Skip to main content

Mathematical Linguistics and Cognitive Complexity

Handbook of Cognitive Mathematics

Abstract

The complexity of linguistic patterns has been object of extensive debate in research programs focused on probing the inherent structure of human language abilities. But in what sense is a linguistic phenomenon more complex than another, and what can complexity tell us about the connection between linguistic typology and human cognition? This chapter approaches these questions by presenting a broad and informal introduction to the vast literature on formal language theory, computational learning theory, and artificial grammar learning. In doing so, it hopes to provide readers with an understanding of the relevance of mathematically grounded approaches to cognitive investigations into linguistic complexity, and thus further fruitful collaborations between cognitive scientists and mathematically inclined linguist and psychologist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Aksënova, A., & Deshmukh, S. (2018). Formal restrictions on multiple tiers. In Proceedings of the Society for Computation in Linguistics (SCiL) 2018, pp. 64–73.

    Google Scholar 

  • Aksënova, A., Graf, T., & Moradi, S. (2016). Morphotactics as tier-based strictly local dependencies. In Proceedings of SIGMorPhon 2016.

    Google Scholar 

  • Aksënova, A., Rawski, J., Graf, T., & Heinz, J. (forthcoming). The computational power of vowel harmony. In H. van der Hulst (Ed.), Oxford handbook of vowel harmony. Oxford University Press. Under review.

    Google Scholar 

  • Avcu, E., & Hestvik, A. (2020). Unlearnable phonotactics. Glossa: A Journal of General Linguistics, 5(1), 56.

    Article  Google Scholar 

  • Bertinetto, P. M., & Loporcaro, M. (2005). The sound pattern of standard Italian, as compared with the varieties spoken in Florence, Milan and Rome. Journal of the International Phonetic Association, 35(2), 131–151.

    Article  Google Scholar 

  • Berwick, R. (1985). The acquisition of syntactic knowledge. MIT Press.

    Book  Google Scholar 

  • Boone, W., & Piccinini, G. (2016). Mechanistic abstraction. Philosophy of Science, 83(5), 686–697.

    Article  Google Scholar 

  • Braine, M. D., Brody, R. E., Brooks, P. J., Sudhalter, V., Ross, J. A., Catalano, L., & Fisch, S. M. (1990). Exploring language acquisition in children with a miniature artificial language: Effects of item and pattern frequency, arbitrary subclasses, and correction. Journal of Memory and Language, 29(5), 591–610.

    Article  Google Scholar 

  • Brenner, S. (2012). Life’s code script. Nature, 482(7386), 461–461.

    Article  Google Scholar 

  • Brzozowski, J. A., & Knast, R. (1978). The dot-depth hierarchy of star-free languages is infinite. Journal of Computer and System Sciences, 16(1), 37–55.

    Article  MathSciNet  MATH  Google Scholar 

  • Cantor, G. (1892). Über eine elementare Frage der Mannigfaltigkeitslehre. Druck und Verlag von Georg Reimer.

    MATH  Google Scholar 

  • Carnap, R. (1928). Der logische aufbau der welt: Versuch einer konstitutionstheorie der begriffe. Welt-Kreis.

    MATH  Google Scholar 

  • Cauchy, A.-L. (1821). Analyse Algebrique. Debure Frères.

    Google Scholar 

  • Chandlee, J. (2014). Strictly local phonological processes (PhD thesis, University of Delaware).

    Google Scholar 

  • Chesi, C., & Moro, A. (2014). Computational complexity in the brain. In Measuring grammatical complexity (pp. 264–280). Oxford University Press.

    Google Scholar 

  • Chesi, C., & Moro, A. (2015). The subtle dependency between competence and performance. Angel J. Gallego & Dennis Ott (Eds.), 50, 33–45.

    Google Scholar 

  • Chomsky, N. (1957). Syntactic structures. Mouton.

    Book  MATH  Google Scholar 

  • Chomsky, N. (1959). On certain formal properties of grammars. Information and Control, 2(2), 137–167.

    Article  MathSciNet  MATH  Google Scholar 

  • Chomsky, N., & Schützenberger, M. P. (1959). The algebraic theory of context-free languages. In Studies in logic and the foundations of mathematics (Vol. 26, pp. 118–161). Elsevier.

    Google Scholar 

  • Church, A. (1936a). A note on the entscheidungsproblem. Journal of Symbolic Logic, 1(1), 40–41.

    Article  MATH  Google Scholar 

  • Church, A. (1936b). An unsolvable problem of elementary number theory. American Journal of Mathematics, 58(2), 345–363.

    Article  MathSciNet  MATH  Google Scholar 

  • Church, A. (1937). A. M. Turing. On computable numbers, with an application to the Entscheidungs problem. Review By Alonso Church. The Journal of Symbolic Logic, 2(1), 42–43.

    Google Scholar 

  • Culbertson, J. (2021). Artificial language learning. Oxford Handbook of Experimental Syntax (to appear).

    Google Scholar 

  • Cummins, R. (2000). How does it work? versus What are the laws?: Two conceptions of psychological explanation. In Explanation and cognition (pp. 117–144). MIT Press.

    Google Scholar 

  • Danchin, A. (2008). Bacteria as computers making computers. FEMS Microbiology Reviews, 33(1), 3–26.

    Article  Google Scholar 

  • De Santo, A. (2018). Commentary: Developmental constraints on learning artificial grammars with fixed, flexible, and free word order. Frontiers in Psychology, 9, 276.

    Article  Google Scholar 

  • De Santo, A., & Graf, T. (2019). Structure sensitive tier projection: Applications and formal properties. In International conference on formal grammar (pp. 35–50). Springer.

    Chapter  Google Scholar 

  • De Santo, A., & Rawski, J. (2020). What can formal language theory do for animal cognition studies? Royal Society Open Science, 7(2), 191772.

    Article  Google Scholar 

  • DeKeyser, R. M. (1997). Beyond explicit rule learning: Automatizing second language morphosyntax. Studies in Second Language Acquisition, 19, 195–221.

    Article  Google Scholar 

  • Eilenberg, S. (1974). Automata, languages, and machines. Academic.

    MATH  Google Scholar 

  • Ferman, S., Olshtain, E., Schechtman, E., & Karni, A. (2009). The acquisition of a linguistic skill by adults: Procedural and declarative memory interact in the learning of an artificial morphological rule. Journal of Neurolinguistics, 22(4), 384–412.

    Article  Google Scholar 

  • Finley, S. (2011). The privileged status of locality in consonant harmony. Journal of Memory and Language, 65, 74–83.

    Article  Google Scholar 

  • Finley, S. (2012). Testing the limits of long-distance learning: Learning beyond the three-segment window. Cognitive Science, 36(4), 740–756.

    Article  Google Scholar 

  • Finley, S. (2017). Locality and harmony: Perspectives from artificial grammar learning. Language and Linguistics Compass, 11(1), e12233.

    Article  Google Scholar 

  • Finley, S., & Badecker, W. (2009). Artificial language learning and feature-based generalization. Journal of Memory and Language, 61, 423–437.

    Article  Google Scholar 

  • Fitch, W., & Hauser, M. (2004). Computational constraints on syntactic processing in nonhuman primates. Science, 303, 377–380.

    Article  Google Scholar 

  • Fitch, W. T., Friederici, A. D., & Hagoort, P. (2012). Pattern perception and computational complexity: Introduction to the special issue. Philosophical Transactions of the Royal Society B, 367, 1925–1932.

    Article  Google Scholar 

  • Fodor, J. A. (1983). The modularity of mind. MIT Press.

    Book  Google Scholar 

  • Fowlie, M. (2017). Slaying the great green Dragon: Learning and modelling iterable ordered optional adjuncts (PhD thesis, UCLA).

    Google Scholar 

  • Frank, R., & Satta, G. (1998). Optimality theory and the generative complexity of constraint violability. Computational Linguistics, 24(2), 307–315.

    MathSciNet  Google Scholar 

  • Fu, J., Heinz, J., & Tanner, H. G. (2011). An algebraic characterization of strictly piecewise languages. In International conference on theory and applications of models of computation (pp. 252–263). Springer.

    Chapter  MATH  Google Scholar 

  • Gallistel, C. R. (1999). The replacement of general-purpose learning models with adaptively specialized learning modules. In The new cognitive neurosciences (pp. 1179–1191). MIT Press.

    Google Scholar 

  • Gleitman, L. (1990). The structural sources of verb meanings. Language Acquisition, 1(1), 3–55.

    Article  Google Scholar 

  • Gold, E. (1967). Language identification in the limit. Information and Control, 10, 447–474.

    Article  MathSciNet  MATH  Google Scholar 

  • Gomez, R. L. (1997). Transfer and complexity in artificial grammar learning. Cognitive Psychology, 33(2), 154–207.

    Article  Google Scholar 

  • Gomez, R. L., & Gerken, L. (1999). Artificial grammar learning by 1-year-olds leads to specific and abstract knowledge. Cognition, 70(2), 109–135.

    Article  Google Scholar 

  • Goodman, E. B. J. C. (1997). On the inseparability of grammar and the lexicon: Evidence from acquisition, aphasia and real-time processing. Language and Cognitive Processes, 12(5–6), 507–584.

    Article  Google Scholar 

  • Graf, T. (2017). The power of locality domains in phonology. Phonology, 34(2), 385–405.

    Article  Google Scholar 

  • Graf, T., & De Santo, A. (2019). Sensing tree automata as a model of syntactic dependencies. In Proceedings of the 16th meeting on the mathematics of language (pp. 12–26). Association for Computational Linguistics.

    Chapter  Google Scholar 

  • Griffiths, T., Kemp, C., & Tenenbaum, J. B. (2008). Bayesian models of cognition. In R. Sun (Ed.), The Cambridge handbook of computational cognitive modeling. Cambridge University Press.

    Google Scholar 

  • Grünwald, P. (1995). A minimum description length approach to grammar inference. In International joint conference on artificial intelligence (pp. 203–216). Springer.

    Google Scholar 

  • Grünwald, P. D., Myung, I. J., & Pitt, M. A. (2005). Advances in minimum description length: Theory and applications. MIT Press.

    Book  Google Scholar 

  • Guest, O., & Martin, A. E. (2021). How computational modeling can force theory building in psychological science. Perspectives on Psychological Science, 16, 789, 1745691620970585. PMID: 33482070.

    Article  Google Scholar 

  • Hansen, M. H., & Yu, B. (2001). Model selection and the principle of minimum description length. Journal of the American Statistical Association, 96(454), 746–774.

    Article  MathSciNet  MATH  Google Scholar 

  • Hauser, M. D., Chomsky, N., & Fitch, W. T. (2002). The faculty of language: What is it, who has it, and how did it evolve? Science, 298, 1569–1579.

    Article  Google Scholar 

  • Hayward, R. J. (1990). Notes on the Aari language. In R. J. Hayward (Ed.), Omotic language studies (pp. 425–493). University of London.

    Google Scholar 

  • Heinz, J. (2010). String extension learning. In Proceedings of the 48th annual meeting of the association for computational linguistics (pp. 897–906). Association for Computational Linguistics.

    Google Scholar 

  • Heinz, J. (2016). Computational theories of learning and developmental psycholinguistics, chapter 27. In J. Lidz, W. Synder, & J. Pater (Eds.), The Oxford handbook of developmental linguistics (pp. 633–663). Oxford University Press.

    Google Scholar 

  • Heinz, J. (2018). The computational nature of phonological generalizations, chapter 5. In L. Hyman & F. Plank (Eds.), Phonological typology, phonetics and phonology (pp. 126–195). De Gruyter Mouton.

    Chapter  Google Scholar 

  • Heinz, J., & Idsardi, W. (2013). What complexity differences reveal about domains in language. Topics in Cognitive Science, 5(1), 111–131.

    Article  Google Scholar 

  • Heinz, J., & Rawski, J. (forthcoming). History of phonology: Learnability, chapter 32. In E. Dresher & H. van der Hulst (Eds.), Oxford handbook of the history of phonology. Oxford University Press.

    Google Scholar 

  • Heinz, J., Rawal, C., & Tanner, H. (2011). Tier-based strictly local constraints for phonology. In Proceedings of the 49th annual meeting of the Association for Computational Linguistics: Human language technologies: Short papers – volume 2, HLT ‘11 (pp. 58–64). Association for Computational Linguistics.

    Google Scholar 

  • Heinz, J., Kasprzik, A., & Kötzing, T. (2012). Learning with lattice-structured hypothesis spaces. Theoretical Computer Science, 457, 111–127.

    Article  MathSciNet  MATH  Google Scholar 

  • Hilbert, D. (1928). Die grundlagen der mathematik. In Die Grundlagen der Mathematik (pp. 1–21). Springer.

    Chapter  Google Scholar 

  • Hopcroft, J. E., Motwani, R., & Ullman, J. D. (2001). Introduction to automata theory, languages, and computation. ACM SIGACT News, 32(1), 60–65.

    Article  MATH  Google Scholar 

  • Hornstein, N., & Lightfoot, D. (1981). Explanation in linguistics. In The logical problem of language acquisition. Longman.

    Google Scholar 

  • Hunter, T. (2021). The Chomsky hierarchy. In A companion to Chomsky (pp. 74–95). Wiley Online Library.

    Chapter  Google Scholar 

  • Jäger, G., & Rogers, J. (2012). Formal language theory: Refining the Chomsky hierarchy. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1598), 1956–1970.

    Article  Google Scholar 

  • James, W. (1910). The principles psychology (Vol. 1). Holt.

    Google Scholar 

  • Jardine, A. (2015). Computationally, tone is different. Phonology. to appear.

    Google Scholar 

  • Kaplan, R. M. (1995). Three seductions of computational psycholinguistics. In Formal issues in lexical-functional grammar (Vol. 47). CSLI Publications.

    MATH  Google Scholar 

  • Kaplan, D. M. (2011). Explanation and description in computational neuroscience. Synthese, 183(3), 339–373.

    Article  Google Scholar 

  • Kaplan, R. M., & Kay, M. (1994). Regular models of phonological rule systems. Computational Linguistics, 20(3), 331–378.

    Google Scholar 

  • Karttunen, L., Kaplan, R. M., & Zaenen, A. (1992). Two-level morphology with composition. In COLING 1992 Volume 1: The 14th international conference on computational linguistics.

    Google Scholar 

  • Kleene, S. C. (1952). Introduction to metamathematics (Vol. 483). van Nostrand.

    MATH  Google Scholar 

  • Kobele, G. M. (2006). Generating copies: An investigation into structural identity in language and grammar (PhD thesis, University of California, Los Angeles).

    Google Scholar 

  • Koo, H., & Callahan, L. (2012). Tier-adjacency is not a necessary condition for learning phonotactic dependencies. Language and Cognitive Processes, 27(10), 1425–1432.

    Article  Google Scholar 

  • Lai, R. (2015). Learnable vs. unlearnable harmony patterns. Linguistic Inquiry, 46(3), 425–451.

    Article  Google Scholar 

  • Lenneberg, E. (1967). Biological foundations of language. Wiley.

    Book  Google Scholar 

  • Levelt, W. J. (2020). On empirical methodology, constraints, and hierarchy in artificial grammar learning. Topics in Cognitive Science, 12(3), 942–956.

    Article  Google Scholar 

  • Levy, A., & Bechtel, W. (2013). Abstraction and the organization of mechanisms. Philosophy of Science, 80(2), 241–261.

    Article  Google Scholar 

  • Marcus, G. F., Vijayan, S., Rao, S. B., & Vishton, P. M. (1999). Rule learning by seven-month-old infants. Science, 283(5398), 77–80.

    Article  Google Scholar 

  • Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. W.H. Freeman.

    Google Scholar 

  • Marr, D., Poggio, T., Hildreth, E. C., & Grimson, W. E. L. (1991). A computational theory of human stereo vision. In From the retina to the neocortex (pp. 263–295). Springer.

    Chapter  Google Scholar 

  • Martin, A., & Baggio, G. (2019). Modelling meaning composition from formalism to mechanism. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 375(1791), 20190298.

    Article  Google Scholar 

  • McCollum, A. G., Bakovi’c, E., Mai, A., & Meinhardt, E. (2020). Unbounded circumambient patterns in segmental phonology. Phonology, 37(2), 215–255.

    Article  Google Scholar 

  • McCulloch, W. S., & Pitts, W. (1990). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biology, 52(1–2), 99–115.

    Article  MATH  Google Scholar 

  • McGregor, D. C., Padovan, A., Georges, A., Krockenberger, A., Yoon, H.-J., & Youngentob, K. N. (2020). Genetic evidence supports three previously described species of greater glider, petauroides volans, p. minor, and p. armillatus. Scientific Reports, 10(1), 1–11.

    Article  Google Scholar 

  • McMullin, K. J. (2016). Tier-based locality in long-distance phonotactics?: Learnability and typology (PhD thesis, University of British Columbia).

    Google Scholar 

  • McMullin, K., & Hansson, G. Ó. (2019). Inductive learning of locality relations in segmental phonology. Laboratory Phonology: Journal of the Association for Laboratory Phonology, 10(1), 14.

    Article  Google Scholar 

  • McNaughton, R., & Papert, S. (1971). Counter-free automata. MIT Press.

    MATH  Google Scholar 

  • Miller, G. A. (2003). The cognitive revolution: A historical perspective. Trends in Cognitive Sciences, 7(3), 141–144.

    Article  Google Scholar 

  • Mitchell, T. (2017). Key ideas in machine learning. In Machine Learning: Second Edition. (forthcoming) http://www.cs.cmu.edu/~tom/mlbook/keyIdeas.pdf

  • Moro, A., Tettamanti, M., Perani, D., Donati, C., Cappa, S., & Fazio, F. (2001). Syntax and the brain: Disentangling grammar by selective anomalies. NeuroImage, 13(1), 110–118.

    Article  Google Scholar 

  • Newell, A. (1973). You can’t play 20 questions with nature and win: Projective comments on the papers of this symposium. Carnegie Mellon University, Dept. of Computer Science.

    Google Scholar 

  • Niyogi, P. (2006). The computational nature of language learning and evolution. MIT Press.

    Book  Google Scholar 

  • Niyogi, P., & Berwick, R. (1996). A language learning model for finite parameter spaces. Cognition, 61, 161–193.

    Article  Google Scholar 

  • Nowak, I., & Baggio, G. (2017). Developmental constraints on learning artificial grammars with fixed, flexible and free word order. Frontiers in Psychology, 8, 1816.

    Article  Google Scholar 

  • Núñez, R., Allen, M., Gao, R., Rigoli, C. M., Relaford-Doyle, J., & Semenuks, A. (2019). What happened to cognitive science? Nature Human Behaviour, 3(8), 782–791.

    Article  Google Scholar 

  • Nurse, P. (2008). Life, logic and information. Nature, 454(7203), 424–426.

    Article  Google Scholar 

  • Osherson, D., & Weinstein, S. (1983). Formal learning theory. In M. Gazzaniga & G. Miller (Eds.), Handbook of cognitive neurology. Plenum.

    Google Scholar 

  • Osherson, D., Weinstein, S., & Stob, M. (1986). Systems that learn. MIT Press.

    Google Scholar 

  • Öttl, B., Jäger, G., & Kaup, B. (2015). Does formal complexity reflect cognitive complexity? Investigating aspects of the Chomsky hierarchy in an artificial language learning study. PLoS One, 10(4), e0123059.

    Article  Google Scholar 

  • Piccinini, G., & Bahar, S. (2013). Neural computation and the computational theory of cognition. Cognitive Science, 37(3), 453–488.

    Article  Google Scholar 

  • Pin, J. E. (1986). Varieties of formal languages. Plenum Publishing.

    Book  MATH  Google Scholar 

  • Planck, M. (1936). The philosophy of physics. W. W. Norton.

    Google Scholar 

  • Post, E. L. (1944). Recursively enumerable sets of positive integers and their decision problems. Bulletin of the American Mathematical Society, 50(5), 284–316.

    Article  MathSciNet  MATH  Google Scholar 

  • Putnam, H. (1967). Psychological predicates. In Art, mind, and religion (pp. 37–48). University of Pittsburgh Press.

    Google Scholar 

  • Pylyshyn, Z. W. (1984). Computation and cognition. MIT Press.

    Google Scholar 

  • Rawski, J., & Heinz, J. (2019). No free lunch in linguistics or machine learning: Response to pater. Language, 95(1), e125–e135.

    Article  Google Scholar 

  • Reber, A. S. (1967). Implicit learning of artificial grammars. Journal of Verbal Learning and Verbal Behavior, 6(6), 855–863.

    Article  Google Scholar 

  • Reber, A. S. (1969). Transfer of syntactic structure in synthetic languages. Journal of Experimental Psychology, 81(1), 115.

    Article  Google Scholar 

  • Rissanen, J. (1983). A universal prior for integers and estimation by minimum description length. The Annals of Statistics, 11, 416–431.

    Article  MathSciNet  MATH  Google Scholar 

  • Rogers, J., & Hauser, M. (2009). The use of formal languages in artificial language learning: A proposal for distinguishing the differences between human and nonhuman animal learners, chapter 12. In H. van der Hulst (Ed.), Recursion and human language (pp. 213–232). De Gruyter Mouton.

    Google Scholar 

  • Rogers, J., & Pullum, G. K. (2011). Aural pattern recognition experiments and the subregular hierarchy. Journal of Logic, Language and Information, 20(3), 329–342.

    Article  MathSciNet  MATH  Google Scholar 

  • Rogers, J., Heinz, J., Fero, M., Hurst, J., Lambert, D., & Wibel, S. (2013). Chapter. Formal grammar. In Cognitive and sub-regular complexity (pp. 90–108). Springer.

    MATH  Google Scholar 

  • Rumelhart, D. E., & McClelland, J. L. (1986). On learning the past tenses of English verbs. In J. McClelland & D. E. Rumelhart (Eds.), Parallel distributed processing (Vol. 2, pp. 216–271). MIT Press.

    Chapter  Google Scholar 

  • Schmidhuber, J. (2002). The speed prior: A new simplicity measure yielding near-optimal computable predictions. In International conference on computational learning theory (pp. 216–228). Springer.

    Chapter  Google Scholar 

  • Searls, D. B. (2002). The language of genes. Nature, 420(6912), 211–217.

    Article  Google Scholar 

  • Shieber, S. M. (1985). Evidence against the context-freeness of natural language. Linguistics and Philosophy, 8(3), 333–343.

    Article  Google Scholar 

  • Sprevak, M. (2010). Computation, individuation, and the received view on representation. Studies in History and Philosophy of Science Part A, 41(3), 260–270.

    Article  Google Scholar 

  • Strother-Garcia, K. (2019). Using model theory in phonology: A novel characterization of syllable structure and syllabification (PhD thesis, University of Delaware).

    Google Scholar 

  • Thomas, W. (1997). Chapter. Languages, automata, and logic. In Handbook of formal languages (Vol. 3, pp. 389–455). Springer.

    Chapter  Google Scholar 

  • Turing, A. M. (1937). On computable numbers, with an application to the entscheidungsproblem. Proceedings of the London Mathematical Society, 2(1), 230–265.

    Article  MathSciNet  MATH  Google Scholar 

  • Turing, A. (1938). On computable numbers, with an application to the entscheidungs problem. A correction. Proceedings of the London Mathematical Society, 2(1), 544–546.

    Article  Google Scholar 

  • Turing, A. M. (1954). Solvable and unsolvable problems. Science News, 31, 7–23.

    Google Scholar 

  • Udden, J., Araujo, S., Forkstam, C., Ingvar, M., Hagoort, P., & Petersson, K. M. (2009). A matter of time: Implicit acquisition of recursive sequence structures. In N. A. Taatgen & H. van Rijn (Eds.), Proceedings of the 31st annual conference of the Cognitive Science Society (pp. 2444–2449). Cognitive Science Society.

    Google Scholar 

  • Uddén, J., de Jesus Dias Martins, M., Zuidema, W., & Tecumseh Fitch, W. (2020). Hierarchical structure in sequence processing: How to measure it and determine its neural implementation. Topics in Cognitive Science, 12(3), 910–924.

    Article  Google Scholar 

  • Valiant, L. (2013). Probably approximately correct: Nature’s algorithms for learning and prospering in a complex world. Basic Books (AZ).

    Google Scholar 

  • van Rooij, I., & Baggio, G. (2021). Theory before the test: How to build high-verisimilitude explanatory theories in psychological science. Perspectives on Psychological Science, 16, 682.

    Article  Google Scholar 

  • van Rooij, I., & Blokpoel, M. (2020). Formalizing verbal theories. Social Psychology, 51, 285.

    Article  Google Scholar 

  • Vitányi, P. M., & Li, M. (2000). Minimum description length induction, bayesianism, and kolmogorov complexity. IEEE Transactions on Information Theory, 46(2), 446–464.

    Article  MathSciNet  MATH  Google Scholar 

  • Vu, M. H. (2020). A quantifier-based approach to NPI-licensing typology: Empirical and computational investigations (PhD thesis, University of Delaware).

    Google Scholar 

  • Weizenbaum, J. (1976). Computer power and human reason: From judgment to calculation. Freeman.

    Google Scholar 

  • Wexler, K., & Culicover, P. (1980). Formal principles of language acquisition. MIT Press.

    Google Scholar 

  • Whitehead, A. N., & Russell, B. (1912). Principia mathematica (Vol. 2). University Press.

    MATH  Google Scholar 

  • Wilson, B., Spierings, M., Ravignani, A., Mueller, J. L., Mintz, T. H., Wijnen, F., Van der Kant, A., Smith, K., & Rey, A. (2020). Non-adjacent dependency learning in humans and other animals. Topics in Cognitive Science, 12(3), 843–858.

    Article  Google Scholar 

  • Yang, C. (2013). Who’s afraid of George Kingsley zipf? Or: Do children and chimps have language? Significance, 10(6), 29–34.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aniello De Santo .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

De Santo, A., Rawski, J. (2022). Mathematical Linguistics and Cognitive Complexity. In: Danesi, M. (eds) Handbook of Cognitive Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-030-44982-7_16-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44982-7_16-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44982-7

  • Online ISBN: 978-3-030-44982-7

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Mathematical Linguistics and Cognitive Complexity
    Published:
    01 March 2022

    DOI: https://doi.org/10.1007/978-3-030-44982-7_16-3

  2. Mathematical Linguistics and Cognitive Complexity
    Published:
    13 February 2022

    DOI: https://doi.org/10.1007/978-3-030-44982-7_16-2

  3. Original

    Mathematical Linguistics and Cognitive Complexity
    Published:
    06 January 2022

    DOI: https://doi.org/10.1007/978-3-030-44982-7_16-1