Skip to main content

Real-Time Optimization of Industrial Processes

  • Reference work entry
  • First Online:
Encyclopedia of Systems and Control

Abstract

RTO aims to optimize the operation of the process taking into account economic terms directly. There are several fundamental gears for smooth operating of an RTO solution. The RTO loop is an extension of feedback control system and consists of subsystems for (a) steady-state detection, (b) data reconciliation and measurement validation, (c) process model updating, and (d) model-based optimization followed by solution validation and implementation. There are several alternatives for each one of these subsystems. This contribution introduces some of the currently used approaches and gives some perspectives for future works in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Alkaya D, Vasamtharajan S, Biegler LT (2009) Successive quadratic programming: applications in the process industry. In: Floudas CA, Pardalos PM (eds) Encyclopedia of optimization. Springer, Berlin, pp 3853–3864

    Chapter  Google Scholar 

  • Bebar M (2005) Regelgxxxomluxxxtebewertung in kontinuierlichen verfahrenstechnischen Anlagen. Ruhr-Universitxxxomlaxxxt Bochum

    Google Scholar 

  • Biegler L (2010) Nonlinear programming: concepts, algorithms, and applications to chemical processes. MOS-SIAM series on optimization. Society for Industrial and Applied Mathematics: Mathematical Optimization Society, Philadelphia

    Book  MATH  Google Scholar 

  • Botelho VR, Trierweiler LF, Trierweiler JO (2012) A new approach for practical identifiability analysis applied to dynamic phenomenological models. Paper presented at the International symposium on advanced control of chemical processes – ADCHEM 2012, Singapura

    Google Scholar 

  • Boyd S, El Ghaoui L, Feron E, Balakrishnan V (1994) Linear matrix inequalities in system and control theory. Studies in applied and numerical mathematics. Society for Industrial and Applied Mathematics, Philadelphia

    Book  MATH  Google Scholar 

  • Cao S, Rhinehart RR (1995) An efficient method of on-line identification of steady state. Rev J Process Control 5:11

    Google Scholar 

  • Darby ML, Nikolaou M, Jones J, Nicholson D (2011) RTO: an overview and assessment of current practice. Rev J Process Control 21(6):874–884. doi:http://doi.org/10.1016/j.jprocont.2011.03.009

  • Engell S (2007) Feedback control for optimal process operation. Rev J Process Control 17(3):203–219. doi:http://doi.org/10.1016/j.jprocont.2006.10.011

  • François G, Srinivasan B, Bonvin D (2005) Use of measurements for enforcing the necessary conditions of optimality in the presence of constraints and uncertainty. Rev J Process Control 15(6):701–712. doi:http://doi.org/10.1016/j.jprocont.2004.11.006

  • Gao W, Engell S (2005) Iterative set-point optimization of batch chromatography. Rev Comput Chem Eng 29(6):1401–1409. doi:http://doi.org/10.1016/j.compchemeng.2005.02.035

  • Marchetti A, Chachuat B, Bonvin D (2009) Modifier-adaptation methodology for real-time optimization. Rev Ind Eng Chem Res 48(13):6022–6033. doi:10.1021/ie801352x

    Google Scholar 

  • Mejía RIG, Duarte MB, Trierweiler JO (2010) Avaliação do desempenho e ajuste automático de métodos de identificação de estado estacionário. In: ABEQ (ed) COBEQ 2010 Congresso Brasileiro de Engenharia Química, 10, Foz do Iguaçú

    Google Scholar 

  • Miletic I, Marlin T (1996) Results analysis for real-time optimization (RTO): deciding when to change the plant operation. Rev Comput Chem Eng 20(Supplement 2):S1077-S1082. doi:http://doi.org/10.1016/0098-1354(96)00187-1

  • Narasimhan S, Jordache C (1999) The importance of data reconciliation and gross error detection-1. In: Data reconciliation and gross error detection. Gulf Professional, Burlington, pp 1–31

    Google Scholar 

  • Sequeira SE, Graells M, Puigjaner L (2002) Real-time evolution for on-line optimization of continuous processes. Rev Ind Eng Chem Res 41(7):1815–1825. doi:10.1021/ie010464l

    Google Scholar 

  • Skogestad S (2000) Plantwide control: the search for the self-optimizing control structure. Rev J Process Control 10(5):487–507. doi:http://doi.org/10.1016/S0959-1524(00)00023-8

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Trierweiler, J.O. (2021). Real-Time Optimization of Industrial Processes. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, Cham. https://doi.org/10.1007/978-3-030-44184-5_243

Download citation

Publish with us

Policies and ethics