Skip to main content

Neurobiology of Autism Spectrum Disorder

  • Living reference work entry
  • First Online:
Tasman’s Psychiatry

Abstract

Autism spectrum disorder (ASD) is a developmental condition characterized by significant and persistent difficulties with social interaction and communication and by restricted and repetitive behaviors. Signs are often noted during the first 3 years of a child’s life, often worsening with stress or environmental exigencies. There is no single cause for ASD; research suggests a multifactorial condition associated with multiple gene effects and environmental factors. Many of the autism risk genes have also been shown to be involved in intellectual disability and epilepsy. Comorbidities abound (e.g., seizures, GI disturbances, sleep problems, anxiety disorders) and are associated with worse outcomes and increased health needs. Comorbidities often manifest themselves in preschool years, can detrimentally reinforce each other (e.g., epilepsy and sleep disorders), and may be a predictor of maladaptive behaviors. The imaging and neuropathological literature suggest that multiple brain regions (e.g., cerebral cortex, limbic system, cerebellum) are affected. These neuroanatomical differences in the brain are already visible in the first 2 years of life and are highly variable across the human life span. Currently, there are no medications approved to treat the core symptoms of ASD. Identification and treatment of comorbidities may serve to improve the quality of life of affected patients. Behavioral treatments may be delivered to change targeted symptoms. Well-planned and carefully delivered treatments, both developmental and behavioral, improve children’s functioning, particularly IQ and language abilities, both over the shorter and longer term.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abrams, D. A., Lynch, C. J., Cheng, K. M., et al. (2013). Underconnectivity between voice-selective cortex and reward circuitry in children with autism. Proceedings of the National Academy of Sciences, 110(29), 12060–12065. https://doi.org/10.1073/pnas.1302982110

    Article  Google Scholar 

  • Alfageh, B. H., Wang, Z., Mongkhon, P., et al. (2019). Safety and tolerability of antipsychotic medication in individuals with autism spectrum disorder: A systematic review and meta-analysis. Paediatric Drugs, 21(3), 153–167. https://doi.org/10.1007/s40272-019-00333-x

    Article  PubMed  Google Scholar 

  • Amaral, D. G., Schumann, C. M., & Nordahl, C. W. (2008). Neuroanatomy of autism. Trends in Neurosciences, 31(3), 137–145. https://doi.org/10.1016/j.tins.2007.12.005

    Article  CAS  PubMed  Google Scholar 

  • American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (Text revision (DSM-IV-TR)) (4th ed.). American Psychiatric Press.

    Google Scholar 

  • American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed., p. DSM-5). American Psychiatric Publishing.

    Book  Google Scholar 

  • Anderson, S. A., Qiu, M., Bulfone, A., et al. (1997). Mutations of the homeobox genes Dlx-1 and Dlx-2 disrupt the striatal subventricular zone and differentiation of late born striatal neurons. Neuron, 19, 27–37.

    Article  CAS  PubMed  Google Scholar 

  • Andrews, D. S., Avino, T. A., Gudbrandsen, M., et al. (2017). In vivo evidence of reduced integrity of the gray–white matter boundary in autism spectrum disorder. Cerebral Cortex, 27(2), 877–887. https://doi.org/10.1093/cercor/bhw404

    Article  PubMed  PubMed Central  Google Scholar 

  • Ariza, J., Rogers, H., & Hashemi, E., et al. (2018). The number of chandelier and basket cells are differentially decreased in prefrontal cortex in autism. Cerebral Cortex, 28(2), 411–420.

    Google Scholar 

  • ASF Blog. (2015). Minicolumns, autism and age: What it means for people with autism. August 30, 2015 by Autism Science Foundation. Minicolumns, autism and age: what it means for people with autism | ASF Blog (wordpress.com).

  • Ashwin, C., Baron-Cohen, S., Wheelwright, S., et al. (2007). Differential activation of the amygdala and the ‘social brain’ during fearful face-processing in Asperger syndrome. Neuropsychologia, 45(1), 2–14. https://doi.org/10.1016/j.neuropsychologia.2006.04.014

    Article  PubMed  Google Scholar 

  • Asperger, H. (1944). Die autistischen Psychopathen im Kindesalter. Archiv fur Psychiatrie und Nervenkrankheiten, 117, 76–136.

    Article  Google Scholar 

  • Avino, T. A., & Hutsler, J. J. (2010). Abnormal cell patterning at the cortical gray–white matter boundary in autism spectrum disorders. Brain Research, 1360, 138–146. https://doi.org/10.1016/j.brainres.2010.08.091

    Article  CAS  PubMed  Google Scholar 

  • Bailey, A., Luthert, P., Bolton, P., et al. (1993). Autism and megalencephaly. The Lancet, 341(8854), 1225–1226. https://doi.org/10.1016/0140-6736(93)91065-t

    Article  CAS  Google Scholar 

  • Bailey, A., Le Couteur, A., Gottesman, I., et al. (1995). Autism as a strongly genetic disorder: Evidence from a British twin study. Psychological Medicine, 25, 63–77.

    Article  CAS  PubMed  Google Scholar 

  • Bailey, A., Luthert, P., Dean, A., Harding, B., Janota, I., Montgomery, M., Rutter, M., & Lantos, P. (1998). A clinicopathological study of autism. Brain, 121(Pt 5), 889–905.

    Article  PubMed  Google Scholar 

  • Bakermans-Kranenburg, M. J., & Van, I. J. M. H. (2013). Sniffing around oxytocin: Review and meta-analyses of trials in healthy and clinical groups with implications for pharmacotherapy. Translational Psychiatry, 3, e258. https://doi.org/10.1038/tp.2013.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baranek, G. T. (2002). Efficacy of sensory and motor interventions for children with autism. Journal of Autism and Developmental Disorders, 32, 397–422.

    Article  PubMed  Google Scholar 

  • Barnard, R., Pomaville, M. B., & O’Roak, B. J. (2015). Mutations and modeling of the chromatin remodeler CHD8 define an emerging autism etiology. Frontiers in Neuroscience, 9, 477. https://doi.org/10.3389/fnins.2015.00477

    Article  PubMed  PubMed Central  Google Scholar 

  • Baron-Cohen, S., Leslie, A. M., & Frith, U. (1985). Does the autistic child have a “theory of mind” ? Cognition, 21(1), 37–46. https://doi.org/10.1016/0010-0277(85)90022-8

    Article  CAS  PubMed  Google Scholar 

  • Bauman, M., & Kemper, T. L. (1985). Histoanatomic observations of the brain in early infantile autism. Neurology, 35, 866–874.

    Article  CAS  PubMed  Google Scholar 

  • Bear, M., Huber, K., & Warren, S. (2004). The mGluR theory of fragile X mental retardation. Trends in Neuroscience, 27, 370–377.

    Article  CAS  Google Scholar 

  • Bedford, S. A., Park, M. T. M., Devenyi, G. A., et al. (2020). Greater cortical thickness in individuals with ASD. Molecular Psychiatry, 25(3), 507–508. https://doi.org/10.1038/s41380-020-0691-y

    Article  Google Scholar 

  • Belmonte, M. K., & Bourgeron, T. (2006). Fragile X syndrome and autism at the intersection of genetic and neural networks. Nature Neuroscience, 9, 1221–1225.

    Article  CAS  PubMed  Google Scholar 

  • Belmonte, M. K., Allen, G., Beckel-Mitchener, A., Boulanger, L. M., Carper, R. A., & Webb, S. J. (2004). Autism and abnormal development of brain connectivity. The Journal of Neuroscience, 24, 9228–9231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Ari, Y. (2017). NKCC1 chloride importer antagonists attenuate many neurological and psychiatric disorders. Trends in Neuroscience, 40(9), 536–554.

    Article  CAS  Google Scholar 

  • Bettelheim, B. (1967). The empty fortress. Free Press.

    Google Scholar 

  • Blakemore, S.-J. (2008). The social brain in adolescence. Nature Reviews Neuroscience, 9(4), 267–277. https://doi.org/10.1038/nrn2353

    Article  CAS  PubMed  Google Scholar 

  • Brugha, T. S., McManus, S., Bankart, J., et al. (2011). Epidemiology of autism spectrum disorders in adults in the community in England. Archives of General Psychiatry, 68(5), 459–465. https://doi.org/10.1001/archgenpsychiatry.2011.38. PMID: 21536975.

    Article  PubMed  Google Scholar 

  • Brugha, T. S., McManus, S., Bankart, J., et al. (2014). The proportion of true cases of autism is not changing. BMJ (British Medical Journal), 348, g3774. https://doi.org/10.1136/bmj.g3774. PMID: 24920691.

    Article  CAS  PubMed  Google Scholar 

  • Brune, C. W., Kim, S. J., Salt, J., et al. (2006). 5-HTTLPR genotype-specific phenotype in children and adolescents with autism. American Journal of Psychiatry, 163, 2148–2156.

    Article  PubMed  Google Scholar 

  • Buie, T., Campbell, D. B., Fuchs, G. J., et al. (2010). Evaluation, diagnosis, and treatment of gastrointestinal disorders in individuals with ASDs: A consensus report. Pediatrics, 125(Suppl 1), S1–S18. https://doi.org/10.1542/peds.2009-1878C

    Article  PubMed  Google Scholar 

  • Busch, R. M., Srivastava, S., Hogue, O., et al. (2019). Neurobehavioral phenotype of autism spectrum disorder associated with germline heterozygous mutations in PTEN. Transcultural Psychiatry, 9(1), 253.

    Article  Google Scholar 

  • Butler, M. G., Dasouki, M. J., Zhou, X. P., et al. (2005). Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. Journal of Medical Genetics, 42, 318–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buxhoeveden, D. P., Semendeferi, K., Buckwalter, J., et al. (2006). Reduced minicolumns in the frontal cortex of patients with autism. Neuropathology and Applied Neurobiology, 32(5), 483–491. https://doi.org/10.1111/j.1365-2990.2006.00745.x

    Article  CAS  PubMed  Google Scholar 

  • Cai, Q., Feng, L., & Yap, K. Z. (2018). Systematic review and meta-analysis of reported adverse events of long-term intranasal oxytocin treatment for autism spectrum disorder. Psychiatry and Clinical Neurosciences, 72(3), 140–151. https://doi.org/10.1111/pcn.12627

    Article  CAS  PubMed  Google Scholar 

  • Carper, R. A., & Courchesne, E. (2005). Localized enlargement of the frontal cortex in early autism. Biological Psychiatry, 57(2), 126–133. https://doi.org/10.1016/j.biopsych.2004.11.005

    Article  PubMed  Google Scholar 

  • Carr, E., Dunlap, G., Horner, R., et al. (2002). Positive behavior support: Evolution of an applied science. Journal of Positive Behavior Interventions, 4, 4–16.

    Article  Google Scholar 

  • Carter, M. T., & Scherer, S. W. (2013). Autism spectrum disorder in the genetics clinic: A review. Clinical Genetics, 83(5), 399–407.

    Article  CAS  PubMed  Google Scholar 

  • Casanova, M. F. (2014a). Autism as a sequence: From heterochronic germinal cell divisions to abnormalities of cell migration and cortical dysplasias. Medical Hypotheses, 83(1), 32–38. https://doi.org/10.1016/j.mehy.2014.04.014

    Article  PubMed  PubMed Central  Google Scholar 

  • Casanova, M. F. (2014b). Chapter 21: The neuropathology of autism. In F. Volkmar, K. Pelphrey, R. Paul, & S. Rogers (Eds.), Handbook of autism and pervasive developmental disorders (4th ed., pp. 497–531). Wiley.

    Google Scholar 

  • Casanova, M. F., Buxhoeveden, D. P., Switala, A. E., et al. (2002). Minicolumnar pathology in autism. Neurology, 58(3), 428–432. https://doi.org/10.1212/wnl.58.3.428

    Article  PubMed  Google Scholar 

  • Casanova, M. F., van Kooten, I. A. J., Switala, A. E., van Engeland, H., Heinsen, H., Steinbusch, H. W. M., Hof, P. R., Trippe, J., Stone, J., & Schmitz, C. (2006). Minicolumnar abnormalities in autism. Acta Neuropathologica, 112(3), 287–303.

    Article  PubMed  Google Scholar 

  • Casanova, M. F., Switala, A. E., Trippe, J., & Fitzgerald, M. (2007). Comparative minicolumnar morphometry of three distinguished scientists. Autism, 11, 557–569.

    Article  PubMed  Google Scholar 

  • Casanova, M. F., Casanova, E. L., Frye, R. E., et al. (2020a). Secondary vs idiopathic autism. Front. Psychiatry, 11, 297.

    Google Scholar 

  • Casanova, M. F., Sokhadze, E., Casanova, E. L., et al. (2020b). Translational neuroscience in autism: From neuropathology to transcranial magnetic stimulation therapy. Psychiatry Clinics of North America, 43(2), 229–248.

    Article  Google Scholar 

  • Casanova, M. F., Sokhadze, E. M., Casanova, E. L., & Li, X. (2020c). Transcranial magnetic stimulation in autism spectrum disorders: neuropathological underpinnings and clinical correlations. Seminars in Pediatric Neurology, 35, 100832. https://doi.org/10.1016/j.spen.2020.100832

    Article  PubMed  PubMed Central  Google Scholar 

  • Castelli, F., Frith, C., Happé, F., & Frith, U. (2002). Autism, Asperger syndrome and brain mechanisms for the attribution of mental states to animated shapes. Brain, 125(8), 1839–1849. https://doi.org/10.1093/brain/awf189

    Article  PubMed  Google Scholar 

  • Chakrabarti, S., & Fombonne, E. (2005). Pervasive developmental disorders in preschool children: Confirmation of high prevalence. American Journal of Psychiatry, 162, 1133–1141.

    Article  PubMed  Google Scholar 

  • Cheng, Y. S., Tseng, P. T., Chen, Y. W., et al. (2017). Supplementation of omega 3 fatty acids may improve hyperactivity, lethargy, and stereotypy in children with autism spectrum disorders: A meta-analysis of randomized controlled trials. Neuropsychiatric Disease and Treatment, 13, 2531–2543. https://doi.org/10.2147/NDT.S147305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chih, B., Gollan, L., & Scheiffele, P. (2006). Alternative splicing controls selective trans-synaptic interactions of the neuroligin–neurexin complex. Neuron, 51, 171–178.

    Article  CAS  PubMed  Google Scholar 

  • Cobos, I., Calcagnotto, M. E., Vilaythong, A. J., et al. (2005). Mice lacking Dlx1 show subtype-specific loss of interneurons, reduced inhibition and epilepsy. Nature Neuroscience, 8, 1059–1068.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, D., Pichard, N., Tordjman, S., et al. (2005). Specific genetic disorders and autism: Clinical contribution towards their identification. Journal of Autism and Developmental Disorders, 35, 103–116.

    Article  PubMed  Google Scholar 

  • Coleman, D. M., Adams, J. B., Anderson, A. L., et al. (2019). Rating of the effectiveness of 26 psychiatric and seizure medications for autism spectrum disorder: Results of a National Survey. Journal of Child and Adolescent Psychopharmacology, 29(2), 107–123. https://doi.org/10.1089/cap.2018.0121

    Article  PubMed  PubMed Central  Google Scholar 

  • Connery, K., Tippett, M., Delhey, L. M., et al. (2018). Intravenous immunoglobulin for the treatment of autoimmune encephalopathy in children with autism. Translational Psychiatry, 8(1), 148. https://doi.org/10.1038/s41398-018-0214-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Constantino, J. N. (2018). Deconstructing autism: From unitary syndrome to contributory developmental endophenotypes. International Review of Psychiatry, 30(1), 18–24. https://doi.org/10.1080/09540261.2018.1433133. Epub 2018 Mar 2.PMID: 29498298.

    Article  PubMed  Google Scholar 

  • Cook, E. H., Jr., Arora, R. C., Anderson, G. M., et al. (1993). Platelet serotonin studies in hyperserotonemic relatives of children with autistic disorder. Life Sciences, 52, 2005–2015.

    Article  PubMed  Google Scholar 

  • Courchesne, E., Karns, C. M., Davis, H. R., et al. (2001). Unusual brain growth patterns in early life in patients with autistic disorder. Neurology, 57(2), 245–254. https://doi.org/10.1212/wnl.57.2.245

    Article  CAS  PubMed  Google Scholar 

  • Courchesne, E., Pierce, K., Schumann, C. M., et al. (2007). Mapping early brain development in autism. Neuron, 56(2), 399–413. https://doi.org/10.1016/j.neuron.2007.10.016

    Article  CAS  PubMed  Google Scholar 

  • Courchesne, E., Mouton, P. R., Calhoun, M. E., et al. (2011). Neuron number and size in prefrontal cortex of children with autism. The Journal of the American Medical Association, 306(18), 2001–2010. https://doi.org/10.1001/jama.2011.1638

    Article  CAS  PubMed  Google Scholar 

  • Critchley, H. D., Daly, E. M., Bullmore, E. T., et al. (2000). The functional neuroanatomy of social behaviour: Changes in cerebral blood flow when people with autistic disorder process facial expressions. Brain, 123(11), 2203–2212. https://doi.org/10.1093/brain/123.11.2203

    Article  PubMed  Google Scholar 

  • Dalto, K. M., Nacewicz, B. M., Alexander, A. L., et al. (2007). Gaze-fixation, brain activation, and amygdala volume in unaffected siblings of individuals with autism. Biological Psychiatry, 61(4), 512–520. https://doi.org/10.1016/j.biopsych.2006.05.019

    Article  Google Scholar 

  • De Rubeis, S., He, X., Goldberg, A. P., et al. (2014). Synaptic, transcriptional and chromatin genes disrupted in autism. Nature, 515(7526), 209–215.

    Article  PubMed  PubMed Central  Google Scholar 

  • Durand, C. M., Betancur, C., Boeckers, T. M., et al. (2007). Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nature Genetics, 39, 25–27.

    Article  CAS  PubMed  Google Scholar 

  • Ecker, C. (2017). The neuroanatomy of autism spectrum disorder: An overview of structural neuroimaging findings and their translatability to the clinical setting. Autism, 21(1), 18–28. https://doi.org/10.1177/1362361315627136

    Article  PubMed  Google Scholar 

  • Ecker, C., Suckling, J., Deoni, S. C., et al. (2012). Brain anatomy and its relationship to behavior in adults with autism spectrum disorder: A Multicenter magnetic resonance imaging study. Archives of General Psychiatry, 69(2), 195–209. https://doi.org/10.1001/archgenpsychiatry.2011.1251

    Article  PubMed  Google Scholar 

  • Ecker, C., Ginestet, C., Feng, Y., et al. (2013). Brain surface anatomy in adults with autism: The relationship between surface area, cortical thickness, and autistic symptoms. JAMA Psychiatry, 70(1), 59–70. https://doi.org/10.1001/jamapsychiatry.2013.265

    Article  PubMed  Google Scholar 

  • Ecker, C., Andrews, D., Dell’Acqua, F., et al. (2016). Relationship between cortical Gyrification, white matter connectivity, and autism spectrum disorder. Cerebral Cortex, 26(7), 3297–3309. https://doi.org/10.1093/cercor/bhw098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edmonson, C., Ziats, M. N., & Rennert, O. M. (2014). Altered glial marker expression in autistic post-mortem prefrontal cortex and cerebellum. Molecular Autism, 5, 3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Elchaar, G. M., Maisch, N. M., Augusto, L. M., et al. (2006). Efficacy and safety of naltrexone use in pediatric patients with autistic disorder. The Annals of Pharmacotherapy, 40(6), 1086–1095. https://doi.org/10.1345/aph.1G499

    Article  CAS  PubMed  Google Scholar 

  • Ellis, W. S., Kaushanskaya, M., Larson, C., et al. (2018). Executive function skills in school-age children with autism spectrum disorder: Association with language abilities. Journal of Speech Language and Hearing Research, 61(11), 2641–2658. https://doi.org/10.1044/2018_JSLHR-L-RSAUT-18-0026

    Article  Google Scholar 

  • Fernandez, B. A., & Scherer, S. W. (2017). Syndromic autism spectrum disorders: Moving from a clinically defined to a molecularly defined approach. Dialogues in Clinical Neuroscience, 19(4), 353–371.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fombonne, E. (2005). Epidemiology of autistic disorder and other pervasive developmental disorders. Journal of Clinical Psychiatry, 66(Suppl 10), 3–8.

    PubMed  Google Scholar 

  • Fombonne, E., Rogé, B., Claverie, J., et al. (1999). Microcephaly and macrocephaly in autism. Journal of Autism and Developmental Disorders, 29(2), 113–119. https://doi.org/10.1023/a:1023036509476

    Article  CAS  PubMed  Google Scholar 

  • Freitag, C. M. (2007). The genetics of autistic disorders and its clinical relevance: A review of the literature. Molecular Psychiatry, 12, 2–22.

    Article  CAS  PubMed  Google Scholar 

  • Frye, R. E. (2015). Prevalence, significance and clinical characteristics of seizures, epilepsy and subclinical electrical activity in autism. North America Journal of Medicine and Science, 8(3), 113–122. https://doi.org/10.7156/najms.2015.0803113

    Article  Google Scholar 

  • Frye, R. E. (2018). Social skills deficits in autism spectrum disorder: Potential biological origins and Progress in developing therapeutic agents. CNS Drugs, 32(8), 713–734. https://doi.org/10.1007/s40263-018-0556-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Frye, R. E. (2020). Mitochondrial dysfunction in autism spectrum disorder: Unique abnormalities and targeted treatments. Seminars in Pediatric Neurology, 35, 100829. https://doi.org/10.1016/j.spen.2020.100829

    Article  PubMed  Google Scholar 

  • Frye, R. E., & Rossignol, D. A. (2014). Treatments for biomedical abnormalities associated with autism spectrum disorder. Frontiers in Pediatrics, 2, 66. https://doi.org/10.3389/fped.2014.00066. PMID: 25019065; PMCID: PMC4073259.

    Article  PubMed  PubMed Central  Google Scholar 

  • Frye, R. E., Casanova, M. F., Fatemi, S. H., et al. (2016). Neuropathological mechanisms of seizures in autism spectrum disorder. Frontiers in Neuroscience, 10, 192. https://doi.org/10.3389/fnins.2016.00192

    Article  PubMed  PubMed Central  Google Scholar 

  • Frye, R. E., Vassall, S., Kaur, G., et al. (2019). Emerging biomarkers in autism spectrum disorder: A systematic review. Annals of Translational Medicine, 7(23), 792. https://doi.org/10.21037/atm.2019.11.53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frye, R. E., Rossignol, D. A., Scahill, L., et al. (2020a). Treatment of folate metabolism abnormalities in autism spectrum disorder. Seminars in Pediatric Neurology, 35, 100835. https://doi.org/10.1016/j.spen.2020.100835

    Article  PubMed  PubMed Central  Google Scholar 

  • Frye, R. E., Cakir, J., Rose, S., et al. (2020b). Prenatal air pollution influences neurodevelopment and behavior in autism spectrum disorder by modulating mitochondrial physiology. Molecular Psychiatry. https://doi.org/10.1038/s41380-020-00885-2

  • Frye, R. E., Rossignol, D. A., Scahill, L., et al. (2020c). Treatment of folate metabolism abnormalities in autism spectrum disorder. Seminars in Pediatri Neurology, 35, 100835. https://doi.org/10.1016/j.spen.2020.100835

    Article  Google Scholar 

  • Geschwind, D. H., & Levitt, P. (2007). Autism spectrum disorders: Developmental disconnection syndromes. Current Opinion in Neurobiology, 17(1), 103–111. https://doi.org/10.1016/j.conb.2007.01.009

    Article  CAS  PubMed  Google Scholar 

  • Gillott, A., Furniss, F., & Walter, A. (2001). Anxiety in high-functioning children with autism. Autism, 5, 277–286.

    Article  CAS  PubMed  Google Scholar 

  • Glinton, K. E., & Elsea, S. H. (2019). Untargeted metabolomics for autism spectrum disorders: Current status and future directions. Frontiers in Psychiatry, 10, 647.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grandin, T. (1992). An inside view of autism. In E. Schopler & G. Mesibov (Eds.), High-functioning individuals with autism. Plenum Press.

    Google Scholar 

  • Greenspan, S., Kalmanson, B., Shahmoon-Shanok, R., et al. (1997). Assessing and treating infants and Young children with severe difficulties in relating and communicating. Zero to Three.

    Google Scholar 

  • Gupta, A. R., & State, M. W. (2007). Recent advances in the genetics of autism. Biological Psychiatry, 61, 429–437.

    Article  PubMed  Google Scholar 

  • Gurney, J. G., Fritz, M. S., Ness, K. K., et al. (2003). Analysis of prevalence trends of autism spectrum disorder in Minnesota. Archives of Pediatrics and Adolescent Medicine, 157, 622–627.

    Article  PubMed  Google Scholar 

  • Gurney, J. G., McPheeters, M. L., & Davis, M. M. (2006). Parental report of health conditions and health care use among children with and without autism: National Survey of Children’s Health. Archives of Pediatrics and Adolescent Medicine, 160, 825–830.

    Article  PubMed  Google Scholar 

  • Gutstein, S. (2005). Relationship development intervention: Developing a treatment program to address the unique social and emotional deficits in autism spectrum disorders. Autism Spectrum Quarterly, 5, (Winter), 8–12.

    Google Scholar 

  • Hallmayer, J., Cleveland, S., Torres, A., et al. (2011). Genetic heritability and shared environmental factors among twin pairs with autism. Archives of General Psychiatry, 68, 1095–1102.

    Article  PubMed  PubMed Central  Google Scholar 

  • Happe, F., Ronald, A., & Plomin, R. (2006). Time to give up on a single explanation for autism. Nat Neurosci, 9(10), 1218–20.

    Google Scholar 

  • Hashemi E, Ariza J, Rogers H, , Noctor SC, Martinez-Cerdeno V (2016) The number of chandelier and basket cells are differentially decreased in prefrontal cortex in autism. Cerebral Cortex, 28(2):690. https://doi.org/10.1093/cercor/bhx063.

    Article  Google Scholar 

  • Hazlett, H. C., Poe, M. D., Gerig, G., et al. (2011). Early brain overgrowth in autism associated with an increase in cortical surface area before age 2 years. Archives of General Psychiatry, 68(5), 467–476. https://doi.org/10.1001/archgenpsychiatry.2011.39

    Article  PubMed  PubMed Central  Google Scholar 

  • Hazlett, H. C., Gu, H., Munsell, B. C., et al. (2017). Early brain development in infants at high risk for autism spectrum disorder. Nature, 542(7641), 348–351. https://doi.org/10.1038/nature21369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirvikoski, T., Mittendorfer-Rutz, E., Boman, M., et al. (2016). Premature mortality in autism spectrum disorder. British Journal of Psychiatry, 208(3), 232–238. https://doi.org/10.1192/bjp.bp.114.160192

    Article  Google Scholar 

  • Hobson, R. P., & Lee, A. (1999). Imitation and identification in autism. Journal of Child Psychology and Psychiatry and Allied Disciplines, 40, 649–659.

    Article  CAS  PubMed  Google Scholar 

  • Hong, E. J., West, A. E., & Greenberg, M. E. (2005). Transcriptional control of cognitive development. Current Opinion in Neurobiology, 15, 21–28.

    Article  CAS  PubMed  Google Scholar 

  • Hong, J. S., Singh, V., & Kalb, L. (2020). Attention deficit hyperactivity disorder symptoms in young children with autism spectrum disorder. Autism Research. https://doi.org/10.1002/aur.2414

  • Horner, R. H., Carr, E. G., Strain, P. S., et al. (2002). Problem behavior interventions for young children with autism: A research synthesis. Journal of Autism and Developmental Disorders, 32, 423–446.

    Article  PubMed  Google Scholar 

  • Howlin, P. (1998). Practitioner review: Psychological and educational treatments for autism. Journal of Child Psychology and Psychiatry and Allied Disciplines, 39, 307–322.

    Article  CAS  PubMed  Google Scholar 

  • Howlin, P. (2005). Outcomes in autism spectrum disorders. In F. Volkmar, R. Paul, A. Klin, et al. (Eds.), Handbook of autism and pervasive development disorders. Wiley.

    Google Scholar 

  • Howsmon, D. P., Kruger, U., Melnyk, S., et al. (2017). Classification and adaptive behavior prediction of children with autism spectrum disorder based upon multivariate data analysis of markers of oxidative stress and DNA methylation. PLoS Computer Biology, 13(3), e1005385. https://doi.org/10.1371/journal.pcbi.1005385

    Article  CAS  Google Scholar 

  • Hughes, H. K., Mills Ko, E., Rose, D., et al. (2018). Immune dysfunction and autoimmunity as pathological mechanisms in autism spectrum disorders. Frontiers in Cellular Neuroscience, 12, 405. https://doi.org/10.3389/fncel.2018.00405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutsler, J. J., & Casanova, M. F. (2016). Cortical construction in autism spectrum disorder: Columns, connectivity and the subplate. Neuropathology and Applied Neurobiology, 42(2), 115–134.

    Article  PubMed  Google Scholar 

  • Inoki, K., Corradetti, M. N., & Guan, K. L. (2005). Dysregulation of the TSC-mTOR pathway in human disease. Nature Genetics, 37, 19–24.

    Article  CAS  PubMed  Google Scholar 

  • Jamain, S., Quach, H., Betancur, C., et al. (2003). Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nature Genetics, 34, 27–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James, B. J., Gales, M. A., & Gales, B. J. (2019). Bumetanide for autism spectrum disorder in children: A review of randomized controlled trials. The Annals of Pharmacotherapy, 53(5), 537–544. https://doi.org/10.1177/1060028018817304

    Article  CAS  PubMed  Google Scholar 

  • Janney, R., & Snell, M. (1997). How teachers include students with moderate to severe disabilities in elementary classes: The means and meaning of inclusion. The Association for Persons with Severe Handicaps, 22, 159–169.

    Article  Google Scholar 

  • Jocelyn, L. J., Casiro, O. G., Beattie, D., et al. (1998). Treatment of children with autism: A randomized controlled trial to evaluate a caregiver-based intervention program in community day-care centers. Journal of Developmental and Behavioral Pediatrics, 19, 326–334.

    Article  CAS  PubMed  Google Scholar 

  • Johnstone, J. M., Hughes, A., Goldenberg, J. Z., et al. (2020). Multinutrients for the treatment of psychiatric symptoms in clinical samples: A systematic review and meta-analysis of randomized controlled trials. Nutrients, 12(11). https://doi.org/10.3390/nu12113394

  • Jones, K. L., & Van de Water, J. (2019). Maternal autoantibody related autism: Mechanisms and pathways. Molecular Psychiatry, 24(2), 252–265. https://doi.org/10.1038/s41380-018-0099-0

    Article  CAS  PubMed  Google Scholar 

  • Just, M. A., Cherkassky, V. L., Keller, T. A., et al. (2004). Cortical activation and synchronization during sentence comprehension in high-functioning autism: Evidence of underconnectivity. Brain, 127, 1811–1821.

    Article  PubMed  Google Scholar 

  • Jyonouchi, H., & Geng, L. (2019). Associations between monocyte and T cell cytokine profiles in autism spectrum disorders: Effects of dysregulated innate immune responses on adaptive responses to recall antigens in a subset of ASD children. International Journal of Molecular Science, 20(19), 4731. https://doi.org/10.3390/ijms20194731

    Article  CAS  Google Scholar 

  • Kana, R. K., Keller, T. A., Cherkassky, V. L., et al. (2006). (2006) sentence comprehension in autism: Thinking in pictures with decreased functional connectivity. Brain, 129(Pt 9), 2484–2493.

    Article  PubMed  Google Scholar 

  • Kang, D. W., Adams, J. B., Coleman, D. M., et al. (2019). Long-term benefit of Microbiota Transfer Therapy on autism symptoms and gut microbiota. Scientific Reports, 9(1), 5821. https://doi.org/10.1038/s41598-019-42183-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanner, L. (1943). Autistic disturbances of affective contact. The Nervous Child, 2, 217–250.

    Google Scholar 

  • Kanner, L. (1965). Infantile autism and the schizophrenias. Behavioral Science, 10(4), 412–420.

    Article  CAS  PubMed  Google Scholar 

  • Kanner, L. (1968). Infantile autism revisited. Psychiatry Digest, 29(2), 17–28.

    CAS  PubMed  Google Scholar 

  • Kanner, L. (1971). Follow-up study of eleven autistic children originally reported in 1943. Journal of Autism and Childhood Schizophrenia, 1, 119–145.

    Article  CAS  PubMed  Google Scholar 

  • Kellegrew, D. (1995). Integrated school placements for children with disabilities. In R. Koegel & L. Koegel (Eds.), Teaching children with autism: Initiating positive interactions and improving learning opportunities. Baltimore.

    Google Scholar 

  • Kemper, T. L., & Bauman, M. (1998). Neuropathology of infantile autism. Journal of Neuropathology and Experimental Neurology, 57, 645–652.

    Article  CAS  PubMed  Google Scholar 

  • Khundrakpam, B. S., Lewis, J. D., Kostopoulos, P., et al. (2017). Cortical thickness abnormalities in autism spectrum disorders through late childhood, adolescence, and adulthood: A large-scale MRI study. Cerebral Cortex, 27(3), 1721–1731. https://doi.org/10.1093/cercor/bhx038

    Article  PubMed  Google Scholar 

  • Kim, E., Camacho, J., Combs, Z., Ariza, J., Lechpammer, M., Noctor, S. C., & Martinez-Cerdeno, V. (2015). Preliminary findings suggest the number and volume of supragranular and infragranular pyramidal neurons are similar in the anterior superior temporal area of control subjects and subjects with autism. Neuroscience Letters, 589, 98–103.

    Article  CAS  PubMed  Google Scholar 

  • Kim, D., Volk, H., Girirajan, S., et al. (2017). The joint effect of air pollution exposure and copy number variation on risk for autism. Autism Research, 10(9), 1470–1480.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kobayashi, M., Hayashi, Y., Fujimoto, Y., & Matsuoka, I. (2018). Decreased parvalbumin and somatostatin neurons in medial prefrontal cortex in BRINP1-KO mice. Neuroscience Letters, 683, 82–88.

    Article  CAS  PubMed  Google Scholar 

  • Koegel, R. L., O’Dell, M., & Dunlap, G. (1988). Producing speech use in nonverbal autistic children by reinforcing attempts. Journal of Autism and Developmental Disorders, 18, 525–538.

    Article  CAS  PubMed  Google Scholar 

  • Kogan, M. D., Vladutiu, C. J., Schieve, L. A., et al. (2018). The prevalence of parent-reported autism spectrum disorder among US children. Pediatrics, 142, e20174161.

    Article  PubMed  Google Scholar 

  • Kwon, C. H., Luikart, B. W., Powell, C. M., et al. (2006). Pten regulates neuronal arborization and social interaction in mice. Neuron, 50, 377–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lainhart, J. E., Piven, J., Wzorek, M., et al. (1997). Macrocephaly in children and adults with autism. Journal of the American Academy of Child & Adolescent Psychiatry, 36(2), 282–290. https://doi.org/10.1097/00004583-199702000-00019

    Article  CAS  Google Scholar 

  • Lalli, J. S., Casey, S., & Kates, K. (1995). Reducing escape behavior and increasing task completion with functional communication training, extinction, and response chaining. Journal of Applied Behavior Analysis, 28, 261–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lange, N., Travers, B. G., Bigler, E. D., et al. (2015). Longitudinal volumetric brain changes in autism spectrum disorder ages 6–35 years. Autism Research, 8(1), 82–93. https://doi.org/10.1002/aur.1427

    Article  PubMed  Google Scholar 

  • Laurence, J. A., & Fatemi, S. H. (2005). Glial fibrillary acidic protein is elevated in superior frontal, parietal and cerebellar cortices of autistic subjects. Cerebellum, 4, 206–210.

    Article  CAS  PubMed  Google Scholar 

  • Leaf, R., & McEachin, J. (2001). A work in progress. DRL Books.

    Google Scholar 

  • Leblond, C. S., Nava, C., Polge, A., et al. (2014). Meta-analysis of SHANK mutations in autism spectrum disorders: A gradient of severity in cognitive impairments. PLoS Genetics, 10(9), e1004580.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, H., Marvin, A. R., Watson, T., et al. (2010). Accuracy of phenotyping of autistic children based on Internet implemented parent report. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 153B(6), 1119–1126. https://doi.org/10.1002/ajmg.b.31103. PMID: 20552678.

    Article  Google Scholar 

  • Lee, A. S., Azmitia, E. C., & Whitaker-Azmitia, P. M. (2017). Developmental microglial priming in postmortem autism spectrum disorder temporal cortex. Brain, Behavior, and Immunity, 62, 193–202.

    Article  PubMed  Google Scholar 

  • Lee, T. M., Lee, K. M., Lee, C. Y., et al. (2020). Effectiveness of N-acetylcysteine in autism spectrum disorders: A meta-analysis of randomized controlled trials. The Australian and New Zealand Journal of Psychiatry. https://doi.org/10.1177/0004867420952540

  • Levitt, P., Eagleson, K. L., & Powell, E. M. (2004). Regulation of neocortical interneuron development and the implications for neurodevelopmental disorders. Trends in Neuroscience, 27, 400–406.

    Article  CAS  Google Scholar 

  • Li, B., Xu, Y., Zhang, X., et al. (2020a). The effect of vitamin D supplementation in treatment of children with autism spectrum disorder: A systematic review and meta-analysis of randomized controlled trials. Nutritional Neuroscience, 1–11. https://doi.org/10.1080/1028415X.2020.1815332

  • Li, C., Bai, Y., Jin, C., et al. (2020b). Efficacy and safety of fluoxetine in autism spectrum disorder: A meta-analysis. American Journal of Therapeutics, 27(3), e312–e315. https://doi.org/10.1097/MJT.0000000000000978

    Article  PubMed  Google Scholar 

  • Liao, T. C., Lien, Y. T., Wang, S., et al. (2016). Comorbidity of atopic disorders with autism spectrum disorder and attention deficit/hyperactivity disorder. Journal of Pediatrics, 171, 248–255. https://doi.org/10.1016/j.jpeds.2015.12.063

    Article  PubMed  Google Scholar 

  • Libero, L. E., Nordahl, C. W., Li, D. D., et al. (2016). Persistence of megalencephaly in a subgroup of young boys with autism spectrum disorder. Autism Research, 9(11), 1169–1182. https://doi.org/10.1002/aur.1643

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim, E. T., Uddin, M., De Rubeis, S., et al. (2017). Rates, distribution and implications of postzygotic mosaic mutations in autism spectrum disorder. Nature Neuroscience, 20(9), 1217–1224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lionel, A. C., Tammimies, K., Vaags, A. K., et al. (2014). Disruption of the ASTN2/TRIM32 locus at 9q33.1 is a risk factor in males for autism spectrum disorders, ADHD and other neurodevelopmental phenotypes. Human Molecular Genetics, 23(10), 2752–2768.

    Article  CAS  PubMed  Google Scholar 

  • Lombardo, M. V., Chakrabarti, B., Bullmore, E. T., et al. (2010). Shared neural circuits for Mentalizing about the self and others. Journal of Cognitive Neuroscience, 22(7), 1623–1635. https://doi.org/10.1162/jocn.2009.21287

    Article  PubMed  Google Scholar 

  • Lord, C. (2005). Diagnostic instruments in autistic spectrum disorders. In F. Volkmar, R. Paul, A. Klin, et al. (Eds.), Handbook of autism and pervasive development disorders. Wiley.

    Google Scholar 

  • Lovaas, O. I. (1981). Teaching developmentally disabled children: The me book. University Park Press.

    Google Scholar 

  • Lovaas, O. I. (1987). Behavioral treatment and normal educational and intellectual functioning in young autistic children. Journal of Consulting and Clinical Psychology, 55, 3–9.

    Article  CAS  PubMed  Google Scholar 

  • Lowther, C., Speevak, M., Armour, C. M., et al. (2017). Molecular characterization of NRXN1 deletions from 19,263 clinical microarray cases identifies exons important for neurodevelopmental disease expression. Genetics in Medicine, 19(1), 53–61.

    Article  CAS  PubMed  Google Scholar 

  • Lukmanji, S., Manji, S. A., Kadhim, S., et al. (2019). The co-occurrence of epilepsy and autism: A systematic review. Epilepsy and Behavior, 98(Pt A), 238–248. https://doi.org/10.1016/j.yebeh.2019.07.037

    Article  PubMed  Google Scholar 

  • Maenner, M. J., Shaw, K. A., Baio, J., et al. (2020). Prevalence of autism spectrum disorder among children aged 8 years- autism and developmental disabilities monitoring network, 11 sites, United States, 2016. MMWR Surveillance Summaries, 69, 1–12.

    Article  PubMed Central  Google Scholar 

  • Magnuson, K. M., & Constantino, J. N. (2011). Characterization of depression in children with autism spectrum disorders. Journal of Developmental and Behavioral Pediatrics, 32(4), 332–340. https://doi.org/10.1097/DBP.0b013e318213f56c. PMID: 21502871.

    Article  PubMed  PubMed Central  Google Scholar 

  • Malaguarnera, M., & Cauli, O. (2019). Effects of l-carnitine in patients with autism spectrum disorders: Review of clinical studies. Molecules, 24(23). https://doi.org/10.3390/molecules24234262

  • Marlow, M., Servili, C., & Tomlinson, M. (2019). A review of screening tools for the identification of autism spectrum disorders and developmental delay in infants and young children: Recommendations for use in low- and middle-income countries. Autism Research, 12, 176–199. https://doi.org/10.1002/aur.2033

    Article  PubMed  Google Scholar 

  • Martino, A. D., Yan, C.-G., Li, Q., et al. (2014). The autism brain imaging data exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry, 19(6), 659–667. https://doi.org/10.1038/mp.2013.78

    Article  PubMed  Google Scholar 

  • Mazahery, H., Stonehouse, W., Delshad, M., et al. (2017). Relationship between long chain n-3 polyunsaturated fatty acids and autism spectrum disorder: Systematic review and meta-analysis of case-control and randomised controlled trials. Nutrients, 9(2). https://doi.org/10.3390/nu9020155

  • McEachin, J. J., Smith, T., & Lovaas, O. I. (1993). Long-term outcome for children with autism who received early intensive behavioral treatment. American Journal of Mental Retardation, 97, 359–372; discussion 373–391.

    CAS  PubMed  Google Scholar 

  • McGee, G. G., Krantz, P. J., Mason, D., et al. (1983). A modified incidental teaching procedure for autistic youth: Acquisition and generalization of receptive object labels. Journal of Applied Behavior Analysis, 16, 329–338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGee, G., Krantz, P., Mason, D., et al. (1991). A comparison of emotional facial display by children with autism and typical preschoolers. Journal of Early Intervention, 15, 237–245.

    Article  Google Scholar 

  • McKavanagh, R., Buckley, E., & Chance, S. A. (2015). Wider minicolumns in autism: A neural basis for altered processing? Brain, 138(7), 2034–2045. https://doi.org/10.1093/brain/awv110

    Article  PubMed  Google Scholar 

  • Meyer, J., & Hobson, R. P. (2004). Orientation in relation to self and other: The case of autism. Interaction Studies, 5, 221–244.

    Article  Google Scholar 

  • Miles, J. (2015). Complex autism spectrum disorders and cutting-edge molecular diagnostic tests. The Journal of the American Medical Association, 314(9), 879–880.

    Article  CAS  PubMed  Google Scholar 

  • Miller, D. T., Adam, M. P., Aradhya, S., et al. (2010). Consensus statement: Chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. American Journal of Human Genetics, 86(5), 749–764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moessnang, C., Baumeister, S., Tillmann, J., et al. (2020). Social brain activation during mentalizing in a large autism cohort: The longitudinal European autism project. Molecular Autism, 11(1), 17. https://doi.org/10.1186/s13229-020-0317-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Moldin, S. O., & Rubenstein, J. L. (2006). Understanding autism: From basic neuroscience to treatment. CRC Press.

    Book  Google Scholar 

  • Moldin, S. O., Rubenstein, J. L., & Hyman, S. E. (2006). Can autism speak to neuroscience? Journal of Neuroscience, 26, 6893–6896.

    Article  CAS  PubMed  Google Scholar 

  • Moretti, P., & Zoghbi, H. Y. (2006). MeCP2 dysfunction in Rett syndrome and related disorders. Current Opinion in Genetics and Development, 16, 276–281.

    Article  PubMed  Google Scholar 

  • Morgan, J. T., Barger, N., Amaral, D. G., & Schumann, C. M. (2014). Stereological study of amygdala glial populations in adolescents and adults with autism spectrum disorder. PLoS One, 9, e110356.

    Article  PubMed  PubMed Central  Google Scholar 

  • Muris, P., Steerneman, P., Merckelbach, H., et al. (1998). Comorbid anxiety symptoms in children with pervasive developmental disorders. Journal of Anxiety Disorders, 12, 387–393.

    Article  CAS  PubMed  Google Scholar 

  • Myers, S. M., Challman, T. D., Bernier, R., et al. (2020). Insufficient evidence for “autism-specific” genes. American Journal of Human Genetics, 106(5), 587–595. https://doi.org/10.1016/j.ajhg.2020.04.004. Epub 2020 Apr 30.PMID: 32359473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nebel, M. B., Joel, S. E., Muschelli, J., et al. (2014). Disruption of functional organization within the primary motor cortex in children with autism. Human Brain Mapping, 35(2), 567–580. https://doi.org/10.1002/hbm.22188

    Article  PubMed  Google Scholar 

  • Nelson, S. B., & Valakh, V. (2015). Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron, 87(4), 684–698. https://doi.org/10.1016/j.neuron.2015.07.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newschaffer, C. J., Croen, L. A., Daniels, J., et al. (2007). The epidemiology of autism spectrum disorders. Annual Review of Public Health, 28, 238–258.

    Article  Google Scholar 

  • Noonan, S. K., Haist, F., & Müller, R.-A. (2009). Aberrant functional connectivity in autism: Evidence from low-frequency BOLD signal fluctuations. Brain Research, 1262, 48–63. https://doi.org/10.1016/j.brainres.2008.12.076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nordahl, C. W., Lange, N., Li, D. D., et al. (2011). Brain enlargement is associated with regression in preschool-age boys with autism spectrum disorders. Proceedings of the National Academy of Sciences, 108(50), 20195–20200. https://doi.org/10.1073/pnas.1107560108

    Article  Google Scholar 

  • Nordahl, C. W., Iosif, A.-M., Young, G. S., et al. (2020). High psychopathology subgroup in Young children with autism: Associations with biological sex and amygdala volume. Journal of the American Academy of Child & Adolescent Psychiatry. https://doi.org/10.1016/j.jaac.2019.11.022

  • Oldehinkel, M., Mennes, M., Marquand, A., et al. (2018). Altered connectivity between cerebellum, visual, and sensory-motor networks in autism spectrum disorder: Results from the EU-AIMS longitudinal European autism project. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 4(3), 260–270. https://doi.org/10.1016/j.bpsc.2018.11.010

    Article  PubMed  Google Scholar 

  • Ozonoff, S., & Miller, J. N. (1995). Teaching theory of mind: A new approach to social skills training for individuals with autism. Journal of Autism and Developmental Disorders, 25, 415–433.

    Article  CAS  PubMed  Google Scholar 

  • Ozonoff, S., Young, G. S., Carter, A., et al. (2011). Recurrence risk for autism spectrum disorders: A baby siblings research consortium study. Pediatrics, 128(3), e488–e495.

    Article  PubMed  PubMed Central  Google Scholar 

  • Paquet, A., Olliac, B., Golse, B., et al. (2019). Nature of motor impairments in autism spectrum disorder: A comparison with developmental coordination disorder. Journal of Clinical and Experimental Neuropsychology, 41(1), 1–14. https://doi.org/10.1080/13803395.2018.1483486

    Article  PubMed  Google Scholar 

  • Patra, S., Nebhinani, N., Viswanathan, A., et al. (2019). Atomoxetine for attention deficit hyperactivity disorder in children and adolescents with autism: A systematic review and meta-analysis. Autism Research, 12(4), 542–552. https://doi.org/10.1002/aur.2059

    Article  PubMed  Google Scholar 

  • Pellicano, E., & Burr, D. (2012). When the world becomes ‘too real’: A Bayesian explanation of autistic perception. Trends in Cognitive Sciences, 16(10), 504–510. https://doi.org/10.1016/j.tics.2012.08.009

    Article  PubMed  Google Scholar 

  • Pelphrey, K. A., Mitchell, T. V., McKeown, M. J., et al. (2003). Brain activity evoked by the perception of human walking: Controlling for meaningful coherent motion. Journal of Neuroscience, 23(17), 6819–6825. https://doi.org/10.1523/jneurosci.23-17-06819.2003

    Article  CAS  PubMed  Google Scholar 

  • Persico, A. M., & Bourgeron, T. (2006). Searching for ways out of the autism maze: Genetic, epigenetic and environmental clues. Trends in Neuroscience, 29, 349–358.

    Article  CAS  Google Scholar 

  • Pessoa, L. (2008). On the relationship between emotion and cognition. Nature Reviews Neuroscience, 9(2), 148–158. https://doi.org/10.1038/nrn2317

    Article  CAS  PubMed  Google Scholar 

  • Pickett, J., Xiu, E., Tuchman, R., et al. (2011). Mortality in individuals with autism, with and without epilepsy. Journal of Child Neurology, 26(8), 932–939. https://doi.org/10.1177/0883073811402203

    Article  PubMed  Google Scholar 

  • Pierce, K., & Redcay, E. (2008). Fusiform function in children with an autism spectrum disorder is a matter of “Who”. Biological Psychiatry, 64(7), 552–560. https://doi.org/10.1016/j.biopsych.2008.05.013

    Article  PubMed  PubMed Central  Google Scholar 

  • Power, J. D., Barnes, K. A., Snyder, A. Z., et al. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59(3), 2142–2154. https://doi.org/10.1016/j.neuroimage.2011.10.018

    Article  PubMed  Google Scholar 

  • Prizant, B., Wetherby, A., Rubin, E., et al. (2006). The SCERTS model: A comprehensive educational approach for children with autism spectrum disorders. Paul Brookes.

    Google Scholar 

  • Raymond, G. V., Bauman, M. L., & Kemper, T. L. (1996). Hippocampus in autism: A Golgi analysis. Acta Neuropathologica, 91, 117–119.

    Article  CAS  PubMed  Google Scholar 

  • Reichenberg, A., Gross, R., Weiser, M., et al. (2006). Advancing paternal age and autism. Archives of General Psychiatry, 63, 1026–1032.

    Article  PubMed  Google Scholar 

  • Reichow, B., Volkmar, F. R., & Bloch, M. H. (2013). Systematic review and meta-analysis of pharmacological treatment of the symptoms of attention-deficit/hyperactivity disorder in children with pervasive developmental disorders. Journal of Autism and Developmental Disorders, 43(10), 2435–2441. https://doi.org/10.1007/s10803-013-1793-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Rimland, B. (1964). Infantile Autism. Appleton-Century-Crofts.

    Google Scholar 

  • Ritvo, E. R., Freeman, B. J., Scheibel, A. B., Duong, T., Robinson, H., Guthrie, D., & Ritvo, A. (1986). Lower Purkinje cell counts in the cerebella of four autistic subjects: Initial findings of the UCLA-NSAC autopsy research report. The American Journal of Psychiatry, 143, 862–866.

    Article  CAS  PubMed  Google Scholar 

  • Robertson, C. E., & Baron-Cohen, S. (2017). Sensory perception in autism. Nature Reviews Neuroscience, 18(11), 671–684. https://doi.org/10.1038/nrn.2017.112. Expediting clinician assessment in the diagnosis of autism spectrum disorder.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues, R., Lai, M. C., Beswick, A., et al. (2020). Practitioner review: Pharmacological treatment of attention-deficit/hyperactivity disorder symptoms in children and youth with autism spectrum disorder: A systematic review and meta-analysis. Journal of Child Psychology and Psychiatry. https://doi.org/10.1111/jcpp.13305

  • Rogers, S. J., & Lewis, H. (1989). An effective day treatment model for young children with pervasive developmental disorders. Journal of the American Academy of Child and Adolescent Psychiatry, 28, 207–214.

    Article  CAS  PubMed  Google Scholar 

  • Rogers, S. J., & Pennington, B. (1991). A theoretical approach to the deficits in infantile autism. Development and Psychopathology, 3, 137–162.

    Article  Google Scholar 

  • Ronemus, M., Iossifov, I., Levy, D., & Wigler, M. (2014). The role of de novo mutations in the genetics of autism spectrum disorders. Nature Reviews Genetics, 15(2), 133–141.

    Article  CAS  PubMed  Google Scholar 

  • Rossignol, D. A., & Frye, R. E. (2011). Melatonin in autism spectrum disorders: A systematic review and meta-analysis. Developmental Medicine and Child Neurology, 53(9), 783–792. https://doi.org/10.1111/j.1469-8749.2011.03980.x

    Article  PubMed  Google Scholar 

  • Rossignol, D. A., & Frye, R. E. (2014). The use of medications approved for Alzheimer’s disease in autism spectrum disorder: A systematic review. Frontiers in Pediatrics, 2, 87. https://doi.org/10.3389/fped.2014.00087

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossignol, D. A., & Frye, R. E. (2020). Psychotropic medications for sleep disorders in autism spectrum disorders. In J. L. Matson & P. Sturmey (Eds.), Handbook on autism and pervasive developmental disorder – Assessment, diagnosis and treatment.

    Google Scholar 

  • Rubenstein, J. L. (2006). Comments on the genetic control of forebrain development. Clinical Neuroscience Research, 6(3–4), 169–177.

    Article  CAS  Google Scholar 

  • Rubenstein, J. L., & Merzenich, M. M. (2003). Model of autism: Increased ratio of excitation/inhibition in key neural systems. Genes, Brain, and Behavior, 2, 255–267.

    Article  CAS  PubMed  Google Scholar 

  • Sagar-Ouriaghli, I., Lievesley, K., & Santosh, P. J. (2018). Propranolol for treating emotional, behavioural, autonomic dysregulation in children and adolescents with autism spectrum disorders. Journal of Psychopharmacology, 32(6), 641–653. https://doi.org/10.1177/0269881118756245

    Article  CAS  PubMed  Google Scholar 

  • Sahin, M., & Sur, M. (2015). Genes, circuits, and precision therapies for autism and related neurodevelopmental disorders. Science, 350(6263). https://doi.org/10.1126science.aab3897aab3897

    Google Scholar 

  • Sanchez, M. J., & Constantino, J. N. (2020). Expediting clinician assessment in the diagnosis of autism spectrum disorder. Developmental Medicine and Child Neurology, 62(7), 806–812. https://doi.org/10.1111/dmcn.14530. Epub 2020 Apr 2.PMID: 32239502.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanders, S. J., Campbell, A. J., Cottrell, J. R., et al. (2018). Progress in understanding and treating SCN2A mediated disorders. Trends in Neurosciences, 41(7), 442–456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandin, S., Lichtenstein, P., Kuja-Halkola, R., et al. (2017). The heritability of autism spectrum disorder. Journal of the American Medical Association, 318, 1182–1184.

    Article  PubMed  Google Scholar 

  • Satterstrom, F. K., Kosmicki, J. A., Wang, J., et al. (2020). Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell, 180(3), 568–584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaaf, C. P., Betancur, C., Yuen, R. K. C., et al. (2020). A framework for an evidence-based gene list relevant to autism spectrum disorder. Nature Reviews. Genetics, 21(6), 367–376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schanen, N. C. (2006). Epigenetics of autism spectrum disorders. Human Molecular Genetics, 15(Spec No. 2), R138–R150.

    Google Scholar 

  • Schopler, E., Mesibov, G., Shigley, R., et al. (1984). Helping autistic children through their parents: The TEACCH model. In E. Schopler & G. Mesibov (Eds.), The effects of autism on the family. Plenum Press.

    Chapter  Google Scholar 

  • Schopler, E., Mesibov, G., & Hearsey, K. (1995). Structured teaching in the TEACCH system. In E. Schopler & G. Mesibov (Eds.), Learning and cognition in autism. Plenum Press.

    Chapter  Google Scholar 

  • Schreibman, L. (2005). The science and fiction of autism. Harvard University Press.

    Google Scholar 

  • Schreibman, L., & Pierce, K. (1993). Achieving greater generalization of treatment effects in children with autism: Pivotal response training and self-management. The Clinical Psychologist, 46, 184–191.

    Google Scholar 

  • Schumann, C. M., & Amaral, D. G. (2005). Stereological estimation of the number of neurons in the human amygdaloid complex. The Journal of Comparative Neurology, 491, 320–329.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schumann, C. M., & Nordahl, C. W. (2011). Bridging the gap between MRI and postmortem research in autism. Brain Res. PMID: 20869352.

    Google Scholar 

  • Schumann, C. M., Bloss, C. S., Barnes, C. C., et al. (2010). Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism. The Journal of Neuroscience, 30(12), 4419–4427. https://doi.org/10.1523/jneurosci.5714-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sigman, M., & Capps, L. (1997). Children with autism: A developmental perspective. Harvard University Press.

    Google Scholar 

  • Sikora, D. M., Pettit-Kekel, K., Penfield, J., et al. (2006). The near universal presence of autism spectrum disorders in children with Smith–Lemli–Opitz syndrome. American Journal of Medical Genetics. Part A, 140, 1511–1518.

    Article  PubMed  Google Scholar 

  • Simpson, R., & Smith Myles, B. (1993). Successful integration of children and youth with autism in mainstreamed settings. Focus on Autistic Behavior, 7, 1–13.

    Article  CAS  Google Scholar 

  • Simpson, R., Smith Myles, B., Sasso, M., et al. (1997). Social skills for students with autism. The Council for Exceptional Children.

    Google Scholar 

  • Smalley, S. L., Asarnow, R. F., & Spence, M. A. (1988). Autism and genetics. A decade of research. Archives of General Psychiatry, 45, 953–961.

    Article  CAS  PubMed  Google Scholar 

  • Smith, T., Groen, A. D., & Wynn, J. W. (2000). Randomized trial of intensive early intervention for children with pervasive developmental disorder. American Journal of Mental Retardation, 105, 269–285.

    Article  CAS  PubMed  Google Scholar 

  • Sohal, V. S., & Rubenstein, J. L. R. (2019). Excitation-inhibition balance as a framework for investigating mechanisms in neuropsychiatric disorders. Molecular Psychiatry, 24(9), 1248–1257. https://doi.org/10.1038/s41380-019-0426-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Soke, G. N., Maenner, M. J., Christensen, D., et al. (2018). Prevalence of co-occurring medical and behavioral conditions/symptoms among 4- and 8-year-old children with autism spectrum disorder in selected areas of the United States in 2010. Journal of Autism and Developmental Disorders, 48(8), 2663–2676. https://doi.org/10.1007/s10803-018-3521-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, L., Luo, X., Jiang, Q., et al. (2020). Vitamin D supplementation is beneficial for children with autism spectrum disorder: A meta-analysis. Clinical Psychopharmacology and Neuroscience, 18(2), 203–213. https://doi.org/10.9758/cpn.2020.18.2.203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Splawski, I., Timothy, K. W., Sharpe, L. M., et al. (2004). Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell, 119, 19–31.

    Article  CAS  PubMed  Google Scholar 

  • Splawski, I., Yoo, D. S., Stotz, S. C., et al. (2006). CACNA1H mutations in autism spectrum disorders. Journal of Biological Chemistry, 281, 22085–22091.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava, S., Love-Nichols, J. A., Dies, K. A., et al. (2019). Meta-analysis and multidisciplinary consensus statement: Exome sequencing is a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders. Genetics in Medicine, 21(11), 2413–2421.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stern, D. (1985). The interpersonal world of the human infant. Basic Books.

    Google Scholar 

  • Supekar, K., Uddin, L. Q., & Khouzam, A. (2013). Brain hyperconnectivity in children with autism and its links to social deficits. Cell Reports, 5(3), 738–747. https://doi.org/10.1016/j.celrep.2013.10.001

    Article  CAS  PubMed  Google Scholar 

  • Sutcliffe, J. S., Delahanty, R. J., Prasad, H. C., et al. (2005). Allelic heterogeneity at the serotonin transporter locus (SLC6A4) confers susceptibility to autism and rigid-compulsive behaviors. American Journal of Human Genetics, 77, 265–279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tager-Flusberg, H., Paul, R., & Lord, C. (2005). Language and communication in autism. In F. Volkmar, R. Paul, A. Klin, et al. (Eds.), Handbook of autism and pervasive developmental disorders. Wiley.

    Google Scholar 

  • Tammimies, K., Marshall, C. R., Walker, S., et al. (2015). Molecular diagnostic yield of chromosomal microarray analysis and whole-exome sequencing in children with autism spectrum disorder. The Journal of the American Medical Association, 314(9), 895–903.

    Article  CAS  PubMed  Google Scholar 

  • Tavazoie, S. F., Alvarez, V. A., Ridenour, D. A., et al. (2005). Regulation of neuronal morphology and function by the tumor suppressors Tsc1 and Tsc2. Nature Neuroscience, 8, 1727–1734.

    Article  CAS  PubMed  Google Scholar 

  • Thye, M. D., Bednarz, H. M., Herringshaw, A. J., et al. (2018). The impact of atypical sensory processing on social impairments in autism spectrum disorder. Developmental and Cognitive Neuroscience, 29, 151–167. https://doi.org/10.1016/j.dcn.2017.04.010

    Article  Google Scholar 

  • Todd, P. K., Mack, K. J., & Malter, J. S. (2003). The fragile X mental retardation protein is required for type-I metabotropic glutamate receptor-dependent translation of PSD-95. Proceedings of the National Academy of Sciences of the United States of America, 100, 14374–14378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trevarthen, C., & Aitken, K. J. (2001). Infant intersubjectivity: Research, theory, and clinical applications. Journal of Child Psychology and Psychiatry and Allied Disciplines, 42, 3–48.

    Article  CAS  PubMed  Google Scholar 

  • Trost, B., Engchuan, W., Nguyen, C. M., et al. (2020). Genome-wide detection of tandem DNA repeats that are expanded in autism. Nature, 586(7827), 80–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uppal, N., Gianatiempo, I., Wicinski, B., Schmeidler, J., Heinsen, H., Schmitz, C., Buxbaum, J. D., & Hof, P. R. (2014). Neuropathology of the posteroinferior occipitotemporal gyrus in children with autism. Molecular Autism, 5, 17.

    Article  PubMed  PubMed Central  Google Scholar 

  • van Kooten, I. A., Palmen, S. J., von Cappeln, P., Steinbusch, H. W., Korr, H., Heinsen, H., Hof, P. R., van Engeland, H., & Schmitz, C. (2008). Neurons in the fusiform gyrus are fewer and smaller in autism. Brain, 131, 987–999.

    Article  PubMed  Google Scholar 

  • Vargason, T., Frye, R. E., McGuinness, D. L., et al. (2019). Clustering of co-occurring conditions in autism spectrum disorder during early childhood: A retrospective analysis of medical claims data. Autism Research, 12(8), 1272–1285. https://doi.org/10.1002/aur.2128

    Article  PubMed  PubMed Central  Google Scholar 

  • Varoqueaux, F., Aramuni, G., Rawson, R. L., et al. (2006). Neuroligins determine synapse maturation and function. Neuron, 51, 741–754.

    Article  CAS  PubMed  Google Scholar 

  • Vasa, R. A., Keefer, A., McDonald, R. G., et al. (2020). A scoping review of anxiety in Young children with autism spectrum disorder. Autism Research. https://doi.org/10.1002/aur.2395

  • Volkmar, F., & Klin, A. (2005). Issues in the classification of autism and related conditions. In F. Volkmar, R. Paul, A. Klin, et al. (Eds.), Handbook of autism and pervasive developmental disorders. Wiley.

    Google Scholar 

  • Vorstman, J. A. S., Parr, J. R., Moreno-De-Luca, D., et al. (2017). Autism genetics: opportunities and challenges for clinical translation. Nature Reviews. Genetics, 18(6), 362–376.

    Article  CAS  PubMed  Google Scholar 

  • Wallace, G. L., Eisenberg, I. W., Robustelli, B., et al. (2015). Longitudinal cortical development during adolescence and Young adulthood in autism spectrum disorder: Increased cortical thinning but comparable surface area changes. Journal of the American Academy of Child & Adolescent Psychiatry, 54(6), 464–469. https://doi.org/10.1016/j.jaac.2015.03.007

    Article  Google Scholar 

  • Wegiel, J., Kuchna, I., Nowicki, K., et al. (2010). The neuropathology of autism: Defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathologica, 119, 755–770.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wegiel, J., Flory, M., Kuchna, I., Nowicki, K., Ma, S. Y., Imaki, H., Wegiel, J., Cohen, I. L., London, E., Brown, W. T., & Wisniewski, T. (2014). Brain-region-specific alterations of the trajectories of neuronal volume growth throughout the lifespan in autism. Acta Neuropathologica Communications, 2, 28.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wegiel, J., Kaczmarski, W., Flory, M., et al. (2019). Deficit of corpus callosum axons, reduced axon diameter and decreased area are markers of abnormal development of interhemispheric connections in autistic subjects. Acta Neuropathologica Communications, 6(1), 143. https://doi.org/10.1186/s40478-018-0645-7

    Article  Google Scholar 

  • Weiner, D., Wigdor, E. M., Ripke, S., Walters, R. K., & Kosmicki, J. A. (2017). Polygenic transmission disequilibrium confirms that common and rare variation act additively to create risk for autism spectrum disorders. Nature Genetics, 49(7), 978–985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss, L. A., Escayg, A., Kearney, J. A., et al. (2003). Sodium channels SCN1A, SCN2A and SCN3A in familial autism. Molecular Psychiatry, 8, 186–194.

    Article  CAS  PubMed  Google Scholar 

  • Williams, R. S., Hauser, S. L., Purpura, D. P., DeLong, G. R., & Swisher, C. N. (1980). Autism and mental retardation: Neuropathologic studies performed in four retarded persons with autistic behavior. Archives of Neurology, 37, 749–753.

    Article  CAS  PubMed  Google Scholar 

  • Wimpory, D. C., Hobson, R. P., Williams, J. M., et al. (2000). Are infants with autism socially engaged? A study of recent retrospective parental reports. Journal of Autism and Developmental Disorders, 30, 525–536.

    Article  CAS  PubMed  Google Scholar 

  • Wing, L. (1981). Language, social, and cognitive impairments in autism and severe mental retardation. Journal of Autism and Developmental Disorders, 11, 31–44.

    Article  CAS  PubMed  Google Scholar 

  • Wiznitzer, M. (2004). Autism and tuberous sclerosis. Journal of Child Neurology, 19, 675–679.

    Article  PubMed  Google Scholar 

  • Wolf, M., Risley, T., & Mees, H. (1964). Application of operant conditioning procedures to the behaviour problems of an autistic child. Behavior Research and Therapy, 1, 305–312.

    Article  Google Scholar 

  • Wolff, J. J., Gu, H., Gerig, G., et al. (2012). Differences in white matter fiber tract development present from 6 to 24 months in infants with autism. American Journal of Psychiatry, 169(6), 589–600. https://doi.org/10.1176/appi.ajp.2011.11091447

    Article  PubMed  Google Scholar 

  • Wooten, M., & Mesibov, G. (1986). Social skills training for elementary school autistic children with normal peers. In E. Schopler & G. Mesibov (Eds.), Social behavior in autism. Plenum Press.

    Google Scholar 

  • Wu, S., Jia, M., Ruan, Y., et al. (2005). Positive association of the oxytocin receptor gene (OXTR) with autism in the Chinese Han population. Biological Psychiatry, 58, 74–77.

    Article  CAS  PubMed  Google Scholar 

  • Yirmiya, N., Rosenberg, C., Levi, S., et al. (2006). Association between the arginine vasopressin 1a receptor (AVPR1a) gene and autism in a family based study: Mediation by socialization skills. Molecular Psychiatry, 11, 488–494.

    Article  CAS  PubMed  Google Scholar 

  • Young, L. J., Murphy Young, A. Z., & Hammock, E. A. (2005). Anatomy and neurochemistry of the pair bond. Journal of Comparative Neurology, 493, 51–57.

    Article  CAS  PubMed  Google Scholar 

  • Yuen, R. K., Thiruvahindrapuram, B., Merico, D., et al. (2015). Whole-genome sequencing of quartet families with autism spectrum disorder. Nature Medicine, 21(2), 185–191. https://doi.org/10.1038/nm.3792. Epub 2015 Jan 26.PMID: 25621899.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, M. S., Nasir, M., Farhat, L. C., et al. (2020). Meta-analysis: Pharmacologic treatment of restricted and repetitive behaviors in autism spectrum disorders. Journal of the American Academy of Child and Adolescent Psychiatry. https://doi.org/10.1016/j.jaac.2020.03.007

  • Zikopoulos, B., & Barbas, H. (2010). Changes in prefrontal axons may disrupt the network in autism. The Journal of Neuroscience, 30, 14595–14609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zikopoulos, B., Liu, X., Tepe, J., Trutzer, I., John, Y. J., & Barbas, H. (2018). Opposite development of short- and long-range anterior cingulate pathways in autism. Acta Neuropathologica, 136, 759–778.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel F. Casanova .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Casanova, M.F. et al. (2023). Neurobiology of Autism Spectrum Disorder. In: Tasman, A., et al. Tasman’s Psychiatry. Springer, Cham. https://doi.org/10.1007/978-3-030-42825-9_32-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42825-9_32-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42825-9

  • Online ISBN: 978-3-030-42825-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics