Advertisement

Selenium: Prospects of Functional Food Production with High Antioxidant Activity

Living reference work entry
  • 22 Downloads
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

The essentiality of selenium for mammals including human beings, its powerful antioxidant properties, and synergism with other natural antioxidants elicit intensive investigations in agricultural and medicinal crop products with high levels of selenium, phenolics, and other antioxidants. The present chapter demonstrates the most interesting results of such studies revealing high possibilities of selenium biofortification, increase in soil selenium bioavailability via arbuscular mycorrhizal fungi (AMF) and Se-dependent bacteria application, and discovery of new medicinal plants – Se accumulators with high antioxidant activity. Moreover, special attention has been paid to the production of functional food with artificially high selenium and antioxidant content: sprouts and microgreens fortified with selenium, medicinal mushrooms.

Keywords

Selenium Biofortification Antioxidants Medicinal plants Functional food 

Abbreviations

AMF

Arbuscular mycorrhizal fungi

AOA

Total antioxidant activity

DW

Dry weight

GAE

Gallic acid equivalent

Se

Selenium

References

  1. 1.
    Lyons MP, Papazyan TT, Surai P (2007) Selenium in food chain and animal nutrition: lessons from nature – review. Asian Australasian J Anim Sci 20(7):1135–1155.  https://doi.org/10.5713/ajas.2007.1135
  2. 2.
    Rayman MP (2008) Food-chain selenium and human health: emphasis on intake. Br J Nutr 100(2):254–268.  https://doi.org/10.1017/S0007114508939830CrossRefPubMedGoogle Scholar
  3. 3.
    Golubkina N, Sheshnitsan S, Kapitalchuk M (2014) Ecological importance of insects in selenium biogenic cycling. Int J Ecol 2014(3):1–6.  https://doi.org/10.1155/2014/835636CrossRefGoogle Scholar
  4. 4.
    Natasha N, Shahid M, Niazi NK, Khalid S, Murtaza B, Bibi I, Rashid MI (2018) A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environ Pollut 23:915–934.  https://doi.org/10.1016/j.envpol.2017.12.019CrossRefGoogle Scholar
  5. 5.
    Winkel LHE, Vriens B, Jones GD, Schneider LS, Pilon-Smits E, Bañuelos GS (2015) Selenium cycling across soil-plant-atmosphere interfaces: a critical review. Nutrients 7(6):4199–4239.  https://doi.org/10.3390/nu7064199CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Dos Reis AR, El-Ramady H, Santos EF, Gratão PL, Schomburg L (2017) Overview of selenium deficiency and toxicity worldwide: affected areas, selenium-related health issues, and case studies. In: Pilon-Smits E, Winkel L, Lin ZQ (eds) Selenium in plants, Plant ecophysiology, vol 11. Springer, Cham.  https://doi.org/10.1007/978-3-319-56249-0_13CrossRefGoogle Scholar
  7. 7.
    Jones GD, Droz B, Greve P, Gottschalk P, Poet D, McGrath SP (2017) Selenium deficiency risk predicted to increase under future climate change. Proc Natl Acad Sci U S A 114:2848–2853.  https://doi.org/10.1073/pnas.1611576114CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Oldfield JE (1999) Selenium Se world atlas. Selenium-Tellurium Development Association, UKGoogle Scholar
  9. 9.
    Alfthan G, Eurola M, Ekholm P, Venäläinen ER, Root T, Korkalainen K, Hartikainen H, Salminene P, Hietaniemi V, Aspila P, Aro A (2015) Effects of nationwide addition of selenium to fertilizers on foods, and animal and human health in Finland: from deficiency to optimal selenium status of the population. J Trace Elem Med Biol 31:142–147.  https://doi.org/10.1016/j.jtemb.2014.04.009CrossRefPubMedGoogle Scholar
  10. 10.
    Feng R, Wei C, Tu S (2013) The roles of selenium in protecting plants against abiotic stresses. Environ Exp Bot 87:58–68.  https://doi.org/10.1016/j.envexpbot.2012.09.002CrossRefGoogle Scholar
  11. 11.
    Chauhan R, Awasthi S, Srivastava S, Dwivedi S, Pilon-Smits EAH, Dhankher OP (2019) Understanding Se metabolism in plants and its role as a beneficial element. Crit Rev Environ Sci Technol 49(21):1937–1958.  https://doi.org/10.1080/10643389.2019.1598240CrossRefGoogle Scholar
  12. 12.
    Kieliszek M (2019) Selenium–fascinating microelement, properties and sources in food molecules. 24(7):1298.  https://doi.org/10.3390/molecules24071298
  13. 13.
    Kieliszek M, Lipinski B (2020) Selenium supplementation in the prevention of coronavirus infections (COVID-19). Med Hypotheses 143:109878.  https://doi.org/10.1016/j.mehy.2020.109878CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Adebayo AH, Yakubu OF, Bakare-Akpata O (2020) Uptake, metabolism and toxicity in tropical plants. Intechopen, London, UK.  https://doi.org/10.5772/intechopen.90295
  15. 15.
    Rizwan M, Ali S, Zia-ur-Rehman M, Ok YS (2020) Effects of selenium on the uptake of toxic trace elements by crop plants: a review. Crit Rev Environ Sci Technol.  https://doi.org/10.1080/10643389.2020.17965
  16. 16.
    D’Amato R, Regni L, Falcinelli B, Mattioli S, Benincasa P, Dal Bosco A, Pacheco P, Proietti P, Troni E, Santi C, Businelli D (2020) Current knowledge on selenium biofortification to improve the nutraceutical profile of food: a comprehensive review. J Agric Food Chem 68(14):4075–4097.  https://doi.org/10.1021/acs.jafc.0c00172CrossRefPubMedGoogle Scholar
  17. 17.
    Ye Y, Qu J, Pu Y, Rao S, Xu F, Wu C (2020) Selenium biofortification of crop food by beneficial microorganisms. Fungi 6:59.  https://doi.org/10.3390/jof6020059CrossRefGoogle Scholar
  18. 18.
    Hasanuzzaman M, Bhuyan MHMB, Raza A, Hawrylak-Nowak B, Matraszek-Gawron R, Al Mahmud J, Nahar K, Fujita M (2020) Se in plants: boom or bane? Environ Exp Bot 178:104170.  https://doi.org/10.1016/j.envexpbot.2020.104170CrossRefGoogle Scholar
  19. 19.
    Schiavon M, Nardi S, dalla Vecchia F, Ertani A (2020) Selenium biofortification in the 21st century: status and challenges for healthy human nutrition. Plant Soil 453:245–270.  https://doi.org/10.1007/s11104-020-04635-9CrossRefGoogle Scholar
  20. 20.
    Mechora Š (2019) Selenium as a protective agent against pests: a review. Plants 8(8):262.  https://doi.org/10.3390/plants8080262CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Pilon-Smits EAH (2019) On the ecology of selenium accumulation in plants. Plants 8(7):197.  https://doi.org/10.3390/plants8070197CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Ponton DE, Graves SD, Fortin C, Janz D, Amyot M, Schiavon M (2020) Selenium interactions with algae: chemical processes at biological uptake sites, bioaccumulation, and intracellular metabolism. Plants 9(4):528.  https://doi.org/10.3390/plants9040528CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Nelson HK, Shi Q, Van Dael P, Schiffrin EJ, Blum S, Barclay D, Levander OA, Beck MA (2001) Host nutritional selenium status as a driving force for influenza virus mutations. FASEB J 15(10):1846–1848.  https://doi.org/10.1096/fj.01-0115fjeCrossRefGoogle Scholar
  24. 24.
    Steinbrenner H, Al-Quraishy S, Dkhil MA, Wunderlich F, Sies H (2015) Dietary selenium in adjuvant therapy of viral and bacterial infections. Adv Nutr 6(1):73–82.  https://doi.org/10.3945/an.114.007575CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Harthill M (2011) Review: micronutrient selenium deficiency influences evolution of some viral infectious diseases. Biol Trace Elem Res 143(3):1325–1336.  https://doi.org/10.1007/s12011-011-8977-1CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Zhang J, Taylor EW, Bennett K, Saad R, Rayman MP (2020) Association between regional selenium status and reported outcome of COVID-19 cases in China. Am J Clin Nutr 111(6):1297–1299.  https://doi.org/10.1093/ajcn/nqaa095CrossRefPubMedGoogle Scholar
  27. 27.
    Zhang L, Liu Y (2020) Potential interventions for novel coronavirus in China: a systematic review. J Med Virol 92:479–490.  https://doi.org/10.1002/jmv.2570CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Golubkina NA, Papazyan TT (2006) Selenium in Nutrition. Plants, animals, human beings. Moscow- Pechatny Gorod (in Russ)Google Scholar
  29. 29.
    Haq FU, Roman M, Ahmad K, Rahman SU, Shah SMA, Suleman N, Ullah S, Ahmad I., Ullah W (2020) Artemisia annua: trials are needed for COVID-19. Phytother Res 1–2.  https://doi.org/10.1002/ptr.6733
  30. 30.
    Chojnacka K, Witek-Krowiak A, Skrzypczak D, Mikula K, Młynarz P (2020) Phytochemicals containing biologically active polyphenols as an effective agent against Covid-19-inducing coronavirus. J Funct Foods 73:104146.  https://doi.org/10.1015/j.jff.2020.104146CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Golubkina NA, Nadezhkin SM, Loseva TA, Sokolova AJ (2012) Global ecological crisis. Problems and decisions. Moscow Vniissok (in Russ.)Google Scholar
  32. 32.
    Malagoli M, Schiavon M, dall’Acqua S, Pilon-Smits EAH (2015) Effects of selenium biofortification on crop nutritional quality. Front Plant Sci 6:280.  https://doi.org/10.3389/fpls.2015.00280CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ebrahimi N, Stoddard FL, Hartikainen H, Seppänen MM (2019) Plant species and growing season weather influence the efficiency of selenium biofortification. Nutr Cycl Agroecosyst 114(2B):111–124.  https://doi.org/10.1007/s10705-019-09994-zCrossRefGoogle Scholar
  34. 34.
    Shelford VE (1931) Some concepts of bioecology. Ecology 12(3):455–467.  https://doi.org/10.2307/1928991CrossRefGoogle Scholar
  35. 35.
    Amagova Z, Golubkina N, Matsadze V, Elmurzaeva F, Muligova R, Caruso G (2020) Biochemical characteristics of Allium ursinum L. sprouts from mountain forests of Caucasus as affected by growing location in Chechen republic. Italus Hortus 27:66–81.  https://doi.org/10.26353/j.itahort/2020.2.6681CrossRefGoogle Scholar
  36. 36.
    Golubkina NA (2012) Selenium biorhythms and hormonal regulation. In: Aomori C, Hokkaido M (eds) Selenium sources, functions and health effects. Nova Science Publishers, Inc., New YorkGoogle Scholar
  37. 37.
    Golubkina N, Kosheleva O, Krivenkov LV, Dobrutskaya H, Nadezhkin S, Caruso G (2017) Intersexual differences in plant growth, yield, mineral composition and antioxidants of spinach (Spinacia oleracea L.) as affected by selenium form. Sci Hortic 225:350–358.  https://doi.org/10.1016/j.scienta.2017.07.001CrossRefGoogle Scholar
  38. 38.
    Malheiros RSP, Costa LC, Ávila RT, Pimenta TM, Teixeira LS, Brito FAL, Zsögön A, Araújo WL, Ribeiro DM (2019) Selenium downregulates auxin and ethylene biosynthesis in rice seedlings to modify primary metabolism and root architecture. Planta 250(1):333–345.  https://doi.org/10.1007/s00425-019-03175-6CrossRefPubMedGoogle Scholar
  39. 39.
    Soldatov SA, Khryanin BN (2006) Effect of sodium selenite on phytohormonal status and sexual appearance of cannabis dioecious plants. Doklady RAS 2:13–17. (in Russ.)Google Scholar
  40. 40.
    Chen M, Arato M, Borghi L, Nouri E, Reinhardt D (2018) Beneficial services of arbuscular mycorrhizal fungi – from ecology to application. Front Plant Sci 9:1270.  https://doi.org/10.3389/fpls.2018.01270CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Golubkina N, Krivenkov L, Sekara A, Vasileva V, Tallarita A, Caruso G (2020) Prospects of arbuscular mycorrhizal fungi utilization in production of Allium plants. Plants 9:279.  https://doi.org/10.3390/plants9020279CrossRefPubMedCentralGoogle Scholar
  42. 42.
    White FJ (2016) Selenium accumulation by plants. Ann Bot 117(2):217–235.  https://doi.org/10.1093/aob/mcv180CrossRefPubMedGoogle Scholar
  43. 43.
    Kapoor R, Singh N (2017) Arbuscular mycorrhiza and reactive oxygen species//chapter 10. In: Wu Q-S (ed) Arbuscular mycorrhizas and stress tolerance of plants. Springer, Singapore.  https://doi.org/10.1007/978-981-10-4115-0_10CrossRefGoogle Scholar
  44. 44.
    Carrino-Kyker SR, Kluber LA, Coyle KP, Burke DJ (2017) Detection of phosphate transporter genes from arbuscular mycorrhizal fungi in mature tree roots under experimental soil pH manipulation. Simbiosis 72:123–133.  https://doi.org/10.1007/s13199-016-0448-1CrossRefGoogle Scholar
  45. 45.
    Higo M, Tatewaki Y, Iida K, Yokota K, Isobe K (2020) Amplicon sequencing analysis of arbuscular mycorrhizal fungal communities colonizing maize roots in different cover cropping and tillage systems. Sci Rep 10:6093.  https://doi.org/10.1038/s41598-020-58942-3CrossRefGoogle Scholar
  46. 46.
    Wang M, Yang W, Zhou F, Du Z, Xue M, Chen T, Liang D (2019) Effect of phosphate and silicate on selenite uptake and phloem-mediated transport in tomato (Solanum lycopersicum L.). Environ Sci Pollut Res 26:20475–20484.  https://doi.org/10.1007/s11356-019-04717-xCrossRefGoogle Scholar
  47. 47.
    Golubkina N, Amagova Z, Matsadze V, Caruso G (2020) Effects of arbuscular mycorrhizal fungi on yield, biochemical characteristics and elemental composition of garlic and onion under selenium supply. Plants 9:84.  https://doi.org/10.3390/plants9010084CrossRefPubMedCentralGoogle Scholar
  48. 48.
    Conversa G, Lazzizera C, Chiaravalle E (2019) A Elia Selenium fern application and arbuscular mycorrhizal fungi soil inoculation enhance Se content and antioxidant properties of green asparagus (Asparagus officinalis L.) spears. Sci Hortic 252:176–191.  https://doi.org/10.1016/j.scienta.2019.03.056CrossRefGoogle Scholar
  49. 49.
    Golubkina N, Zamana S, Seredin T, Poluboyarinov P, Sokolov S, Baranova H, Krivenkov L, Pietrantonio L, Caruso G (2019) Effect of selenium biofortification and arbuscular mycorrhizal fungi on yield, quality and antioxidant properties of shallot bulbs. Plants 102(8).  https://doi.org/10.3390/plants8040102
  50. 50.
    Golubkina N, Gomez L, Kekina H, Hallam R, Tallarita A, Cozzolino E, Torino V, Koshevarov A, Cuciniello A, Maiello R, Cenvinzo V, Caruso G (2020) Joint selenium-iodine supply and arbuscular mycorrhizal fungi inoculation affect yield and quality of chickpea seeds and residual biomass. Plants 9:804.  https://doi.org/10.3390/plants9070804CrossRefPubMedCentralGoogle Scholar
  51. 51.
    Durán P, Acuñab JJ, Jorquera MA, Azcónc R, Borie F, Cornejo P, Mora ML (2013) Enhanced selenium content in wheat grain by co-inoculation of selenobacteria and arbuscular mycorrhizal fungi: a preliminary study as a potential Se biofortification strategy. J Cereal Sci 57(3):275–280.  https://doi.org/10.1016/j.jcs.2012.11.012CrossRefGoogle Scholar
  52. 52.
    Luo W, Li J, Ma X, Niu H, Hou S, Wu F (2019) Effect of arbuscular mycorrhizal fungi on uptake of selenate, selenite, and selenomethionine by roots of winter wheat. Plant Soil 438:71–83.  https://doi.org/10.1007/s11104-019-04001-4CrossRefGoogle Scholar
  53. 53.
    Durán P, Acuña JJ, Armada E, López-Castillo OM, Cornejo P, Mora ML, Azcón R (2016) Inoculation with selenobacteria and arbuscular mycorrhizal fungi to enhance selenium content in lettuce plants and improve tolerance against drought stress. J Soil Sci Plant Nutr 16(1).  https://doi.org/10.4067/S0718-95162016005000017
  54. 54.
    Souza MP, Chu D, Zhao M, Zayed AM, Ruzin SE, Schichnes D, Terry N (1999) Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol 119:565–574.  https://doi.org/10.1104/pp.119.2.565CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Yasin M, El Mehdawi AF, Jahn CE, Anwar A, Turner MF, Faisal M, Pilon-Smits EA (2015) Seleniferous soils as a source for production of selenium-enriched foods and potential of bacteria to enhance plant selenium uptake. Plant Soil 386:385–394.  https://doi.org/10.1007/s11104-014-2270-yCrossRefGoogle Scholar
  56. 56.
    Golubkina N, Logvinenko L, Novitsky M, Zamana S, Sokolov S, Molchanova A, Shevchuk O, Sekara A, Tallarita A, Caruso G (2020) Yield, essential oil and quality performances of Artemisia dracunculus, Hyssopus officinalis and Lavandula angustifolia as affected by arbuscular mycorrhizal fungi under organic management. Plants 9(3):375.  https://doi.org/10.3390/plants9030375CrossRefPubMedCentralGoogle Scholar
  57. 57.
    Luna MC, Bekhradi F, Ferreres F, Jordán MJ, Delshad M, Gil MI (2015) Effect of water stress and storage time on anthocyanins and other phenolics of different genotypes of fresh sweet basil. J Agric Food Chem 63(42):9223–9231.  https://doi.org/10.1021/acs.jafc.5b04131CrossRefPubMedGoogle Scholar
  58. 58.
    Kumar M, Bijo AJ, Baghel RS, Reddy CRK, Jha B (2012) Selenium and spermine alleviates cadmium induced toxicity in the red seaweed Gracilaria dura by regulating antioxidant system and DNA methylation. Plant Physiol Biochem 51:129–138.  https://doi.org/10.1016/j.plaphy.2011.10.016CrossRefPubMedGoogle Scholar
  59. 59.
    Filek M, Keskinen R, Hartikainen H, Szarejko I, Janiak A, Miszalski Z, Golda A (2008) The protective role of selenium in rape seedlings subjected to cadmium stress. J Plant Physiol 165(8):833–844.  https://doi.org/10.1016/j.jplph.2007.06.006CrossRefPubMedGoogle Scholar
  60. 60.
    D'Amato R, Fontanella MC, Falcinelli B, Beone GM, Bravi E, Marconi O, Benincasa P, Businelli D (2018) Selenium biofortification in rice (Oryza sativa L.) sprouting: effects on Se yield and nutritional traits with focus on phenolic acid profile. J Agric Food Chem 66(16):4082–4090.  https://doi.org/10.1021/acs.jafc.8b00127CrossRefPubMedGoogle Scholar
  61. 61.
    Falcinelli B, Famiani F, Paoletti A, D’Egidio S, Stagnari F, Galieni A, Benincasa P (2020) Phenolic compounds and antioxidant activity of sprouts from seeds of citrus species. Agriculture 10:33.  https://doi.org/10.3390/agriculture10020033CrossRefGoogle Scholar
  62. 62.
    Márton M, Mandoki ZS, Csapó-Kiss ZS, Csapó J (2010) The role of sprouts in human nutrition. A review. Acta Univ Sapientiae, Alimentaria 3:81–117Google Scholar
  63. 63.
    Sugihara S, Kondo M, Chihara Y, Yuji M, Hattori H, Yoshida M (2004) Preparation of selenium-enriched sprouts and identification of their selenium species by high-performance liquid chromatography-inductively coupled plasma mass spectrometry. Biosci Biotechnol Biochem 68(1):193–199.  https://doi.org/10.1271/bbb.68.193CrossRefPubMedGoogle Scholar
  64. 64.
    Larsen JC, Mortensen A (2009) Scientific opinion of the panel on food additives and nutrient sources added to food on Se-Methyl-L-Selenocysteine as a source of selenium added for nutritional purposes to food supplements following a request from the European Commission. EFSA J 1067:1–23Google Scholar
  65. 65.
    Kurian MS, Megha PR (2020) Assessment of variation in nutrient concentration and antioxidant activity of raw seeds, sprouts and microgreens of Vigna radiata (L.) Wilczek and Cicer arietinum L. AIP Conf Proc 2263:030005.  https://doi.org/10.1063/5.0018781
  66. 66.
    Penas E, Gomez R, Frias J, Vidal-Valverde C (2008) Application of high-pressure on alfalfa (Medigo sativa) and mung bean (Vigna radiata) seeds to enhance the microbiological safety of their sprouts. Food Control 19:698–705.  https://doi.org/10.1016/j.foodcont.2007.07.010CrossRefGoogle Scholar
  67. 67.
    Sangronis E, Machado CJ (2007) Influence of germination on the nutritional quality of Phaseolus vulgaris and Cajanus cajan. LWT Food Sci Technol 40:116–120.  https://doi.org/10.1016/j.lwt.2005.08.003CrossRefGoogle Scholar
  68. 68.
    Zakarova A, Seo JY, Kim HY, Kim JH, Shin J-H, Cho KM, Lee CH, Kim J-S (2014) Garlic sprouting is associated with increased antioxidant activity and concomitant changes in the metabolite profile. J Agric Food Chem 62(8):1875–1880.  https://doi.org/10.1021/jf500603vCrossRefPubMedGoogle Scholar
  69. 69.
    El-Ramady H, Alshaal T, Abdalla N, Prokisch J, Sztrik A, Fári M, Domokos-Szabolcsy É (2015) Selenium and nano-selenium biofortified sprouts using micro-farm systems. The 4th international conference on Selenium in the environment and human health, Sao Paulo, Brazil, 18–21 October 2015.  https://doi.org/10.13140/RG.2.1.1065.9925
  70. 70.
    Perni S, Calzuola I, Caprara GA, Gianfranceschi GL, Marsili V (2014) Natural antioxidants in wheat sprout extracts. Curr Org Chem 18(23).  https://doi.org/10.2174/1385272819666140923221446
  71. 71.
    Lintschinger J, Fuchs N, Moser J, Kuehnelt D, Goessler W (2000) Selenium-enriched sprouts. A raw material for fortified cereal-based diets. J Agric Food Chem 48(11):5362–5368.  https://doi.org/10.1021/jf000509CrossRefPubMedGoogle Scholar
  72. 72.
    Kim MA, Kim MJ (2020) Isoflavone profiles and antioxidant properties in different parts of soybean sprout. J Food Sci 85(3):689–695.  https://doi.org/10.1111/1750-3841.15058CrossRefPubMedGoogle Scholar
  73. 73.
    Rychlik J, Olejnik A, Olkowicz M, Kowalska K, Juzwa W, Myszka K, Dembczyński R, Moyer MP, Grajek W (2015) Antioxidant capacity of broccoli sprouts subjected to gastrointestinal digestion. J Sci Food Agric 95(9):892–902.  https://doi.org/10.1002/jsfa.6895CrossRefGoogle Scholar
  74. 74.
    Woch W, Hawrylak-Nowak B (2019) Selected antioxidant properties of alfalfa, radish, and white mustard sprouts biofortified with selenium. Acta Agrobot 72(2):1768.  https://doi.org/10.5586/aa.1768CrossRefGoogle Scholar
  75. 75.
    Zagrodzki P, Paśko P, Galanty A, Tyszka-Czochara M, Wietecha-Posłuszny R, Rubió PS, Bartoń H, Prochownik E, Muszyńska B, Sułkowska-Ziaja K, Bierła K, Łobiński R, Szpunar J, Gorinstein S (2020) Does selenium fortification of kale and kohlrabi sprouts change significantly their biochemical and cytotoxic properties? J Trace Elem Med Biol 59:126466.  https://doi.org/10.1016/j.jtemb.2020.126466CrossRefPubMedGoogle Scholar
  76. 76.
    Arscott S, Goldm I (2012) Biomass effects and selenium accumulation in sprouts of three vegetable species grown in selenium-enriched conditions. Am Soc Horticult Sci 47:497–502.  https://doi.org/10.21273/HORTSCI.47.4.497
  77. 77.
    Tyszka-Czochara M, Pasko P, Zagrodzki P, Gajdzik E, Wietecha-Posluszny R, Gorinstein S (2016) Selenium supplementation of amaranth sprouts influences. Betacyanin content and improves anti-inflammatory properties via NFκB in Murine RAW 264.7 macrophages. Biol Trace Elem Res 169:320–330.  https://doi.org/10.1007/s12011-015-0429-xCrossRefPubMedGoogle Scholar
  78. 78.
    He X, Wang X, Fang J, Chang Y, Ning N, Guo H, Huang L, Huang X, Zhao Z (2017) Structures, biological activities, and industrial applications of the polysaccharides from Hericium erinaceus (Lion’s Mane) mushroom: a review. Int J Biol Macromol 97:228–237.  https://doi.org/10.1016/j.ijbiomac.2017.01.040CrossRefPubMedGoogle Scholar
  79. 79.
    Oh M-M, Rajashekar C (2009) Antioxidant content of edible sprouts: effects of environmental shocks. J Sci Food Agric 89(13):2221–2227.  https://doi.org/10.1002/jsfa.3711CrossRefGoogle Scholar
  80. 80.
    Àvila FW, Yang Y, Faquin V, Ramos SJ, Guilherme LRG, Thannhauser TW, Li L (2014) Impact of selenium supply on Se-methylselenocysteine and glucosinolate accumulation in selenium-biofortified Brassica sprouts. Food Chem 165:578–586.  https://doi.org/10.1016/j.foodchem2014.05.134CrossRefPubMedGoogle Scholar
  81. 81.
    Bachiega P (2018) Biofortification of broccoli seedlings with selenium: influence on bioactive compounds and in vivo toxicity- thesis, Piricicaba-2018 University of São Paulo “Luiz de Queiroz” College of Agriculture.  https://doi.org/10.11606/T.11.2019.tde-01112018-164508
  82. 82.
    Golubkina NA, Seredin TM, Baranova HV, Startseva LV, Agafonov AF, Ushakova OV, Kovalsky JG (2018) Prospects of production of Allium sprouts fortified with selenium. Veg Crops Russia 6:50–54.  https://doi.org/10.18619/2072-9146-2018-6-50-54. (in Russ.)CrossRefGoogle Scholar
  83. 83.
    Pannico A, El-Nakhel C, Graziani G, Kyriacou MC, Giordano M, Soteriou GA, Zarrelli A, Ritieni A, De Pascale S, Rouphael Y (2020) Selenium biofortification impacts the nutritive value, polyphenolic content and bioactive constitution of variable microgreens genotypes. Antioxidants 9:272.  https://doi.org/10.3390/antiox9040272CrossRefPubMedCentralGoogle Scholar
  84. 84.
    Kyriacou MC, El-Nakhel C, Graziani G, Pannico A, Soteriou GA, Giordano M (2019) Functional quality in novel food sources: genotypic variation in the nutritive and phytochemical composition of thirteen microgreens species. Food Chem 277:107–118.  https://doi.org/10.1016/j.foodchem.2018.10.098CrossRefPubMedGoogle Scholar
  85. 85.
    Islam MZ, Park BJ, Kang HM, Lee YT (2020) Influence of selenium biofortification on the bioactive compounds and antioxidant activity of wheat microgreen extract. Food Chem 309:125763.  https://doi.org/10.1016/j.foodchem.2019.125763CrossRefPubMedGoogle Scholar
  86. 86.
    Puccinelli M, Malorgio F, Rosellini I, Pezzarossa B (2017) Uptake and partitioning of selenium in basil (Ocimum basilicum L) plants grown in hydroponics. Sci Hortic 225:271–276.  https://doi.org/10.1016/j.scienta.2017.07.014CrossRefGoogle Scholar
  87. 87.
    Puccinelli M, Malorgio F, Rosellini I, Pezzarossa B (2019) Production of selenium-biofortified microgreens from selenium-enriched seeds of basil. J Sci Food Agric 99:5601–5605.  https://doi.org/10.1002/jsfa.9826CrossRefPubMedGoogle Scholar
  88. 88.
    Germ M, Stibilj V, Šircelj H, Jerše A, Krofliˇc A, Golob A, Maršić NK (2019) Biofortification of common buckwheat microgreens and seeds with different forms of selenium and iodine. J Sci Food Agric 99:4353–4362.  https://doi.org/10.1002/jsfa.9669CrossRefPubMedGoogle Scholar
  89. 89.
    Zhang X, Bian Z, Li S, Chen X, Lu C (2019) Comparative analysis of phenolic compound profiles, antioxidant capacities, and expressions of phenolic biosynthesis-related genes in soybean microgreens grown under different light spectra. J Agric Food Chem 67(49):13577–13588.  https://doi.org/10.1021/acs.jafc.9b05594CrossRefPubMedGoogle Scholar
  90. 90.
    Mlinaric S, Gvozdic V, Vukovic A, Varga M, Vlašiˇcek I, Cesar V, Begovic L (2020) The effect of light on antioxidant properties and metabolic profile of Chia Microgreens. Appl Sci 10:5731.  https://doi.org/10.3390/app10175731CrossRefGoogle Scholar
  91. 91.
    Valverde ME, Hernández-Pérez T, Paredes-López O (2015) Edible mushrooms: improving human health and promoting quality life. Int J Microbiol 2015:376387.  https://doi.org/10.1155/2015/376387CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Ogidi CO, Oyetayo VO, Akinyele BJ (2020) Wild medicinal mushrooms: potential applications in phytomedicine and functional foods, an introduction to mushroom, Ajit Kumar Passari and Sergio Sánchez, IntechOpen.  https://doi.org/10.5772/intechopen.90291
  93. 93.
    Kora AJ (2020) Nutritional and antioxidant significance of selenium-enriched mushrooms. Bull Nat Res Center 44:34.  https://doi.org/10.1186/s42269-020-00289-wCrossRefGoogle Scholar
  94. 94.
    Puttaraju NG, Venkateshaiah SU, Dharmesh SM, Urs SMN, Somasundaram R (2007) Antioxidant activity of indigenous edible mushrooms. J Agric Food Chem 54:9764–9772.  https://doi.org/10.1021/jf0615707CrossRefGoogle Scholar
  95. 95.
    Witkowska AM (2014) Selenium-fortified mushrooms – candidates for nutraceuticals? Austin Ther 1(2):4Google Scholar
  96. 96.
    Falandysz J (2008) Selenium in edible mushrooms. J Environ Sci Health C 26:256–299.  https://doi.org/10.1080/10590500802350086CrossRefGoogle Scholar
  97. 97.
    Kozarski M, Klaus A, Jakovljevic D, Todorovic N, Vunduk J, Petrović P, Niksic M, Vrvic MM, van Griensven L (2015) Antioxidants of edible mushrooms. Molecules 20:19489–19525.  https://doi.org/10.3390/molecules201019489CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Golubkina NA, Mironov VU (2018) Element composition of mushrooms in contrasting anthropogenic loading. Geochem Int 56(12):1263–1275.  https://doi.org/10.1134/S0016702918100087CrossRefGoogle Scholar
  99. 99.
    Keleş A, Koca İ, Gençcelep H (2011) Antioxidant properties of wild edible mushrooms. J Food Process Technol 2:130.  https://doi.org/10.4172/2157-7110.1000130CrossRefGoogle Scholar
  100. 100.
    Srajuć M, Vukojević J, Knežević A, Lausević DS, Milovanović I (2013) Antioxidant protective effect of mushrooms metabolites. Curr Top Med Chem 13:2660–2676. https://www.researchgate.net/publication/257299199CrossRefGoogle Scholar
  101. 101.
    Turło J, Gutkowska B, Herold F (2010) Effect of selenium enrichment on antioxidant activities and chemical composition of Lentinula edodes (Berk.) Pegl. mycelial extracts. Food Chem Toxicol 48:1085–1091.  https://doi.org/10.1016/j.fct.2010.01.030CrossRefPubMedGoogle Scholar
  102. 102.
    Zhao I, Zhao G, Du M, Zhao Z, Xiao I, Hu X (2008) Effect of selenium on increasing free radical scavenging activities of polysaccharide extracts from a Se-enriched mushroom species of the genus Ganoderma. Eur Food Res Technol 226:499–505.  https://doi.org/10.1007/s00217-007-0562-7CrossRefGoogle Scholar
  103. 103.
    Du M, Zhao I, Li C, Zhao G, Hu X (2007) Purification and characterization of a novel fungi Se-containing protein from Se-enriched Ganoderma Lucidum mushroom and its Se-dependent radical scavenging activity. Eur Food Res Technol 224:659–665.  https://doi.org/10.1007/s00217-006-0344-4CrossRefGoogle Scholar
  104. 104.
    Rathore Y, Sharma A, Prasad S, Sharma S (2018) Selenium bioaccumulation and associated nutraceutical properties in Calocybe indica mushrooms cultivated on Se-enriched wheat straw. J Biosci Bioeng 126(4):482–487.  https://doi.org/10.1016/j.jbiosc.2018.04.010CrossRefPubMedGoogle Scholar
  105. 105.
    Bhatia P, Prakash R, Prakash NT (2014) Enhanced antioxidant properties as a function of selenium uptake by edible mushrooms cultivated on selenium-accumulated waste post-harvest wheat and paddy residues. Int J Recycl Org Waste Agric 3:127–132.  https://doi.org/10.1007/s40093-014-0074-yCrossRefGoogle Scholar
  106. 106.
    Gąsecka M, Mleczek M, Siwulski M, Niedzielski P (2016) Phenolic composition and antioxidant properties of Pleurotus ostreatus and Pleurotus eryngii enriched with selenium and zinc. Eur Food Res Technol 242:723–732.  https://doi.org/10.1007/s00217-015-2580-1CrossRefGoogle Scholar
  107. 107.
    Fasoranti OF, Ogidi CO, Oyetayo VO (2019) Nutrient content and antioxidant properties of Pleurotus spp. Cultivated on substrate fortified with selenium. Cur Res Environ Appl Mycol 9(1):66–76.  https://doi.org/10.5943/cream/9/1/7CrossRefGoogle Scholar
  108. 108.
    Hu T, Liang Y, Zhao G, Wu W, Li H, Guo Y (2019) Selenium biofortification and antioxidant activity in Cordyceps militaris supplied with selenate, selenite, or selenomethionine. Biol Trace Elem Res 187(2):553–561.  https://doi.org/10.1007/s12011-018-1386-y
  109. 109.
    Malinowska F (2008) Biosynthesis of selenium containing polysaccharides with antioxidant activity in liquid culture of Hericium erinaceum. Enzym Microb Technol 44:334–343.  https://doi.org/10.1016/j.enzmictec-2008.12.003CrossRefGoogle Scholar
  110. 110.
    Miletíć D, Turło J, Podsadni P, Pantić M, Nedović V, Lević S, Nikšić M (2019) Selenium-enriched Coriolus versicolor mushroom biomass: potential novel food supplement with improved selenium bioavailability. J Sci Food Agric 99:5122–5130.  https://doi.org/10.1002/jsfa.9756CrossRefPubMedGoogle Scholar
  111. 111.
    Siwulski M, Budzynska S, Rzymski P, Gąsecka M (2019) The effect of germanium and selenium on growth, metalloid accumulation and ergosterol: experimental study in Pleurotus osteitis and Ganoderga lucidus. Eur Food Res Technol 245:1799–1810.  https://doi.org/10.1007/s00217-019-03299-9CrossRefGoogle Scholar
  112. 112.
    Nunes RGFL, da Luz JMR, de Freitas RB, Higuchi A, Kasuya MCM, Vanetti MCD (2012) Selenium bioaccumulation in shiitake mushrooms: a nutritional alternative source of this element. J Food Sci 77(9):C983–C986.  https://doi.org/10.1111/j.1750-3841.2012.02837.xCrossRefPubMedGoogle Scholar
  113. 113.
    Spolar MR, Schaffer EM, Beelman RB, Milner JA (1999) Selenium-enriched Agaricus bisporus mushrooms suppress 7,12-dimethlybenz [a] anthracenebioactivation in mammary tissue. Cancer Lett 138:145–150.  https://doi.org/10.1016/S0304-3835(99)00003-8CrossRefPubMedGoogle Scholar
  114. 114.
    Cremades O, MarDiaz-Herrero M, Carbonero-Aguilar P, Gutierrez-Gil JF, Fontiveros E, Rodríguez-Morgado B, Parrado J, Bautista J (2012) Preparation and characterisation of selenium-enriched mushroom aqueous enzymatic extracts (MAEE) obtained from the white button mushroom (Agaricus bisporus). Food Chem 133:1538–1543.  https://doi.org/10.1016/j.foodchem.2012.02.046CrossRefGoogle Scholar
  115. 115.
    Sytar O, Hemmerich I, Zivcak M, Rauh C, Brestic M (2018) Comparative analysis of bioactive phenolic compounds composition from 26 medicinal plants. Saudi J Biol Sci 25(4):631–641.  https://doi.org/10.1016/j.sjbs.2016.01.036CrossRefPubMedGoogle Scholar
  116. 116.
    Ivanova D, Gerova D, Chervenkov T, Yankova T (2005) Polyphenols and antioxidant capacity of Bulgarian medicinal plants. J Ethnopharmacol 96(1–2):145–150.  https://doi.org/10.1016/j.jep.2004.08.033CrossRefPubMedGoogle Scholar
  117. 117.
    Checkouri E, Reignier F, Da Silva CR, Meilhac O (2020) Evaluation of polyphenol content and antioxidant capacity of aqueous extracts from eight medicinal plants from Reunion Island: protection against oxidative stress in red blood cells and preadipocytes. Antioxidants 9:959.  https://doi.org/10.3390/antiox9100959CrossRefPubMedCentralGoogle Scholar
  118. 118.
    Duda-Chodak A, Tarko T, Rus M (2011) Antioxidant activity and total polyphenol content of selected herbal medicinal products used in Poland. Kerva Polonika 57(1):48–57Google Scholar
  119. 119.
    Kacem R, Hemissi Y, Talbi S, Bouguatosha S (2013) Total polyphenol content and assessment of antioxidant activity of selected medicinal plants. Planta Med 79:PJ22.  https://doi.org/10.1055/s-0033-1352226CrossRefGoogle Scholar
  120. 120.
    Najjaa H, Abdelkarim BA, Doria E, Boubakri A, Trabelsi N, Falleh H, Tlili H, Neffati M (2020) Phenolic composition of some Tunisian medicinal plants associated with anti-proliferative effect on human breast cancer MCF-7 cells. Eur Biotech J 4(2).  https://doi.org/10.2478/ebtj-2020-0012
  121. 121.
    Sotek Z, Białecka B, Pilarczyk B, Drozd R, Pilarczyk R, Tomza-Marciniak A, Kruzhel B, Lysak H, Bąkowska M, Vovk S (2019) Antioxidant activity and selenium and polyphenols content from selected medicinal plants natives from various areas abundant in selenium (Poland, Lithuania, and Western Ukraine). Processes 7(12):878.  https://doi.org/10.3390/pr7120878CrossRefGoogle Scholar
  122. 122.
    Gupta M, Gupta S (2017) An overview of selenium uptake, metabolism and toxicity in plants. Front Plant Sci 7:2074.  https://doi.org/10.3389/fpls.2016.02074CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Berni R, Cantini C, Romi M, Hausman J-F, Guerriero G, Cai G (2018) Agrobiotechnology goes wild: ancient local varieties as sources of bioactives. Int J Mol Sci 19:2248.  https://doi.org/10.3390/ijms19082248CrossRefPubMedCentralGoogle Scholar
  124. 124.
    Kharchenko VA, Moldovan AI, Golubkina NA, Gins MS, Shafigullin DR (2020) Comparative evaluation of several biologically active compounds content in Anthriscus sylvestris (L.) HOFFM and Anthriscus cerefolium (L.) Hoffm. Veg Crops Russia 5:89–95. (in Russ.)Google Scholar
  125. 125.
    Golubkina NA, Logvinenko LA, Molchanova AV, Caruso G (2020) Genetic and environmental influence on macro- and micro-elements accumulation in plants of Artemisia species. Chapter 17. In: Afthab T, Hakeem K (eds) Plant micronutrients. Deficiency and toxicity. Elsevier, Cham, pp 389–417CrossRefGoogle Scholar
  126. 126.
    Golubkina N, Lapchenko V, Ryff L, Lapchenko H, Naumenko T, Bagrikova N, Krainuk K, Kosheleva O, Caruso G (2020) Medicinal plants as sources of selenium and natural antioxidants. Banat’s J Biotechnol 11(22).  https://doi.org/10.7904/2068-4738-XI(22)-48
  127. 127.
    Severson RC, Fisher S, Gough LP (1990) The eruption of Redoubt volcano, Alaska, – 1989 – August 31. U.S. Government Printing OfficeGoogle Scholar
  128. 128.
    Vicklund LE, Vance GF, “Mickey” Steward DG, Spackman LK, Luthe JG (1995) Selenium and mining in the powder river basin, Wyoming: phase I – vegetation analysis. Proc Am Soc Min Reclam 317, 3332;  https://doi.org/10.21000/JASMR95010317CrossRefGoogle Scholar
  129. 129.
    El Mehdawi AF, Quinn CF, Pilon-Smits EAH (2011) Selenium hyperaccumulators facilitate selenium-tolerant neighbors via phytoenrichment and reduced herbivory. Curr Biol 21:1440–1449.  https://doi.org/10.1016/j.cub.2011.07.033CrossRefPubMedGoogle Scholar
  130. 130.
    Shariatpanahi M, Anderson AC, Mather F (1986) Trace metal uptake by garden herbs and vegetables. Biol Trace Elem Res 11(1):177–183.  https://doi.org/10.1007/BF02795533CrossRefPubMedGoogle Scholar
  131. 131.
    Wang J, Li Q, Bao A, Liu X, Zeng J, Yang X, Yao J, Zhang J, Lei Z (2016) Synthesis of selenium-containing Artemisia sphaerocephala polysaccharides: Solution conformation and anti-tumor activities in vitro. Carbohydr Polym 152:70–78.  https://doi.org/10.1016/j.carbpol.2016.06.090CrossRefPubMedGoogle Scholar
  132. 132.
    Skrypnik L, Novikova A, Tokupova E (2019) Improvement of phenolic compounds, essential oil content and antioxidant properties of sweet Basil (Ocimum basilicum L.) Depending on type and concentration of selenium application. Plants 8:458.  https://doi.org/10.3390/plants8110458CrossRefPubMedCentralGoogle Scholar
  133. 133.
    Ksouri R, Falleh H, Megdiche W, Trabelsi N, Mhamdi B, Chaieb K, Bakrouf A, Magne C, Abdelly C (2009) Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents. Food Chem Toxicol 47:2083–2091.  https://doi.org/10.1016/j.fct.2009.05.040CrossRefPubMedGoogle Scholar
  134. 134.
    Bahransoltani R, Kalkhorani M, Abbas Zaidi SM, Farzaei MH, Rahimi R (2020) The genus Tamarix: traditional uses, phytochemistry, and pharmacology. J Ethnopharmacol 246:112245.  https://doi.org/10.1016/j.jep.2019.112245CrossRefGoogle Scholar
  135. 135.
    Dafni A, Levy S, Lev L (2005) The ethnobotany of Christ’s Thorn Jujube (Ziziphus spina-christi) in Israel. J Ethnobiol Ethnomed 1:8.  https://doi.org/10.1186/1746-4269-1-8CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Sen A (2018) Antioxidant and anti-inflammatory activity of fruit, leaf and branch extracts of Paliurus spina-christi P. Mill. Marmara Pharm J 22(2):328–333.  https://doi.org/10.12991/mpj.2018.71CrossRefGoogle Scholar
  137. 137.
    Sentkowska A, Pyrzyńska K (2019) Investigation of antioxidant activity of selenium compounds and their mixtures with tea polyphenols. Mol Biol Rep 46:3019–3024.  https://doi.org/10.1007/s11033-019-04738-2CrossRefPubMedGoogle Scholar

Authors and Affiliations

  1. 1.Laboratory Analytical DepartmentFederal Scientific Center of Vegetable ProductionMoscowRussia
  2. 2.Laboratory of Selection and Seed Production of Green, Spice and Flower CropsFederal Scientific Center of Vegetable ProductionMoscowRussia
  3. 3.Department of Agricultural SciencesUniversity of Naples Federico IINaplesItaly

Section editors and affiliations

  • K. G. Ramawat
    • 1
  1. 1.Department of BotanyUniversity College of Science, M. L. Sukhadia UniversityUdaipurIndia

Personalised recommendations