçü İmam Univ Doğa Bilim Derg 23(3):592–595Google Scholar
  3. 3.
    Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F (2018) Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol 14:450–464PubMedGoogle Scholar
  4. 4.
    Sevindik M, Akgul H, Bal C, Selamoglu Z (2018) Phenolic contents, oxidant/antioxidant potential and heavy metal levels in Cyclocybe cylindracea. Indian J Pharm Educ 52(3):437–441Google Scholar
  5. 5.
    Sevindik M (2019) The novel biological tests on various extracts of Cerioporus varius. Fresenius Environ Bull 28(5):3713–3717Google Scholar
  6. 6.
    Xu DP, Li Y, Meng X, Zhou T, Zhou Y, Zheng J, Zhang JJ, Li HB (2017) Natural antioxidants in foods and medicinal plants: extraction, assessment and resources. Int J Mol 18(1):96Google Scholar
  7. 7.
    Gürgen A, Sevindik M, Yıldız S, Akgül H (2020) Determination of antioxidant and oxidant potentials of Pleurotus citrinopileatus mushroom cultivated on various substrates. Kahramanmaraş Sütçü İmam Univ Doğa Bilim Derg 23(3):586–591Google Scholar
  8. 8.
    Ahmadi A, Shadboorestan A (2016) Oxidative stress and cancer; the role of hesperidin, a citrus natural bioflavonoid, as a cancer chemoprotective agent. Nutr Cancer 68(1):29–39PubMedGoogle Scholar
  9. 9.
    Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ, Valko M (2017) Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci 38(7):592–607PubMedGoogle Scholar
  10. 10.
    Sevindik M, Akgul H, Selamoglu Z, Braidy N (2020) Antioxidant and antigenotoxic potential of Infundibulicybe geotropa mushroom collected from Northwestern Turkey. Oxidative Med Cell Longev.
  11. 11.
    Ivanova TS, Krupodorova TA, Barshteyn VY, Artamonova AB, Shlyakhovenko VA (2014) Anticancer substances of mushroom origin. Exp Oncol 36(2):58–66PubMedGoogle Scholar
  12. 12.
    Sevindik M, Akgul H, Akata I, Alli H, Selamoglu Z (2017) Fomitopsis pinicola in healthful dietary approach and their therapeutic potentials. Acta Aliment 46(4):464–469Google Scholar
  13. 13.
    Krupodorova TA, Barshteyn VY, Bisko NA, Ivanova TS (2012) Some macronutrient content in mycelia and culture broth of medicinal mushrooms cultivated on amaranth flour. Int J Med Mushrooms 14(3):285–293PubMedGoogle Scholar
  14. 14.
    Bal C, Sevindik M, Akgul H, Selamoglu Z (2019) Oxidative stress index and antioxidant capacity of Lepista nuda collected from Gaziantep/Turkey. Sigma 37(1):1–5Google Scholar
  15. 15.
    Bal C, Akgul H, Sevindik M, Akata I, Yumrutas O (2017) Determination of the anti-oxidative activities of six mushrooms. Fresenius Environ Bull 26:6246–6252Google Scholar
  16. 16.
    Sevindik M, Akata I (2019) Antioxidant, oxidant potentials and element content of edible wild mushroom Helvella leucopus. Indian J Nat Prod Resour 10(4):266–271Google Scholar
  17. 17.
    Ruan-Soto F, Ordaz-Velázquez M, García-Santiago W, Pérez-Ovando C (2017) Traditional processing and preservation of wild edible mushrooms in Mexico. Ann Food Process Preserv 2(1):1013Google Scholar
  18. 18.
    Krupodorova TA, Barshteyn VY, Zabeida EF, Pokas EV (2016) Antibacterial activity of macromycetes mycelia and culture liquid. Microbiol Biotechnol Lett 44(3):246–253Google Scholar
  19. 19.
    Kaya M, Akata I, Baran T, Menteş A (2015) Physicochemical properties of chitin and chitosan produced from medicinal fungus (Fomitopsis pinicola). Biophysik 10(2):162–168Google Scholar
  20. 20.
    Valverde ME, Hernández-Pérez T, Paredes-López O (2015) Edible mushrooms: improving human health and promoting quality life. Int J Microbiol Res.
  21. 21.
    Süfer Ö, Bozok F, Demir H (2016) Usage of edible mushrooms in various food products. Turjaf 4(3):144–149Google Scholar
  22. 22.
    Krupodorova TA, Shmarakov IA, Barshteyn VY (2016) Anticancer potential of Trametes versicolor (L.) Lloyd and Auriporia aurea (Peck) Ryvarden mycelia in rat Guerins carcinoma. Adv Biomed Pharma 3:1–8Google Scholar
  23. 23.
    Wani BA, Bodha RH, Wani AH (2010) Nutritional and medicinal importance of mushrooms. J Med Plant Res 4(24):2598–2604Google Scholar
  24. 24.
    Sun Y, Lv F, Tian J, Ye XQ, Chen J, Sun P (2019) Domestic cooking methods affect nutrient, phytochemicals, and flavor content in mushroom soup. Food Sci Nutr 7(6):1969–1975PubMedPubMedCentralGoogle Scholar
  25. 25.
    Krupodorova T, Barshteyn V, Pokas E (2019) Antibacterial activity of Fomitopsis betulina cultural liquid. Eureka Life Sci 6:10–16Google Scholar
  26. 26.
    De Silva DD, Rapior S, Sudarman E, Stadler M, Xu J, Alias SA, Hyde KD (2013) Bioactive metabolites from macrofungi: ethnopharmacology, biological activities and chemistry. Fungal Divers 62(1):1–40Google Scholar
  27. 27.
    Öztürk M, Tel G, Öztürk FA, Duru ME (2014) The cooking effect on two edible mushrooms in Anatolia: fatty acid composition, total bioactive compounds, antioxidant and anticholinesterase activities. Rec Nat Prod 8(2):189Google Scholar
  28. 28.
    Bandara AR, Rapior S, Bhat DJ, Kakumyan P, Chamyuang S, Xu J, Hyde KD (2015) Polyporus umbellatus, an edible-medicinal cultivated mushroom with multiple developed health-care products as food, medicine and cosmetics: a review. Cryptogam Mycol 36(1):3–42Google Scholar
  29. 29.
    Sevindik M (2018) Investigation of antioxidant/oxidant status and antimicrobial activities of Lentinus tigrinus. Adv Pharmacol Sci.
  30. 30.
    McPartland JM, Vilgalys RJ, Cubeta MA (1997) Mushroom poisoning. Am Fam Physician 55:1797–1812PubMedGoogle Scholar
  31. 31. Accessed 14 April 2020
  32. 32. Accessed 14 April 2020
  33. 33. Accessed 14 April 2020
  34. 34.
    Orsine JVC, da Costa RV, Novaes MRCG (2012) Mushrooms of the genus Agaricus as functional foods. Nutr Hosp 27(4):1017–1024Google Scholar
  35. 35.
    Karunarathna SC, Chen J, Mortimer PE, Xu JC, Zhao RL, Callac P, Hyde KD (2016) Mycosphere essay 8: a review of the genus Agaricus in tropical and humid subtropical regions of Asia. Mycosphere 7(4):417–439Google Scholar
  36. 36.
    Kibby G (2013) Fungal portraits no. 55 Agaricus xanthodermus. Field Mycol 3(14):75–76Google Scholar
  37. 37.
    Kherlenchimeg N (2018) Morphological study of genus Agaricus of Mongolia. Problems of Botany in Southern Siberia and Mongolia (17):268–272Google Scholar
  38. 38.
    Gill M, Strauch RJ (1984) Constituents of Agaricus xanthodermus Genevier: the first naturally endogenous azo compound and toxic phenolic metabolites. Z Naturforsch C 39(11–12):1027–1029PubMedGoogle Scholar
  39. 39.
    Bresinsky A (1990) A colour atlas of poisonous fungi: a handbook for pharmacists, doctors, and biologists. CRC Press, Boca RatonGoogle Scholar
  40. 40.
    Özaltun B, Sevindik M (2020) Evaluation of the effects on atherosclerosis and antioxidant and antimicrobial activities of Agaricus xanthodermus poisonous mushroom. Eur Respir J.
  41. 41.
    Singer R (1986) The agaricales in modern taxonomy, 4th edn. Koeltz Scientific Books, Koenigstein. 981 pGoogle Scholar
  42. 42.
    Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Ainsworth and Bisby’s dictionary of fungi, 10th edn. CAB International, Wallingford. 771 pGoogle Scholar
  43. 43.
    Block SS, Stephens RL, Murrill WA (1955) Natural food poisons, amanita toxins in mushrooms. J Agric Food Chem 3(7):584–587Google Scholar
  44. 44.
    Mitchel DH (1980) Amanita mushroom poisoning. Annu Rev Med 31(1):51–57PubMedGoogle Scholar
  45. 45.
    Lima AD, Fortes RC, Novaes MG, Percário S (2012) Poisonous mushrooms; a review of the most common intoxications. Nutr Hosp 27(2):402–408PubMedGoogle Scholar
  46. 46.
    Yilmaz I, Ermis F, Akata I, Kaya E (2015) A case study: what doses of Amanita phalloides and amatoxins are lethal to humans? Wilderness Environ Med 26(4):491–496PubMedGoogle Scholar
  47. 47.
    Satora L, Pach D, Butryn B, Hydzik P, Balicka-Ślusarczyk B (2005) Fly agaric (Amanita muscaria) poisoning, case report and review. Toxicon 45(7):941–943PubMedGoogle Scholar
  48. 48.
    Benjamín DR (1992) Mushroom poisoning in infants and children: the Amanita pantherina/muscaria group. J Toxicol 30(1):13–22Google Scholar
  49. 49.
    Michelot D, Melendez-Howell LM (2003) Amanita muscaria: chemistry, biology, toxicology, and ethnomycology. Mycol Res 107(2):131–146PubMedGoogle Scholar
  50. 50.
    European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) (2006) Hallucinogenic mushrooms: an emerging trend case study. EMCDDA Thematic Papers, LisbonGoogle Scholar
  51. 51.
    Eugster CH, Mueller GF, Good R (1965) The active ingredients from Amanita muscaria: ibotenic acid and muscazone. Tetrahedron Lett 23:1813–1815Google Scholar
  52. 52.
    Theobald W, Büch O, Kunz HA, Krupp P, Stenger EG, Heimann H (1968) Pharmacological and experimental psychological studies with 2 components of fly agaric (Amanita muscaria). Arzneimitt Forsch 18(3):311PubMedGoogle Scholar
  53. 53.
    Sarma B, Ghormade PS, Dash SK, Chavali K (2019) Fatal mushroom poisoning: a case-series. J Indian Soc Toxicol 15(1):48–53Google Scholar
  54. 54.
    Reis FS, Heleno SA, Barros L, Sousa MJ, Martins A, Santos-Buelga C, Ferreira IC (2011) Toward the antioxidant and chemical characterization of mycorrhizal mushrooms from Northeast Portugal. J Food Sci 76(6):C824–C830PubMedGoogle Scholar
  55. 55.
    Ragupathi V, Stephen A, Arivoli D, Kumaresan S (2018) Antioxidant activity of some wild mushrooms from southern Western Ghats, India. Int J Pharm Drug Anal 6(2):72–79Google Scholar
  56. 56.
    El Babili F, Chatelain C, Souchard JP (2019) Chemical study of some fungi: evaluation of their antioxidant and xanthine oxidase effects. Jpn J Med 2:4Google Scholar
  57. 57.
    Nowacka N, Nowak R, Drozd M, Olech M, Los R, Malm A (2015) Antibacterial, antiradical potential and phenolic compounds of thirty-one polish mushrooms. PLoS One 10(10):e0140355PubMedPubMedCentralGoogle Scholar
  58. 58.
    Barceloux DG (2008) Medical toxicology of natural substances: foods, fungi, medicinal herbs, plants, and venomous animals. Wiley, HobokenGoogle Scholar
  59. 59.
    Stříbrný J, Sokol M, Merová B, Ondra P (2012) GC/MS determination of ibotenic acid and muscimol in the urine of patients intoxicated with Amanita pantherina. Int J Med Toxicol Legal Med 126(4):519–524Google Scholar
  60. 60.
    Satora L, Pach D, Ciszowski K, Winnik L (2006) Panther cap Amanita pantherina poisoning case report and review. Toxicon 47(5):605–607PubMedGoogle Scholar
  61. 61.
    Vendramin A, Brvar M (2014) Amanita muscaria and Amanita pantherina poisoning: two syndromes. Toxicon 90:269–272PubMedGoogle Scholar
  62. 62.
    Trim GM, McKeown RV, Le Couteur DG, Lepp H, Hall MJ, McCaughan GW, Duggin GG (1999) Poisoning by Amanita phalloides (“deathcap”) mushrooms in the Australian capital territory. Med J Aust 171(5):247–249PubMedGoogle Scholar
  63. 63.
    Vetter J (1998) Toxins of Amanita phalloides. Toxicon 36(1):13–24PubMedGoogle Scholar
  64. 64.
    Bonnet MS, Basson PW (2002) The toxicology of Amanita phalloides. Homeopathy 91(04):249–254PubMedGoogle Scholar
  65. 65.
    Garcia J, Costa VM, Carvalho A, Baptista P, de Pinho PG, de Lourdes BM, Carvalho F (2015) Amanita phalloides poisoning: mechanisms of toxicity and treatment. Food Chem Toxicol 86:41–55PubMedGoogle Scholar
  66. 66.
    Marmion VJ, Wiedemann TEJ (2002) The death of Claudius. J R Soc Med 95(5):260–261PubMedPubMedCentralGoogle Scholar
  67. 67.
    Healey K, Woo OF, Olson KR, Pond SM, Seward J, Becker CE (1982) Amanita phalloides-type mushroom poisoning. West J Emerg Med 137(4):282Google Scholar
  68. 68.
    Pauli JL, Foot CL (2005) Fatal muscarinic syndrome after eating wild mushrooms. Med J Aust 182(6):294–295PubMedGoogle Scholar
  69. 69.
    Kumar A, White J, Christie RJ, Dimasi N, Gao C (2017) Antibody-drug conjugates. Annu Rep Med Chem 50:441–480Google Scholar
  70. 70.
    Zheleva A, Gadjeva V, Popova S (2004) Antioxidant properties of Amanita phalloides mushroom toxins. Trakia J Sci 2(3):28–30Google Scholar
  71. 71.
    Zheleva A, Tolekova A, Zhelev M, Dobreva Z, Halacheva K, Popova S (2005) In vivo antioxidant and prooxidant properties of Amanita phalloides mushroom toxins. Trakia J Sci 3:34–38Google Scholar
  72. 72.
    Luo H, Hallen-Adams HE, Scott-Craig JS, Walton JD (2010) Colocalization of amanitin and a candidate toxin-processing prolyl oligopeptidase in Amanita basidiocarps. Eukaryot Cell 9(12):1891–1900PubMedPubMedCentralGoogle Scholar
  73. 73.
    Kim CS, Jo JW, Kwag YN, Kim JH, Shrestha B, Sung GH, Han SK (2013) Taxonomic study of Amanita subgenus Lepidella and three unrecorded Amanita species in Korea. Mycobiology 41(4):183–190PubMedPubMedCentralGoogle Scholar
  74. 74.
    Tyler VE Jr, Groeger D (1964) Amanita Alkaloids. II. Amanita citrina and Amanita porphyria. Planta Med 12:397Google Scholar
  75. 75.
    Vargas N, Bernal A, Sarria V, Franco-Molano A, Restrepo S (2011) Amatoxin and phallotoxin composition in species of the genus Amanita in Colombia: a taxonomic perspective. Toxicon 58(6–7):583–590PubMedGoogle Scholar
  76. 76.
    Walton J (2018) Chemistry of the Amanita PEPTIDE toxins. In: The cyclic peptide toxins of Amanita and other poisonous mushrooms. Springer, Cham, pp 19–57Google Scholar
  77. 77.
    Reis FS, Pereira E, Barros L, Sousa MJ, Martins A, Ferreira IC (2011b) Biomolecule profiles in inedible wild mushrooms with antioxidant value. Molecules 16(6):4328–4338PubMedPubMedCentralGoogle Scholar
  78. 78.
    Schumacher T, Høiland K (1983) Mushroom poisoning caused by species of the genus Cortinarius Fries. Arch Toxicol 53(2):87–106PubMedGoogle Scholar
  79. 79.
    Danel VC, Saviuc PF, Garon D (2001) Main features of Cortinarius spp. poisoning: a literature review. Toxicon 39(7):1053–1060PubMedGoogle Scholar
  80. 80.
    Garnica S, Wei M, Oberwinkler F (2003) Morphological and molecular phylogenetic studies in South American Cortinarius species. Mycol Res 107(10):1143–1156PubMedGoogle Scholar
  81. 81.
    Wu F, Zhou LW, Yang ZL, Bau T, Li TH, Dai YC (2019) Resource diversity of Chinese macrofungi: edible, medicinal and poisonous species. Fungal Divers 98:1–76Google Scholar
  82. 82.
    Niskanen T, Laine S, Liimatainen K, Kytövuori I (2012) Cortinarius sanguineus and equally red species in Europe with an emphasis on northern European material. Mycologia 104(1):242–253PubMedGoogle Scholar
  83. 83.
    Tebbett IR, Kidd CBM, Caddy B, Robertson J, Tilstone WJ (1983) Toxicity of Cortinarius species. Trans Br Mycol Soc 81(3):636–638Google Scholar
  84. 84.
    Michelot D, Tebbett I (1990) Poisoning by members of the genus Cortinarius – a review. Mycol Res 94(3):289–298Google Scholar
  85. 85.
    Räisänen R, Nousiainen P, Hynninen PH (2002) Dermorubin and 5-chlorodermorubin natural anthraquinone carboxylic acids as dyes for wool. Text Res J 72(11):973–976Google Scholar
  86. 86.
    Ge ZW, Jacobs A, Vellinga EC, Sysouphanthong P, van der Walt R, Lavorato C, Yi-Feng A, Yang ZL (2018) A multi-gene phylogeny of Chlorophyllum (Agaricaceae, Basidiomycota): new species, new combination and infrageneric classification. MycoKeys 32:65Google Scholar
  87. 87.
    Lehmann PF, Khazan U (1992) Mushroom poisoning by Chlorophyllum molybdites in the Midwest United States. Mycopathologia 118(1):3–13PubMedGoogle Scholar
  88. 88.
    Yoshikawa K, Ikuta M, Arihara S, Matsumura E, Katayama S (2001) Two new steroidal derivatives from the fruit body of Chlorophyllum molybdites. Chem Pharm Bull 49(8):1030–1032Google Scholar
  89. 89.
    Al-Fatimi M, Schröder G, Kreisel H, Lindequist U (2013) Biological activities of selected basidiomycetes from Yemen. Pharmazie 68(3):221–226PubMedGoogle Scholar
  90. 90.
    Guzmán-Dávalos L, Mueller GM, Cifuentes J, Miller AN, Santerre A (2003) Traditional infrageneric classification of Gymnopilus is not supported by ribosomal DNA sequence data. Mycologia 95(6):1204–1214PubMedGoogle Scholar
  91. 91.
    Guzmán-Dávalos L, Herrera M (2006) A new bluing, probably hallucinogenic species of Gymnopilus P. Karst. (Agaricomycetideae) from Mexico. Int J Med Mushrooms 8(3):289–293Google Scholar
  92. 92.
    Guzmán G, Allen JW, Gartz J (1998) A worldwide geographical distribution of the neurotropic fungi, an analysis and discussion. Ann Mus Civ Rovereto 14:189–280Google Scholar
  93. 93.
    Miyazaki S, Kitamura N, Nishio A, Tanaka S, Kayano T, Moriya T, Ichiyanagi T, Shimomura N, Shibuya I, Aimi T (2012) Gymnopilin-a substance produced by the hallucinogenic mushroom, Gymnopilus junonius-mobilizes intracellular Ca2+ in dorsal root ganglion cells. Biomed Res 33(2):111–118PubMedGoogle Scholar
  94. 94.
    Kayano T, Kitamura N, Miyazaki S, Ichiyanagi T, Shimomura N, Shibuya I, Aimi T (2014) Gymnopilins, a product of a hallucinogenic mushroom, inhibit the nicotinic acetylcholine receptor. Toxicon 81:23–31PubMedGoogle Scholar
  95. 95.
    Lee S, Ryoo R, Choi JH, Kim JH, Kim SH, Kim KH (2020) Trichothecene and tremulane sesquiterpenes from a hallucinogenic mushroom Gymnopilus junonius and their cytotoxicity. Arch Pharm Res 43:1–10Google Scholar
  96. 96.
    Hatfield GM, Valdes LJ (1978) The occurrence of psilocybin in Gymnopilus species. Lloydia 41(2):140–144PubMedGoogle Scholar
  97. 97.
    Beatriz Pomilio A, Maris Battista S, Alonso A (2019) Mushroom poisonings. Part 4: early-onset syndromes with complex symptoms. Acta Bioquim Clin L 53(3):361–396Google Scholar
  98. 98.
    Yin X, Yang AA, Gao JM (2019) Mushroom toxins: chemistry and toxicology. J Agric Food Chem 67(18):5053–5071PubMedGoogle Scholar
  99. 99.
    Ragupathi V, Stephen A, Arivoli D, Kumaresan S (2018b) Antibacterial activity, in vitro antioxidant potential and GC-MS characterization of methanolic extract of Gymnopilus junonius, a wild mushroom from southern Western Ghats, India. Eur J Biomed 5(3):650–657Google Scholar
  100. 100.
    Karlson-Stiber C, Persson H (2003) Cytotoxic fungi – an overview. Toxicon 42(4):339–349PubMedGoogle Scholar
  101. 101.
    Dart RC (ed) (2004) Medical toxicology. Lippincott Williams & Wilkins, Philadelphia, pp 1719–1735Google Scholar
  102. 102.
    Diaz JH (2005) Syndromic diagnosis and management of confirmed mushroom poisonings. Crit Care Med 33(2):427–436PubMedGoogle Scholar
  103. 103.
    Deb S, Singh RK (2017) Ascosporogenesis in Gyromitra esculenta (Discinaceae, Pezizales), a poisonous mushroom of North East India. Indian Forester 143(1):69–71Google Scholar
  104. 104.
    Perisetti A, Raghavapuram S, Sheikh AB, Yendala R, Rahman R, Shanshal M, Thein KZ, Farooq A (2018) Mushroom poisoning mimicking painless progressive jaundice: a case report with review of the literature. Cureus 10(4):e2436PubMedPubMedCentralGoogle Scholar
  105. 105.
    Arłukowicz-Grabowska M, Wójcicki M, Raszeja-Wyszomirska J, Szydłowska-Jakimiuk M, Piotuch B, Milkiewicz P (2019) Acute liver injury, acute liver failure and acute on chronic liver failure: a clinical spectrum of poisoning due to Gyromitra esculenta. Ann Hepatol 18(3):514–516PubMedGoogle Scholar
  106. 106.
    Leal AR, Barros L, Barreira JC, Sousa MJ, Martins A, Santos-Buelga C, Ferreira IC (2013) Portuguese wild mushrooms at the “pharma–nutrition” interface: nutritional characterization and antioxidant properties. Food Res Int 50(1):1–9Google Scholar
  107. 107.
    Tel G, Ozturk M, Duru ME, Turkoglu A (2015) Antioxidant and anticholinesterase activities of five wild mushroom species with total bioactive contents. Pharm Biol 53(6):824–830PubMedGoogle Scholar
  108. 108.
    Cortez VG, Silveira RMBD (2007) Species of Hypholoma (Fr.) P. Kumm.(Strophariaceae, Agaricales) in Rio Grande do Sul State, Brazil. Acta Bot Bras 21(3):609–621Google Scholar
  109. 109.
    Stamets P (2011) Growing gourmet and medicinal mushrooms, 3rd edn. Ten Speed Press, Berkeley, p 239Google Scholar
  110. 110.
    Rahaman M, Aminuzzaman FM, Hossain MB, Rashid SN, Rumainul MI (2016) Biodiversity, distribution and morphological characterization of mushrooms in the south western region of Bangladesh. Int J Curr Adv 4(3):60–79Google Scholar
  111. 111.
    Suzuki K, Fujimoto H, Yamazaki M (1983) The toxic principles of Naematoloma fasciculare. Chem Pharm Bull 31(6):2176–2178Google Scholar
  112. 112.
    Doljak B, Stegnar M, Urleb U, Kreft S, Umek A, Ciglaric M, Strukelj B, Popovic T (2001) Screening for selective thrombin inhibitors in mushrooms. Blood Coagul Fibrinolysis 12(2):123–128PubMedGoogle Scholar
  113. 113.
    Nomura C, Masayama A, Yamaguchi M, Sakuma D, Kajimura K (2017) PCR-based method for the detection of toxic mushrooms causing food-poisoning incidents. J Food Hyg Soc Jpn Shokuhin Eiseigaku Zasshi 58(3):132–142Google Scholar
  114. 114.
    Barros L, Venturini BA, Baptista P, Estevinho LM, Ferreira IC (2008) Chemical composition and biological properties of Portuguese wild mushrooms: a comprehensive study. J Agric Food Chem 56(10):3856–3862PubMedGoogle Scholar
  115. 115.
    Yang Z, Feng B (2013) The genus Omphalotus (Omphalotaceae) in China. Mycosystema 32(3):545–556Google Scholar
  116. 116.
    Castro ML, Barreiro F, Martínez JJ (2011) Omphalotus olearius (DC: Fr.) Singer: a new non-native species for Galicia (Spain)? Mykes 14:7–11Google Scholar
  117. 117.
    Schobert R, Seibt S, Mahal K, Ahmad A, Biersack B, Effenberger-Neidnicht K, Padhye S, Sarkar FH, Mueller T (2011) Cancer selective metallocenedicarboxylates of the fungal cytotoxin illudin M. J Med Chem 54(18):6177–6182PubMedGoogle Scholar
  118. 118.
    Ramspeck D (2014) Omphalotus olearius. Iowa Rev 44(2):123–125Google Scholar
  119. 119.
    Kalyoncu F, Oskay M, Kayalar H (2010) Antioxidant activity of the mycelium of 21 wild mushroom species. Mycology 1(3):195–199Google Scholar
  120. 120.
    Sevindik M, Akgül H, Bal C (2017) Determination of oxidative stress status of Ompholatus olearius gathered from Adana and Antalya provinces in Turkey. Sakarya Univ J Sci 21(3):324–327Google Scholar
  121. 121.
    Morel S, Arnould S, Vitou M, Boudard F, Guzman C, Poucheret P, Fons F, Rapior S (2018) Antiproliferative and antioxidant activities of wild Boletales mushrooms from France. Int J Med Mushrooms 20(1):13–29PubMedGoogle Scholar
  122. 122.
    Bresinsky A, Jarosch M, Fischer M, Schönberger I, Wittmann-Bresinsky B (1999) Phylogenetic relationships within Paxillus s. I.(Basidiomycetes, Boletales): separation of a Southern hemisphere genus. Plant Biol 1(03):327–333Google Scholar
  123. 123.
    Hubregtse J (2019) Fungi in Australia. Basidiomycota (Agaricomycotina II) revision, 2.2. Field Naturalists Club of Victoria Inc., BlackburnGoogle Scholar
  124. 124.
    Braesel J, Götze S, Shah F, Heine D, Tauber J, Hertweck C, Tunlid A, Stallforth P, Hoffmeister D (2015) Three redundant synthetases secure redox-active pigment production in the basidiomycete Paxillus involutus. Chem Biol 22(10):1325–1334PubMedGoogle Scholar
  125. 125.
    Verma N, Bhalla A, Singh S (2019) Mushroom poisoning. Principles and practice of critical care toxicology. Jaypee Brothers Medical Pub, New DelhiGoogle Scholar
  126. 126.
    Falandysz J, Kunito T, Kubota R, Brzostowski A, Mazur A, Falandysz JJ, Tanabe S (2007) Selected elements of poison Pax Paxillus involutus. J Envıron Sci Health A 42(8):1161–1168Google Scholar
  127. 127.
    Zmitrovich IV, Belova NV, Psurtseva NV, Wasser SP (2019) The brown roll-rim mushroom, Paxillus involutus (Agaricomycetes), as a promising biomedical research resource. Int J Med Mushrooms 21(12):1241–1247PubMedGoogle Scholar
  128. 128.
    Kalyoncu F, Oskay M, Sağlam H, Erdoğan TF, Tamer AÜ (2010b) Antimicrobial and antioxidant activities of mycelia of 10 wild mushroom species. J Med Food 13(2):415–419PubMedGoogle Scholar
  129. 129.
    Çolak ÖF, Rasul A, Sevindik M (2018) A study on Paxillus involutus: total antioxidant and oxidant potential. Turk J Life Sci 3(2):244–247Google Scholar
  130. 130.
    Liu Y, Zhou Y, Liu M, Wang Q, Li Y (2018) Extraction optimization, characterization, antioxidant and immunomodulatory activities of a novel polysaccharide from the wild mushroom Paxillus involutus. Int J Biol Macromol 112:326–332PubMedGoogle Scholar
  131. 131.
    Zhang JX, Lv JH, Zhao LQ, Shui XX, Zhang J, Wang LA (2019) Coumarin-pi, a new antioxidant coumarin derivative from Paxillus involutus. Nat Prod Res 12:1–4Google Scholar
  132. 132.
    Byrne AR, Šlejkovec Z, Stijve T, Fay L, Goessler W, Gailer J, Lrgolic KJ (1995) Arsenobetaine and other arsenic species in mushrooms. Appl Organomet Chem 9(4):305–313Google Scholar
  133. 133.
    Berger KJ, Guss DA (2005) Mycotoxins revisited: part II. J Emerg Med 28(2):175–183PubMedGoogle Scholar
  134. 134.
    Jo WS, Hossain MA, Park SC (2014) Toxicological profiles of poisonous, edible, and medicinal mushrooms. Mycobiology 42(3):215–220PubMedPubMedCentralGoogle Scholar
  135. 135.
    Sevindik M, Akgul H, Korkmaz AI, Sen I (2018) Antioxidant potantials of Helvella leucomelaena and Sarcosphaera coronaria. J Bacteriol Mycol 6(2):00173Google Scholar
  136. 136.
    Zhao K, Wu G, Yang ZL (2014) A new genus, Rubroboletus, to accommodate Boletus sinicus and its allies. Phytotaxa 188(2):61–77Google Scholar
  137. 137.
    Patocka J (2018) Bolesatine, a toxic protein from the mushroom rubroboletus satanas. Milit Med Sci Lett 87(1):14–20Google Scholar
  138. 138.
    Janda V, Kříž M (2016) Rubroboletus satanas f. crataegi, validly published name for xanthoid form of Rubroboletus satanas. Czech Mycol 68(1):109–110Google Scholar
  139. 139.
    Carteret X, Buyck B (2013) Type studies on some Russula species described by CH Peck. Cryptogam Mycol 34(4):367–391Google Scholar
  140. 140.
    Çolak ÖF, Işıloğlu M, Kaygusuz O, Battistin E, Solak MH (2018) Ten new and interesting Russula (Basidiomycota: Russulales) records for the mycobiota of Turkey. Nova Hedwigia 106(3–4):499–518Google Scholar
  141. 141.
    Khatua S, Dutta AK, Acharya K (2015) Prospecting Russula senecis: a delicacy among the tribes of West Bengal. Peer J 3:e810PubMedGoogle Scholar
  142. 142.
    Rubel W, Arora D (2008) A study of cultural bias in field guide determinations of mushroom edibility using the iconic mushroom, Amanita muscaria, as an example. Econ Bot 62(3):223–243Google Scholar
  143. 143.
    Roberts P, Evans S (2014) The book of fungi: a life-size guide to six hundred species from around the world. University of Chicago Press, ChicagoGoogle Scholar
  144. 144.
    Kaewnarin K, Suwannarach N, Kumla J, Choonpicharn S, Tanreuan K, Lumyong S (2016) Characterization of polysaccharides from wild edible mushrooms from Thailand and their antioxidant, antidiabetic, and antihypertensive activities. J Funct Foods 27:352–364Google Scholar
  145. 145.
    Jiamworanunkul S, Chomcheon P, Mirasing V (2019) Screening of antimicrobial and antioxidant properties of ethyl acetate extracts from wild edible mushrooms. Thai J Pharm Sci 43(3):161–167Google Scholar

Authors and Affiliations

  1. 1.Bahçe Vocational School, Department of Food ProcessingOsmaniye Korkut Ata UniversityOsmaniyeTurkey

Section editors and affiliations

  • K. G. Ramawat
    • 1
  1. 1.Department of BotanyUniversity College of Science, M. L. Sukhadia UniversityUdaipurIndia

Personalised recommendations