Skip to main content

Probing Submillimeter Dynamics to Access Static Shear Elasticity from Polymer Melts to Molecular Fluids

  • Reference work entry
  • First Online:
Liquid Crystalline Polymers

Part of the book series: Polymers and Polymeric Composites: A Reference Series ((POPOC))

  • 698 Accesses

Abstract

At the millimeter scale and above, liquids and viscoelastic liquids are characterized by an absence of shear elasticity at low frequency (~Hz) in contrast to solids or plastic fluids that need to exceed a stress threshold to flow. Below the millimeter scale, the dynamic response exhibits viscoelastic moduli much higher than those measured at larger scale and reveals that fluids possess finite shear elasticity at low frequency. The low-frequency shear elasticity is identified on unentangled and entangled polymers away from the glass transition, molecular glass formers, alkanes, and H-bond liquids, from several tenths to hundredths of millimeter scales. It indicates that liquid molecules are long-range elastically correlated Consequently the thermal and density fluctuations are also elastically correlated, highlighting on the liquid state new mechanisms to consider to understand the microfluidic scale. How to conciliate the low frequency shear elasticity and viscoelasticity theory when the scale goes down to the submillimeter scale? The polymer viscoelasticity theory is founded on the predominance of the molecular dynamics (major intrachain contribution). In contrast, the dynamics of simple liquids is governed by intermolecular forces. How to conciliate intra- versus intermolecular interactions when the polymer weight decreases down to simple liquids whose dynamics are governed by intramolecular interactions? What are the underlying assumptions and their limitations? This entry traces a brief history of the foundations of the viscoelasticity theory, its empirical origin, and presents new developments revealing that the conventional viscoelastic and viscous behaviors might be the asymptotic part of a much broader dynamic response of the liquid state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 329.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Badmaev BB, Bazaron UB, Derjaguin BV, Budaev OR (1983) Measurement of the shear elasticity of polymethylsiloxane liquids. Physica B 122:241–245

    CAS  Google Scholar 

  • Baggioli M, Vasin M, Brazhkin, Trachenko K (2019) Gapped momentum states https://arxiv.org/abs/1904.01419

  • Baroni P, Mendil H, Noirez L (2005) French Patent 05 10988

    Google Scholar 

  • Baroni P, Mendil-Jakani H, Noirez L (2010) Innovations pour une mesure complète des propriétés viscoélastiques des fluides. Techniques de l’Ingénieur, TI Ed, 1 RE145

    Google Scholar 

  • Baroni P, Bouchet P, Noirez L (2013) Highlighting a cooling regime in liquids under submillimeter flows. J Phys Chem Lett 4:2026–2029

    CAS  PubMed  Google Scholar 

  • Boué F, Bastide J, Buzier M, Collette C, Lapp A, Herz J (1987) Dynamics of permanent and temporary networks: small angle neutron scattering measurements and related remarks on the classical models of rubber deformation. Progr Colloid Polym Sci 75:152–170

    Google Scholar 

  • Brand HR, Kawasaki K (2003) Are transient positional and orientational order important approaching the glass transition? Physica A 324:484–494

    Google Scholar 

  • Cassagnau P (2003) Payne effect and shear elasticity of silica-filled polymers in concentrated solutions and in molten state. Polymer 44:2455–2462

    CAS  Google Scholar 

  • Chandler D, Andersen HC (1972) Optimized cluster expansions for classical fluids. II. Theory of molecular liquids. J Chem Phys 57:1930–1931

    CAS  Google Scholar 

  • Chushkin Y, Caronna C, Madsen A (2008) Low-frequency elastic behavior of a supercooled liquid. Euro Phys Lett 83:36001

    Google Scholar 

  • Collin D, Martinoty P (2002) Dynamic macroscopic heterogeneities in a flexible linear polymer melt. Phys A 320:235–248

    Google Scholar 

  • Conrad H, Lehmkühler F, Fischer B, Westermeier F, Schroer MA, Chushkin Y, Gutt C, Sprung M, Grübel G (2015) Correlated heterogeneous dynamics in glass-forming polymers. Phys Rev E 91:42309

    CAS  Google Scholar 

  • de Gennes PG (1971) Reptation of a polymer chain in the presence of fixed obstacles. J Chem Phys 55:572–579

    Google Scholar 

  • Derjaguin BV, Bazaron UB, Zandanova KT, Budaev OR (1989) The complex shear modulus of polymeric and small-molecule liquids. Polymer 30:97–103

    Google Scholar 

  • Doi M, Edwards SF (1978) Dynamics of concentrated polymer systems. J Chem Soc, Faraday Trans II 74:1789–1801

    CAS  Google Scholar 

  • Ferry JD (1970) Viscoelastic properties of polymers. John D. Ferry Wiley, New York, (1961)

    Google Scholar 

  • Ferry JD (1981) Probing macromolecular motions through viscoelasticity. Rubber Chem Technol 54:76–82

    Google Scholar 

  • Fischer EW, Bakai A, Patkowski A, Steffen W, Reinhardt L (2002) Heterophase fluctuations in supercooled liquids and polymers. Non-Cryst Solids 307–310:584–601

    Google Scholar 

  • Fixman M (1991) Stress relaxation in polymer melts and concentrated solutions. J Chem Phys 95:1410–1413

    CAS  Google Scholar 

  • Gallani JL, Hilliou L, Martinoty P, Keller P (1994) Abnormal viscoelastic behavior of side-chain liquid-crystal polymers. Phys Rev Lett 72:2109–2112

    CAS  PubMed  Google Scholar 

  • Gao J, Weiner JH (1991) Nature of stress on the atomic level in sense polymer in systems of interacting chains. Macromolecules 24:5179–5191

    CAS  Google Scholar 

  • Goyon J, Colin A, Ovarlez G, Ajdari A, Bocquet L (2008) Spatial cooperativity in soft glassy flows. Nature 454:84

    CAS  PubMed  Google Scholar 

  • Graham MD (1999) The sharkskin instability of polymer melt flows. Chaos 9:154–163

    CAS  PubMed  Google Scholar 

  • Guenza M (2002a) Cooperative dynamics in unentangled polymer fluids. Phys Rev Lett 88:025901

    CAS  PubMed  Google Scholar 

  • Guenza M (2002b) Intermolecular effects in the center-of-mass dynamics of unentangled polymer fluids. Macromolecules 35:2714–2722

    CAS  Google Scholar 

  • Hansen JP, McDonald IR (1991) Theory of simple liquids. Academic Press, London

    Google Scholar 

  • Hasegawa N, Yuge T, Shimizu A (2016) Liquid is more rigid than solid in a high-frequency region. J Phys Soc Jpn 85:013001

    Google Scholar 

  • Hatzikiriakos (2012) S.G. wall slip of molten polymers. Prog Polym Sci 37:624–643

    CAS  Google Scholar 

  • Hu HW, Carson GA, Granick S (1991) Relaxation time of confined liquids under shear. Phys Rev Lett 66:2758–2761

    CAS  PubMed  Google Scholar 

  • Jalocha D, Constantinescu A, Neviere R (2015) Revisiting the identification of generalized Maxwell models from experimental results. Inter J Solid Struct 67–68:169–181

    Google Scholar 

  • Johnston MT, Ewoldt RH (2013) Precision rheometry: surface tension effects on low-torque measurements in rotational rheometers. J Rheol 57:1515

    CAS  Google Scholar 

  • Kahl P, Baroni P, Noirez L (2013) Hidden solidlike properties in the isotropic phase of the 8CB liquid crystal. Phys Rev E 88:050501

    CAS  Google Scholar 

  • Kahl P, Baroni P, Noirez L (2015) Harmonic strain-optical response revealed in the isotropic (liquid) phase of liquid crystals. Appl Phys Lett 107:084101

    Google Scholar 

  • Korolkovas A, Prevost S, Kawecki M, Devishvili A, Adelmann FA, Gutfreund P and Wolf M (2019) The viscoelastic signature underpinning polymer deformation under shear flow, Soft Matter 15:371–380

    CAS  PubMed  Google Scholar 

  • Demirel LA, Granick S (2001) Origins of solidification when a simple molecular fluid is confined between two plates. J Am Chem Phys 115:1498–1512

    Google Scholar 

  • Litinov VM, Ries ME, Baughman TW, Henke A, Matloka PP (2013) Chain entanglements in polyethylene melts. Why is it studied again? Macromolecules 46:541–547

    Google Scholar 

  • Lugorski Karle I, Broakway LO (1944) The structures of biphenyl, o-terphenyl and tetraphenylene. J Am Chem Soc 66:1974–1979

    Google Scholar 

  • Mansard V, Bocquet L, Colin A (2014) Boundary conditions for soft glassy flows: slippage and surface fluidization. Soft Matter 10:6984–6989

    CAS  PubMed  Google Scholar 

  • Martinoty P, Hilliou L, Mauzac M, Benguigui L, Collin D (1999) Side-chain liquid-crystal polymers: gel-like behavior below their gelation points. Macromolecules 32:1746–1752

    CAS  Google Scholar 

  • Mendil H (2006) PhD thesis (in french), Paris XI

    Google Scholar 

  • Mendil H, Grillo I, Baroni P, Noirez L (2006) Frozen states in the isotropic phase of liquid-crystal polymers. Phys Rev Lett 96:077801

    CAS  PubMed  Google Scholar 

  • Metivier C, Rharbi Y, Magnin A, Bou Abboud A (2012) Stick-slip control of the Carbopol microgels on polymethyl methacrylate transparent smooth walls. Soft Matter 8:7365–7367

    Google Scholar 

  • Noirez L (2005) Origin of the shear induced transitions. Phys Rev E 72:051701

    Google Scholar 

  • Noirez L, Baroni P, Mendil-Jakani H (2009a) The missing parameter in rheology: hidden solid-like correlations in liquid polymers and glass formers. Polym Int 58:962–698

    CAS  Google Scholar 

  • Noirez L, Mendil-Jakani H, Baroni P (2009b) New light on old wisdoms on molten polymers: conformation, slippage and shear banding in sheared entangled and unentangled melts. Macromol Rapid Commn 30:1709–1714

    CAS  Google Scholar 

  • Noirez L, Baroni P, (2010) Revealing the solid-like nature of glycerol at ambient temperature. Journal of Molecular Structure 972:16–21

    CAS  Google Scholar 

  • Noirez L, Baroni P, Cao H (2012) Identification of low frequency shear elasticity in liquids n-heptadecane, liquid water and RT-ionic liquids [emim][Tf2N]. J Mol Liq 176:71–75

    CAS  Google Scholar 

  • Noirez L, Baroni P, Bardeau JF (2017) Highlighting non-uniform temperatures close to liquid/solid interfaces. Appl Phys Lett 110:213904

    Google Scholar 

  • Noirez L, Baroni P (2018) Identification of thermal shear bands in a low molecular weight polymer melt under oscillatory strain field. Colloid and Polymer Science 296:713–720

    CAS  Google Scholar 

  • Pronin AA, Trachenko K, Kondrin MV, Lyapin AG, Brazhkin VV (2011) Non local dielectric relaxation in glycerol. Phys Rev B 84:012201

    Google Scholar 

  • Pujolle-Robic C, Noirez L (2001) Observation of shear-induced nematic-isotropic transition in side-chain liquid crystal polymers. Nature 409:167–171

    CAS  PubMed  Google Scholar 

  • Rault J (1987) Space filling and entanglements in polymeric systems. J Non-Newtonian Fluid Mech 23:229–247

    CAS  Google Scholar 

  • Rouse PE (1953) A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J Chem Phys 21:1272–1280

    CAS  Google Scholar 

  • Scarponi F, Comez L, Fioretto D, Palmieri (2004) Brillouin light scattering from transverse and longitudinal acoustic waves in glycerol. Phys Rev B 70:054203

    Google Scholar 

  • Sotta P, Deloche B, Herz J, Lapp A, Durand D, Rabadeux JC (1987) Evidence for short-range orientational couplings between chain segments in strained rubbers: a deuterium magnetic resonance investigation. Macromolecules 20:2769–2774

    CAS  Google Scholar 

  • Tolstoi DM (1952) A molecular theory for slippage of liquids over solid surfaces. Dokl Acad Nauk SSSR 85:1089–1092

    CAS  Google Scholar 

  • Trachenko K (2017) Lagrangian formulation and symmetrical description of liquid dynamics. Phys. Rev. E 96:062134.

    Google Scholar 

  • Trachenko K, Brazhkin VV (2016) Collective modes and thermodynamics of the liquid state. Rep Prog Phys 79:016502–016538

    CAS  PubMed  Google Scholar 

  • Tracht U, Wilhelm M, Heuer A, Feng H, Schmidt-Rohr K, Spiess HW (1998a) Correlated heterogeneous dynamics in glass-forming polymers. Phys Rev Lett 81:2727

    CAS  Google Scholar 

  • Tracht U, Wilhelm M, Heuer A, Feng H, Schmidt-Rohr K, Spiess HW (1998b) Length scale of dynamic heterogeneities at the glass transition determined by multidimensional nuclear magnetic resonance. Phys Rev Lett 81:2727–2730

    CAS  Google Scholar 

  • Volino F (1997) Théorie viscoélastique non-extensive VI. Application á un liquide formant une phase vitreuse: l’Ortho TerPhényl (OTP). Ann Phys 22:181–231

    CAS  Google Scholar 

  • Wang S-Q, Ravindranath S, Wang Y, Boukany P (2007) New theoretical considerations in polymer rheology: elastic breakdown of chain entanglement network. J Chem Phys 127:064903

    PubMed  Google Scholar 

  • Watanabe H, Kanaya T, Takahashi Y, (2007) Rheo-SANS behavior of Entangled Polymer Chains with Local Label Under Fast Shear Flow, Activity Report on Neutron Scattering Research: Experimental Reports 14:265

    Google Scholar 

  • Weissenberg K (1948) Proc. 1st Intern. Rheol. Cong. Holland , pp 1–29

    Google Scholar 

  • Young T (1805) An essay of the cohesion of fluids. Philos Trans Soc Lond 95:65–87

    Google Scholar 

  • Zaccone A, Blundell JR, Terentjev EM (2011) Network disorder and nonaffine deformations in marginal solids. Phys Rev B 84:174119

    Google Scholar 

  • Zhu Y, Granick S (2004) Superlubricity: a paradox about confined fluids resolved. Phys Rev Lett 93:096101

    PubMed  Google Scholar 

Download references

Acknowledgments

This work has benefited from the AAP2014 “Instrumentation aux limites” CNRS funding. The author is very pleased to thank her collaborators, Patrick Baroni, Hakima Mendil, Philipp, Kahl, Eni Kume and Ursula Windberger. She also would like to thank F. Volino, F. Aitken, D. Aubry, K. Trachenko and A. Zaccone for discussions and theoretical feedback, and R. Ewoldt for stimulating discussion around surface tension. A special thought to the late P.G. de Gennes who chaired the first PhD thesis (www-llb.cea.fr/theses/mendil_2006.pdf) on the low-frequency shear elasticity in fluids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence Noirez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Noirez, L. (2020). Probing Submillimeter Dynamics to Access Static Shear Elasticity from Polymer Melts to Molecular Fluids. In: Zhu, L., Li, C. (eds) Liquid Crystalline Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-030-43350-5_54

Download citation

Publish with us

Policies and ethics