Advertisement

Extraction and Assessment Methods as Well as Resources of Natural Antioxidants in Foods and Herbs

Living reference work entry
  • 39 Downloads
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Antioxidants could scavenge free radicals in the human body, and prevent and treat diseases induced by oxidative stress. In addition, antioxidants could delay the food spoilage, discoloration, and rancidity caused by oxidation in the food industry. Considering that the synthetic antioxidants may have some toxicities and side effects, natural antioxidants from food and medicinal plants could be a better candidate. In addition to the conventional extraction methods, several green and efficient extraction technologies have been developed, such as ultrasonic-assisted extraction, microwave-assisted extraction, enzymatic extraction, and supercritical fluid extraction. In order to comprehensively assess the antioxidant activity of extracts, in vitro and in vivo evaluation methods have been developed. As a result, antioxidant capacities of many foods and medicinal plants have been evaluated, such as vegetables, fruits, cereals, edible macro-fungi, medicinal herbs, flowers, and spices. In this chapter, we summarized the extraction, assessment, and resources of natural antioxidants in foods and medicinal plants, which are very helpful for full utilization of natural antioxidants.

Keywords

Food Medicinal plant Natural antioxidant Extraction Resource 

References

  1. 1.
    Finley JW, Kong AN, Hintze KJ, Jeffery EH, Ji LL, Lei XG (2011) Antioxidants in foods: state of the science important to the food industry. J Agric Food Chem 59:6837–6846PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Catarino MD, Alves-Silva JM, Pereira OR, Cardoso SM (2015) Antioxidant capacities of flavones and benefits in oxidative-stress related diseases. Curr Top Med Chem 15:105–119PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Blomhoff R (2005) Dietary antioxidants and cardiovascular disease. Curr Opin Lipidol 16:47–54PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Carocho M, Ferreira I (2013) A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol 51:15–25PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Shah MA, Bosco SJD, Mir SA (2014) Plant extracts as natural antioxidants in meat and meat products. Meat Sci 98:21–33PubMedCrossRefGoogle Scholar
  6. 6.
    Sohaib M, Anjum FM, Sahar A et al (2017) Antioxidant proteins and peptides to enhance the oxidative stability of meat and meat products: a comprehensive review. Int J Food Prop 20:2581–2593CrossRefGoogle Scholar
  7. 7.
    Xu DP, Li Y, Meng X et al (2017) Natural antioxidants in foods and medicinal plants: extraction, assessment and resources. Int J Mol Sci 18:96PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Zhang JJ, Li Y, Lin SJ, Li HB (2018) Green extraction of natural antioxidants from the Sterculia nobilis fruit waste and analysis of phenolic profile. Molecules 23:1059PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Marrelli M, Loizzo MR, Nicoletti M, Menichini F, Conforti F (2014) In vitro investigation of the potential health benefits of wild Mediterranean dietary plants as anti-obesity agents with alpha-amylase and pancreatic lipase inhibitory activities. J Sci Food Agric 94:2217–2224PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Scalbert A, Manach C, Morand C, Remesy C, Jimenez L (2005) Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci 45:287–306CrossRefGoogle Scholar
  11. 11.
    Fu L, Xu BT, Xu XR et al (2011) Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem 129:345–350PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Deng GF, Lin X, Xu XR, Gao LL, Xie JF, Li HB (2013) Antioxidant capacities and total phenolic contents of 56 vegetables. J Funct Foods 5:260–266CrossRefGoogle Scholar
  13. 13.
    Guo YJ, Deng GF, Xu XR et al (2012) Antioxidant capacities, phenolic compounds and polysaccharide contents of 49 edible macro-fungi. Food Funct 3:1195–1205PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Liu Q, Meng X, Li Y, Zhao CN, Tang GY, Li HB (2017) Antibacterial and antifungal activities of spices. Int J Mol Sci 18:1283PubMedCentralCrossRefGoogle Scholar
  15. 15.
    Zhao CN, Zhang JJ, Li Y, Meng X, Li HB (2018) Microwave-assisted extraction of phenolic compounds from Melastoma sanguineum fruit: optimization and identification. Molecules 23:2498PubMedCentralCrossRefGoogle Scholar
  16. 16.
    Grosso C, Oliveira AC, Mainar AM, Urieta JS, Barroso JG, Palavra AMF (2009) Antioxidant activities of the supercritical and conventional Satureja montana extracts. J Food Sci 74:C713–C717PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Oroian M, Escriche I (2015) Antioxidants: characterization, natural sources, extraction and analysis. Food Res Int 74:10–36PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Li Y, Li S, Lin SJ, Zhang JJ, Zhao CN, Li HB (2017) Microwave-assisted extraction of natural antioxidants from the exotic Gordonia axillaris fruit: optimization and identification of phenolic compounds. Molecules 22:1481PubMedCentralCrossRefGoogle Scholar
  19. 19.
    Zhou Y, Xu XY, Gan RY et al (2019) Optimization of ultrasound-assisted extraction of antioxidant polyphenols from the seed coats of red sword bean (Canavalia gladiate (Jacq.) DC.). Antioxidants 8:200PubMedCentralCrossRefGoogle Scholar
  20. 20.
    Teh SS, Niven BE, Bekhit AEA, Carne A, Birch J (2015) Optimization of polyphenol extraction and antioxidant activities of extracts from defatted flax seed cake (Linum usitatissimum L.) using microwave-assisted and pulsed electric field (PEF) technologies with response surface methodology. Food Sci Biotechnol 24:1649–1659CrossRefGoogle Scholar
  21. 21.
    Barba FJ, Grimi N, Vorobiev E (2015) Evaluating the potential of cell disruption technologies for green selective extraction of antioxidant compounds from Stevia rebaudiana Bertoni leaves. J Food Eng 149:222–228CrossRefGoogle Scholar
  22. 22.
    Dudonne S, Vitrac X, Coutiere P, Woillez M, Merillon JM (2009) Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J Agric Food Chem 57:1768–1774PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Liu Q, Tang G-Y, Zhao C-N, Gan R-Y, Li H-B (2019) Antioxidant activities, phenolic profiles, and organic acid contents of fruit vinegars. Antioxidants 8:78PubMedCentralCrossRefGoogle Scholar
  24. 24.
    Tan C, Xue J, Abbas S, Feng B, Zhang XM, Xia SQ (2014) Liposome as a delivery system for carotenoids: comparative antioxidant activity of carotenoids as measured by ferric reducing antioxidant power, DPPH assay and lipid peroxidation. J Agric Food Chem 62:6726–6735PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Bai Y, Chang JW, Xu Y et al (2016) Antioxidant and myocardial preservation activities of natural phytochemicals from Mung Bean (Vigna radiata L.) Seeds. J Agric Food Chem 64:4648–4655PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Cao SY, Li BY, Gan RY et al (2020) The in vivo antioxidant and hepatoprotective actions of selected Chinese teas. Foods 9:262PubMedCentralCrossRefGoogle Scholar
  27. 27.
    Xu XY, Zheng J, Meng JM et al (2019) Effects of food processing on in vivo antioxidant and hepatoprotective properties of green tea extracts. Antioxidants 8:572PubMedCentralCrossRefGoogle Scholar
  28. 28.
    Xu DP, Zheng J, Zhou Y, Li Y, Li S, Li HB (2016) Extraction of natural antioxidants from the Thelephora ganbajun mushroom by an ultrasound-assisted extraction technique and evaluation of antiproliferative activity of the extract against human cancer cells. Int J Mol Sci 17:1664PubMedCentralCrossRefGoogle Scholar
  29. 29.
    Contini M, Baccelloni S, Massantini R, Anelli G (2008) Extraction of natural antioxidants from hazelnut (Corylus avellana L.) shell and skin wastes by long maceration at room temperature. Food Chem 110:659–669CrossRefGoogle Scholar
  30. 30.
    Lima MD, Dutra MDP, Toaldo IM et al (2015) Phenolic compounds, organic acids and antioxidant activity of grape juices produced in industrial scale by different processes of maceration. Food Chem 188:384–392CrossRefGoogle Scholar
  31. 31.
    Martins N, Barros L, Santos-Buelga C, Silva S, Henriques M, Ferreira I (2015) Decoction, infusion and hydroalcoholic extract of cultivated thyme: antioxidant and antibacterial activities, and phenolic characterisation. Food Chem 167:131–137PubMedCrossRefGoogle Scholar
  32. 32.
    Selles AJN, Castro HTV, Aguero-Aguero J et al (2002) Isolation and quantitative analysis of phenolic antioxidants, free sugars, and polyols from mango (Mangifera indica L.) stem bark aqueous decoction used in Cuba as a nutritional supplement. J Agric Food Chem 50:762–766CrossRefGoogle Scholar
  33. 33.
    Alonso-Carrillo N, Aguilar-Santamaria MD, Vernon-Carter EJ, Jimenez-Alvarado R, Cruz-Sosa F, Roman-Guerrero A (2017) Extraction of phenolic compounds from Satureja macrostema using microwave-ultrasound assisted and reflux methods and evaluation of their antioxidant activity and cytotoxicity. Ind Crop Prod 103:213–221CrossRefGoogle Scholar
  34. 34.
    Ghasemzadeh A, Jaafar HZE (2014) Optimization of reflux conditions for total flavonoid and total phenolic extraction and enhanced antioxidant capacity in Pandan (Pandanus amaryllifolius Roxb.) using response surface methodology. Sci World J 2014:523120CrossRefGoogle Scholar
  35. 35.
    Alara OR, Abdurahman NH, Ukaegbu CI (2018) Soxhlet extraction of phenolic compounds from Vernonia cinerea leaves and its antioxidant activity. J Appl Res Med Aromat Plant 11:12–17Google Scholar
  36. 36.
    Sormoli ME, Langrish TAG (2016) Spray drying bioactive orange-peel extracts produced by Soxhlet extraction: use of WPI, antioxidant activity and moisture sorption isotherms. Food Sci Technol-Leb 72:1–8CrossRefGoogle Scholar
  37. 37.
    de Castro MDL, Priego-Capote F (2010) Soxhlet extraction: past and present panacea. J Chromatogr A 1217:2383–2389CrossRefGoogle Scholar
  38. 38.
    Zhou T, Xu DP, Lin SJ et al (2017) Ultrasound-assisted extraction and identification of natural antioxidants from the fruit of Melastoma sanguineum Sims. Molecules 22:306PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Rao KS, Keshar NK, Kumar B (2012) A comparative study of polyphenolic composition and in-vitro antioxidant activity of Illicium verum extracted by microwave and Soxhlet extraction techniques. Indian J Pharm Educ Res 46:228–234Google Scholar
  40. 40.
    Mirzadeh M, Arianejad MR, Khedmat L (2020) Antioxidant, antiradical, and antimicrobial activities of polysaccharides obtained by microwave-assisted extraction method: a review. Carbohydr Polym 229:115421PubMedCrossRefGoogle Scholar
  41. 41.
    Chuyen HV, Nguyen MH, Roach PD, Golding JB, Parks SE (2018) Microwave-assisted extraction and ultrasound-assisted extraction for recovering carotenoids from Gac peel and their effects on antioxidant capacity of the extracts. Food Sci Nutr 6:189–196PubMedCrossRefGoogle Scholar
  42. 42.
    Thaiphanit S, Wedprasert W, Srabua A (2020) Conventional and microwave-assisted extraction for bioactive compounds from dried coffee cherry peel by-products and antioxidant activity of the aqueous extracts. ScienceAsia 46:12–18CrossRefGoogle Scholar
  43. 43.
    Arvindekar AU, Laddha KS (2016) An efficient microwave-assisted extraction of anthraquinones from Rheum emodi: optimisation using RSM, UV and HPLC analysis and antioxidant studies. Ind Crop Prod 83:587–595CrossRefGoogle Scholar
  44. 44.
    Pinela J, Prieto MA, Carvalho AM et al (2016) Microwave-assisted extraction of phenolic acids and flavonoids and production of antioxidant ingredients from tomato: a nutraceutical-oriented optimization study. Sep Purif Technol 164:114–124CrossRefGoogle Scholar
  45. 45.
    Ren BB, Chen C, Li C, Fu X, You L, Liu RH (2017) Optimization of microwave-assisted extraction of Sargassum thunbergii polysaccharides and its antioxidant and hypoglycemic activities. Carbohydr Polym 173:192–201PubMedCrossRefGoogle Scholar
  46. 46.
    Sahin S, Samli R, Tan ASB et al (2017) Solvent-free microwave-assisted extraction of polyphenols from olive tree leaves: antioxidant and antimicrobial properties. Molecules 22:1056PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Xu DP, Zheng J, Zhou Y, Li Y, Li S, Li HB (2017) Ultrasound-assisted extraction of natural antioxidants from the flower of Limonium sinuatum: optimization and comparison with conventional methods. Food Chem 217:552–559PubMedCrossRefGoogle Scholar
  48. 48.
    Bekdeser B (2019) Modeling and optimizing microwave-assisted extraction of antioxidant compounds from marigold (Calendula offieinalis L.) using response surface methodology. Turk J Chem 43:1457–1471CrossRefGoogle Scholar
  49. 49.
    Dang TT, Bowyer MC, Van Altena IA, Scarlett CJ (2018) Optimum conditions of microwave-assisted extraction for phenolic compounds and antioxidant capacity of the brown alga Sargassum vestitum. Sep Sci Technol 53:1711–1723CrossRefGoogle Scholar
  50. 50.
    Sen FB, Asci YS, Bekdeser B, Bener M, Apak R (2019) Optimization of microwave-assisted extraction (MAE) for the isolation of antioxidants from Basil (Ocimum basilicum L.) by response surface methodology (RSM). Anal Lett 52:2751–2763CrossRefGoogle Scholar
  51. 51.
    Piovesan N, Viera VB, Mello RD et al (2017) Microwave-assisted extraction of bioactive compounds from blueberry (Vaccinium ashei Reade) and their antioxidant and antimicrobial capacity. Int Food Res J 24:2526–2533Google Scholar
  52. 52.
    Cigeroglu Z, Bayramoglu M, Krbaslar SI, Sahin S Comparison of microwave-assisted techniques for the extraction of antioxidants from Citrus paradisi Macf. biowastes. J Food Sci TechGoogle Scholar
  53. 53.
    Wei EW, Yang R, Zhao HP et al (2019) Microwave-assisted extraction releases the antioxidant polysaccharides from seabuckthorn (Hippophae rhamnoides L.) berries. Int J Biol Macromol 123:280–290PubMedCrossRefGoogle Scholar
  54. 54.
    Perino-Issartier S, Zill e H, Abert-Vian M, Chemat F (2011) Solvent free microwave-assisted extraction of antioxidants from sea buckthorn (Hippophae rhamnoides) food by-products. Food Bioprocess Technol 4:1020–1028CrossRefGoogle Scholar
  55. 55.
    Pal CBT, Jadeja GC (2019) Microwave-assisted deep eutectic solvent extraction of phenolic antioxidants from onion (Allium cepa L.) peel: a Box-Behnken design approach for optimization. J Food Sci Tech 56:4211–4223CrossRefGoogle Scholar
  56. 56.
    Pal CBT, Jadeja GC (2020) Microwave-assisted extraction for recovery of polyphenolic antioxidants from ripe mango (Mangifera indica L.) peel using lactic acid/sodium acetate deep eutectic mixtures. Food Sci Technol Int 26:78–92PubMedCrossRefGoogle Scholar
  57. 57.
    Lin YY, Zeng HY, Wang K et al (2019) Microwave-assisted aqueous two-phase extraction of diverse polysaccharides from Lentinus edodes: process optimization, structure characterization and antioxidant activity. Int J Biol Macromol 136:305–315PubMedCrossRefGoogle Scholar
  58. 58.
    Sardarodiyan M, Qandashtani RA, Mahian RA, Shahri MN, Arianfar A (2019) Microwave-assisted extraction of phenolic antioxidant compounds and antibacterial activities of Thymus transcapicus essential oil from north Khorasan province of Iran. Carpath J Food Sci Technol 11:19–31Google Scholar
  59. 59.
    Karunanithi A, Venkatachalam S (2019) Ultrasonic-assisted solvent extraction of phenolic compounds from Opuntia ficus-indica peel: phytochemical identification and comparison with Soxhlet extraction. J Food Process Eng 42:e13126CrossRefGoogle Scholar
  60. 60.
    Gao JY, Yang X, Liu P, Yin WP (2016) Short communication optimization of ultrasonic-assisted extraction of polysaccharides from Scutellaria barbata and determination of their anticancer and antioxidant activities. Int J Pharmacol 12:754–759CrossRefGoogle Scholar
  61. 61.
    Hou FL, Su DX, Xu JR et al (2016) Enhanced extraction of phenolics and antioxidant capacity from sorghum (Sorghum bicolor L. Moench) shell using ultrasonic-assisted ethanol-water binary solvent. J Food Process Preserv 40:1171–1179CrossRefGoogle Scholar
  62. 62.
    Xie JH, Shen MY, Xie MY et al (2012) Ultrasonic-assisted extraction, antimicrobial and antioxidant activities of Cyclocarya paliurus (Batal.) Iljinskaja polysaccharides. Carbohydr Polym 89:177–184PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Raza A, Li F, Xu XQ, Tang J (2017) Optimization of ultrasonic-assisted extraction of antioxidant polysaccharides from the stem of Trapa quadrispinosa using response surface methodology. Int J Biol Macromol 94:335–344PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Al-Bukhaiti WQ, Noman A, Mahdi AA et al (2019) Profiling of phenolic compounds and antioxidant activities of Cissus rotundifolia (Forssk.) as influenced by ultrasonic-assisted extraction conditions. J Food Meas Charact 13:634–647CrossRefGoogle Scholar
  65. 65.
    Elnour AAM, Mirghani MES, Kabbashi NA, Alam MZ, Musa KH (2018) Gum arabic: an optimization of ultrasonic-assisted extraction of antioxidant activity. Stud U Babes-Bol Che 63:95–116Google Scholar
  66. 66.
    Jo J, Shin S, Jung H, Min B, Kim S, Kim J (2017) Process development for production of antioxidants from lipid extracted microalgae using ultrasonic-assisted extraction. Korean Chem Eng Res 55:542–547Google Scholar
  67. 67.
    Natnoi S, Pirak T (2019) Effect of ultrasonic-assisted extraction on the properties, antioxidant and inflammatory activities of carotenoids from gac (Momordica cochinchinensis) fruit pericarp. Cogent Food Agric 5:1696512CrossRefGoogle Scholar
  68. 68.
    Yang B, Wu QJ, Luo YX, Yang Q, Wei XY, Kan JQ (2019) High-pressure ultrasonic-assisted extraction of polysaccharides from Hovenia dulcis: extraction, structure, antioxidant activity and hypoglycemic. Int J Biol Macromol 137:676–687PubMedCrossRefGoogle Scholar
  69. 69.
    Li F, Raza A, Wang YW, Xu XQ, Chen GH (2017) Optimization of surfactant-mediated, ultrasonic-assisted extraction of antioxidant polyphenols from rattan tea (Ampelopsis grossedentata) using response surface methodology. Pharmacogn Mag 13:446–453PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Kazemi M, Karim R, Mirhosseini H, Hamid AA (2016) Optimization of pulsed ultrasound-assisted technique for extraction of phenolics from pomegranate peel of Malas variety: punicalagin and hydroxybenzoic acids. Food Chem 206:156–166PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Pan ZL, Qu WJ, Ma HL, Atungulu GG, McHugh TH (2012) Continuous and pulsed ultrasound-assisted extractions of antioxidants from pomegranate peel. Ultrason Sonochem 19:365–372PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Gligor O, Mocan A, Moldovan C, Locatelli M, Crisan G, Ferreira I (2019) Enzyme-assisted extractions of polyphenols – a comprehensive review. Trends Food Sci Technol 88:302–315CrossRefGoogle Scholar
  73. 73.
    Puri M, Sharma D, Barrow CJ (2012) Enzyme-assisted extraction of bioactives from plants. Trends Biotechnol 30:37–44PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Neta IMR, de Castro RJS (2020) Enzyme-assisted extraction of biocomponents of lentils (Lens culinaris L.): effect of process parameters on the recovery of compounds with antioxidant properties. Biocatal Biotransfor 38:15–23CrossRefGoogle Scholar
  75. 75.
    Manoj K, Anil D, Archana S et al (2018) Valorization of Black carrot marc: antioxidant properties and enzyme assisted extraction of flavonoids. Res J Biotechnol 13:12–21Google Scholar
  76. 76.
    Zhao XY, Zhang XW, Liu HK, Zhu HT, Zhu YP (2019) Enzyme-assisted extraction of astaxanthin from Haematococcus pluvialis and its stability and antioxidant activity. Food Sci Biotechnol 28:1637–1647PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Wang BJ, Yang QS, Chen T, Qin XD, Ma JR, Zhao Y (2017) Optimization of enzyme-assisted extraction of carotenoids antioxidants from Cordyceps militaris using response surface methodology. Int J Food Eng 13:20160173Google Scholar
  78. 78.
    Qin YJ, Yuan QX, Zhang YX et al (2018) Enzyme-assisted extraction optimization, characterization and antioxidant activity of polysaccharides from sea cucumber Phyllophorus proteus. Molecules 23:590PubMedCentralCrossRefGoogle Scholar
  79. 79.
    Lin SL, Wang ZY, Hu JM, Ge SH, Zheng BD, Zeng SX (2018) Polyphenolics from fresh lotus seeds: enzyme-assisted ethanol extraction optimization and its antioxidant activity. Curr Top Nutraceutical R 16:85–96Google Scholar
  80. 80.
    Li FW, Chen LG, Yu XH (2019) Compared extraction methods on the physicochemical properties, antioxidant activity, and optimization of enzyme-assisted extraction of polysaccharides from Gynura medica. J Food Process Preserv 43:e14064Google Scholar
  81. 81.
    Gorguc A, Bircan C, Yilmaz FM (2019) Sesame bran as an unexploited by-product: effect of enzyme and ultrasound-assisted extraction on the recovery of protein and antioxidant compounds. Food Chem 283:637–645PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Khaw KY, Parat MO, Shaw PN, Falconer JR (2017) Solvent supercritical fluid technologies to extract bioactive compounds from natural sources: a review. Molecules 22:1186PubMedCentralCrossRefGoogle Scholar
  83. 83.
    Pereira CG, Meireles MAA (2010) Supercritical fluid extraction of bioactive compounds: fundamentals, applications and economic perspectives. Food Bioprocess Technol 3:340–372CrossRefGoogle Scholar
  84. 84.
    Pinelo M, Ruiz-Rodriguez A, Sineiro J, Senorans FJ, Reglero G, Nunez MJ (2007) Supercritical fluid and solid-liquid extraction of phenolic antioxidants from grape pomace: a comparative study. Eur Food Res Technol 226:199–205CrossRefGoogle Scholar
  85. 85.
    Phan LTM, Nguyen KTP, Vuong HT et al (2020) Supercritical fluid extraction of polyphenols from vietnamese Callisia fragrans leaves and antioxidant activity of the extract. J Chem 2020:9548401CrossRefGoogle Scholar
  86. 86.
    Wang CX, Duan ZH, Fan LP, Li JW (2019) Supercritical CO2 fluid extraction of Elaeagnus mollis diels seed oil and its antioxidant ability. Molecules 24:911PubMedCentralCrossRefGoogle Scholar
  87. 87.
    Fathordoobady F, Mirhosseini H, Selamat J, Abd Manap MY (2016) Effect of solvent type and ratio on betacyanins and antioxidant activity of extracts from Hylocereus polyrhizus flesh and peel by supercritical fluid extraction and solvent extraction. Food Chem 202:70–80PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Ruan X, Yang L, Cui WX et al (2016) Optimization of supercritical fluid extraction of total alkaloids, peimisine, peimine and peiminine from the bulb of Fritillaria thunbergii miq, and evaluation of antioxidant activities of the extracts. Materials 9:524PubMedCentralCrossRefGoogle Scholar
  89. 89.
    Chen MH, Huang TC (2016) Volatile and nonvolatile constituents and antioxidant capacity of oleoresins in three Taiwan citrus varieties as determined by supercritical fluid extraction. Molecules 21:1735PubMedCentralCrossRefGoogle Scholar
  90. 90.
    Pavic V, Jakovljevic M, Molnar M, Jokic S (2019) Extraction of carnosic acid and carnosol from sage (Salvia officinalis L.) leaves by supercritical fluid extraction and their antioxidant and antibacterial activity. Plants (Basel, Switz) 8:16Google Scholar
  91. 91.
    Ouedraogo JCW, Dicko C, Kini FB, Bonzi-Coulibaly YL, Dey ES (2018) Enhanced extraction of flavonoids from Odontonema strictum leaves with antioxidant activity using supercritical carbon dioxide fluid combined with ethanol. J Supercrit Fluids 131:66–71CrossRefGoogle Scholar
  92. 92.
    Krakowska-Sieprawska A, Rafinska K, Walczak-Skierska J, Buszewski B (2020) The influence of plant material enzymatic hydrolysis and extraction conditions on the polyphenolic profiles and antioxidant activity of extracts: a green and efficient approach. Molecules 25:2074PubMedCentralCrossRefGoogle Scholar
  93. 93.
    Glisic SB, Ristic M, Skala DU (2011) The combined extraction of sage (Salvia officinalis L.): ultrasound followed by supercritical CO2 extraction. Ultrason Sonochem 18:318–326PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Altuner EM, Tokusoglu O (2013) The effect of high hydrostatic pressure processing on the extraction, retention and stability of anthocyanins and flavonols contents of berry fruits and berry juices. Int J Food Sci Technol 48:1991–1997Google Scholar
  95. 95.
    Tokusoglu O (2016) Effect of high hydrostatic pressure processing strategies on retention of antioxidant phenolic bioactives in foods and beverages – a review. Pol J Food Nutr Sci 66:243–251CrossRefGoogle Scholar
  96. 96.
    Huang HW, Hsu CP, Wang CY (2020) Healthy expectations of high hydrostatic pressure treatment in food processing industry. J Food Drug Anal 28:1–13PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Nunez-Mancilla Y, Perez-Won M, Uribe E, Vega-Galvez A, Di Scala K (2013) Osmotic dehydration under high hydrostatic pressure: effects on antioxidant activity, total phenolics compounds, vitamin C and colour of strawberry (Fragaria vesca). Food Sci Technol-Lebensm-Wiss Technol 52:151–156CrossRefGoogle Scholar
  98. 98.
    Keenan DF, Brunton NP, Gormley TR, Butler F, Tiwari BK, Patras A (2010) Effect of thermal and high hydrostatic pressure processing on antioxidant activity and colour of fruit smoothies. Innov Food Sci Emerg Technol 11:551–556CrossRefGoogle Scholar
  99. 99.
    Liu SW, Xu Q, Li XY et al (2016) Effects of high hydrostatic pressure on physicochemical properties, enzymes activity, and antioxidant capacities of anthocyanins extracts of wild Lonicera caerulea berry. Innov Food Sci Emerg Technol 36:48–58CrossRefGoogle Scholar
  100. 100.
    Camiro-Cabrera M, Escobedo-Avellaneda Z, Salinas-Roca B, Martin-Belloso O, Welti-Chanes J (2017) High hydrostatic pressure and temperature applied to preserve the antioxidant compounds of mango pulp (Mangifera indica L.). Food Bioprocess Technol 10:639–649CrossRefGoogle Scholar
  101. 101.
    Irna C, Jaswir I, Othman R, Jimat DN (2017) Antioxidant and antimicrobial activities of astaxanthin from Penaeus monodon in comparison between chemical extraction and high pressure processing (HPP). Int Food Res J 24:S508–S513Google Scholar
  102. 102.
    Torres-Ossandon MJ, Vega-Galvez A, Lopez J, Stucken K, Romero J, Di Scala K (2018) Effects of high hydrostatic pressure processing and supercritical fluid extraction on bioactive compounds and antioxidant capacity of cape gooseberry pulp (Physalis peruviana L.). J Supercrit Fluids 138:215–220CrossRefGoogle Scholar
  103. 103.
    Soliva-Fortuny R, Balasa A, Knorr D, Martin-Belloso O (2009) Effects of pulsed electric fields on bioactive compounds in foods: a review. Trends Food Sci Technol 20:544–556CrossRefGoogle Scholar
  104. 104.
    Barsotti L, Cheftel JC (1999) Food processing by pulsed electric fields. II. Biological aspects. Food Rev Int 15:181–213CrossRefGoogle Scholar
  105. 105.
    Siddeeg A, Manzoor MF, Ahmad MH et al (2019) Pulsed electric field-assisted ethanolic extraction of date palm fruits: bioactive compounds, antioxidant activity and physicochemical properties. Processes 7:585CrossRefGoogle Scholar
  106. 106.
    He Y, Wen LK, Du YJ, Wang ZT, Lin K (2016) Comparision of different extraction methods of antioxidant anthocyanins in Zuoyouhong vitis amurensis. Oxid Commun 39:2928–2937Google Scholar
  107. 107.
    Liang R, Zhang ZM, Lin SY (2017) Effects of pulsed electric field on intracellular antioxidant activity and antioxidant enzyme regulating capacities of pine nut (Pinus koraiensis) peptide QDHCH in HepG2 cells. Food Chem 237:793–802PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Boussetta N, Vorobiev E (2014) Extraction of valuable biocompounds assisted by high voltage electrical discharges: a review. C R Chim 17:197–203CrossRefGoogle Scholar
  109. 109.
    Zuntar I, Putnik P, Kovacevic DB et al (2019) Phenolic and antioxidant analysis of olive leaves extracts (Olea europaea L.) obtained by high voltage electrical discharges (HVED). Foods 8:248PubMedCentralCrossRefGoogle Scholar
  110. 110.
    Nutrizio M, Kljusuric JG, Sabolovic MB et al (2020) Valorization of sage extracts (Salvia officinalis L.) obtained by high voltage electrical discharges: process control and antioxidant properties. Innov Food Sci Emerg Technol 60:102284CrossRefGoogle Scholar
  111. 111.
    Fki I, Allouche N, Sayadi S (2005) The use of polyphenolic extract, purified hydroxytyrosol and 3,4-dihydroxyphenyl acetic acid from olive mill wastewater for the stabilization of refined oils: a potential alternative to synthetic antioxidants. Food Chem 93:197–204CrossRefGoogle Scholar
  112. 112.
    Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Food Sci Technol-Lebensm-Wiss Technol 28:25–30CrossRefGoogle Scholar
  113. 113.
    Jha DK, Panda L, Ramaiah S, Anbarasu A (2014) Evaluation and comparison of radical scavenging properties of solvent extracts from Justicia adhatoda leaf using DPPH assay. Appl Biochem Biotechnol 174:2413–2425PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Huang DJ, Ou BX, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53:1841–1856PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Winston GW, Regoli F, Dugas AJ Jr, Fong JH, Blanchard KA (1998) A rapid gas chromatographic assay for determining oxyradical scavenging capacity of antioxidants and biological fluids. Free Radic Biol Med 24:480–493PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Magalhaes LM, Segundo MA, Reis S, Lima J (2008) Methodological aspects about in vitro evaluation of antioxidant properties. Anal Chim Acta 613:1–19PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Sofic E, Rimpapa Z, Kundurovic Z et al (2005) Antioxidant capacity of the neurohormone melatonin. J Neural Transm 112:349–358PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Amorati R, Valgimigli L (2015) Advantages and limitations of common testing methods for antioxidants. Free Radic Res 49:633–649PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Auddy B, Ferreira M, Blasina F et al (2003) Screening of antioxidant activity of three Indian medicinal plants, traditionally used for the management of neurodegenerative diseases. J Ethnopharmacol 84:131–138PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Colombo SL, Moncada S (2009) AMPK alpha 1 regulates the antioxidant status of vascular endothelial cells. Biochem J 421:163–169PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Wattanapitayakul SK, Chularojmontri L, Herunsalee A, Charuchongkolwongse S, Niumsakul S, Bauer JA (2005) Screening of antioxidants from medicinal plants for cardioprotective effect against doxorubicin toxicity. Basic Clin Pharmacol Toxicol 96:80–87PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Ye ZP, Wang W, Yuan QX et al (2016) Box-Behnken design for extraction optimization, characterization and in vitro antioxidant activity of Cicer arietinum L. hull polysaccharides. Carbohydr Polym 147:354–364PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Tiwari M, Kakkar P (2009) Plant derived antioxidants – Geraniol and camphene protect rat alveolar macrophages against t-BHP induced oxidative stress. Toxicol in Vitro 23:295–301PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Kim H, Moon JY, Kim H et al (2010) Antioxidant and antiproliferative activities of mango (Mangifera indica L.) flesh and peel. Food Chem 121:429–436CrossRefGoogle Scholar
  125. 125.
    Yang X, Wei HM, Hu GY et al (2020) Combining antioxidant astaxantin and cholinesterase inhibitor huperzine a boosts neuroprotection. Mol Med Rep 21:1043–1050PubMedPubMedCentralGoogle Scholar
  126. 126.
    Yuen HQ, Hwang QH, Zhang XY, Zhou ZX (2014) Cellular antioxidant activity and pharmacokinetic study of polymethoxylated flavonoids in extract of Citrus reticulata ‘Chachi’ Peel. Food Sci Technol Res 20:629–637CrossRefGoogle Scholar
  127. 127.
    Wolfe KL, Liu RH (2007) Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J Agric Food Chem 55:8896–8907PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Wan HX, Liu D, Yu XY, Sun HY, Li Y (2015) A Caco-2 cell-based quantitative antioxidant activity assay for antioxidants. Food Chem 175:601–608PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Li YM, Chan HYE, Huang Y, Chen ZY (2008) Broccoli (Brassica oleracea var. botrytis L.) improves the survival and up-regulates endogenous antioxidant enzymes in Drosophila melanogaster challenged with reactive oxygen species. J Sci Food Agric 88:499–506CrossRefGoogle Scholar
  130. 130.
    Patel SN, Sonani RR, Jakharia K et al (2018) Antioxidant activity and associated structural attributes of Halomicronema phycoerythrin. Int J Biol Macromol 111:359–369PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Ma JF, Gu C, Pan YL, Lin DY, Qiu LX, Wen LP (2017) Antioxidant and anti-inflammatory activities of ethyl acetate extract of Gynura formosana (Kitam) leaves. Exp Ther Med 14:2303–2309PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Wang H, Gao XD, Zhou GC, Cai L, Yao WB (2008) In vitro and in vivo antioxidant activity of Choerospondias axillaris aqueous extract from fruit. Food Chem 106:888–895CrossRefGoogle Scholar
  133. 133.
    Wang XP, Yang L, Yang XL, Tian YH (2014) In vitro and in vivo antioxidant and antimutagenic activities of polyphenols extracted from hops (Humulus lupulus L.). J Sci Food Agric 94:1693–1700PubMedCrossRefGoogle Scholar
  134. 134.
    Chen HM, Yan XJ, Zhu P, Lin J (2006) Antioxidant activity and hepatoprotective potential of agaro-oligosaccharides in vitro and in vivo. Nutr J 5:31PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Wang WD, Sun YE (2017) In vitro and in vivo antioxidant activities of polyphenol extracted from black garlic. Food Sci Technol 37:681–685CrossRefGoogle Scholar
  136. 136.
    Li YS, Kawasaki Y, Tomita I, Kawai K (2017) Antioxidant properties of green tea aroma in mice. J Clin Biochem Nutr 61:14–17PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Zhang YT, Zheng QS, Pan J, Zheng RL (2004) Oxidative damage of biomolecules in mouse liver induced by morphine and protected by antioxidants. Basic Clin Pharmacol Toxicol 95:53–58PubMedCrossRefGoogle Scholar
  138. 138.
    Maciejczyk M, Zebrowska E, Zalewska A, Chabowskil A (2018) Redox balance, antioxidant defense, and oxidative damage in the hypothalamus and cerebral cortex of rats with high fat diet-induced insulin resistance. Oxidative Med Cell Longev 2018:6940515CrossRefGoogle Scholar
  139. 139.
    Tsounapi P, Honda M, Hikita K, Sofikitis N, Takenaka A (2019) Oxidative stress alterations in the bladder of a short-period type 2 diabetes rat model: antioxidant treatment can be beneficial for the bladder. In Vivo 33:1819–1826PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Singh JP, Kaur A, Shevkani K, Singh N (2016) Composition, bioactive compounds and antioxidant activity of common Indian fruits and vegetables. J Food Sci Technol 53:4056–4066PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Munir A, Sultana B, Bashir A et al (2018) Evaluation of antioxidant potential of vegetables waste. Pol J Environ Stud 27:947–952CrossRefGoogle Scholar
  142. 142.
    Vinson JA, Su XH, Zubik L, Bose P (2001) Phenol antioxidant quantity and quality in foods: fruits. J Agric Food Chem 49:5315–5321PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Fu L, Xu BT, Xu XR, Qin XS, Gan RY, Li HB (2010) Antioxidant capacities and total phenolic contents of 56 wild fruits from South China. Molecules 15:8602–8617PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Deng GF, Shen C, Xu XR et al (2012) Potential of fruit wastes as natural resources of bioactive compounds. Int J Mol Sci 13:8308–8323PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Masisi K, Beta T, Moghadasian MH (2016) Antioxidant properties of diverse cereal grains: a review on in vitro and in vivo studies. Food Chem 196:90–97PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Deng GF, Xu XR, Guo YJ et al (2012) Determination of antioxidant property and their lipophilic and hydrophilic phenolic contents in cereal grains. J Funct Foods 4:906–914CrossRefGoogle Scholar
  147. 147.
    Zaupa M, Calani L, Del Rio D, Brighenti F, Pellegrini N (2015) Characterization of total antioxidant capacity and (poly)phenolic compounds of differently pigmented rice varieties and their changes during domestic cooking. Food Chem 187:338–347PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Kalaras MD, Richie JP, Calcagnotto A, Beelman RB (2017) Mushrooms: a rich source of the antioxidants ergothioneine and glutathione. Food Chem 233:429–433PubMedCrossRefGoogle Scholar
  149. 149.
    Li S, Li S-K, Gan R-Y, Song F-L, Kuang L, Li H-B (2013) Antioxidant capacities and total phenolic contents of infusions from 223 medicinal plants. Ind Crop Prod 51:289–298CrossRefGoogle Scholar
  150. 150.
    Li A-N, Li S, Li H-B, Xu D-P, Xu X-R, Chen F (2014) Total phenolic contents and antioxidant capacities of 51 edible and wild flowers. J Funct Foods 6:319–330CrossRefGoogle Scholar
  151. 151.
    Chen GL, Chen SG, Xie YQ et al (2015) Total phenolic, flavonoid and antioxidant activity of 23 edible flowers subjected to in vitro digestion. J Funct Foods 17:243–259CrossRefGoogle Scholar
  152. 152.
    Shan B, Cai YZ, Sun M, Corke H (2005) Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J Agric Food Chem 53:7749–7759PubMedCrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public HealthSun Yat-Sen UniversityGuangzhouChina
  2. 2.Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural SciencesChengduChina

Section editors and affiliations

  • Jaya Arora
    • 1
  1. 1.Laboratory of Biomolecular Technology, Department of BotanyMohanlal Sukhadia UniversityUdaipurIndia

Personalised recommendations