Skip to main content

Primary Congenital Glaucoma

  • Reference work entry
  • First Online:
Albert and Jakobiec's Principles and Practice of Ophthalmology

Abstract

Primary congenital glaucoma is a rare, usually bilateral, aqueous outflow obstruction likely from developmental arrest of anterior chamber angle tissue (derived from neural crest cells). It presents in sporadic or familial patterns, and is usually autosomal recessive in familial cases. Causative genes include CYP1B1, LTBP2, and MYOC, and those in the ANGPT/TEK signaling pathway (i.e., TEK or TIE2). It commonly presents between 3 and 9 months of age and causes buphthalmos and blindness if not treated. The classic “triad” of presenting symptoms (photophobia, epiphora, and blepharospasm) relates to rapid ocular expansion of the infant eye under high pressure, causing corneal enlargement, and frequently also producing breaks in Descemet membrane (Haab striae) and resultant corneal edema and opacification. Associated signs include deep anterior chamber, buphthalmos, myopia, and optic nerve cupping. In extreme cases, the lens can dislocate. The primary treatment modality is surgical, with medications as adjunctive treatments. Visual loss can result from corneal scarring and/or optic nerve damage, but often also occurs due to amblyopia in unilateral or asymmetric cases. Vision in the better-seeing eye is at least 20/60 in most cases where glaucoma is stabilized. Aggressive early control of glaucoma and attention to refractive errors and amblyopia, as well as life-long follow-up of glaucoma, maximize visual outcome and quality of life in affected children.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 5,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 6,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Weinreb RN, Grajewski AL, Papadopoulos M, Grigg J, Freedman SF. Childhood glaucoma: the 9th consensus report of the World Glaucoma Association. Amsterdam: Kugler Publications; 2013. 270 p.

    Google Scholar 

  2. Thau A, Lloyd M, Freedman S, Beck A, Grajewski A, Levin AV. New classification system for pediatric glaucoma: implications for clinical care and a research registry. Curr Opin Ophthalmol. 2018;29(5):385–94.

    Article  PubMed  Google Scholar 

  3. Duke-Elder S. Congenital deformities. St. Louis: CV Mosby; 1969. 548–65 p.

    Google Scholar 

  4. Barkan O. Technique of goniotomy. Arch Ophthalmol. 1938;19:217–21.

    Article  Google Scholar 

  5. Yu-Wai-Man C, Arno G, Brookes J, Garcia-Feijoo J, Khaw PT, Moosajee M. Primary congenital glaucoma including next-generation sequencing-based approaches: clinical utility gene card. Eur J Hum Genet. 2018;26(11):1713–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Papadopoulos M, Cable N, Rahi J, Khaw PT. The British infantile and childhood glaucoma (BIG) eye study. Invest Ophthalmol Vis Sci. 2007;48(9):4100–6.

    Article  PubMed  Google Scholar 

  7. DeLuise VP, Anderson DR. Primary infantile glaucoma (congenital glaucoma). Surv Ophthalmol. 1983;28:1–18.

    Article  CAS  PubMed  Google Scholar 

  8. Ohtake Y, Tanino T, Suzuki Y, Miyata H, Taomoto M, Azuma N, et al. Phenotype of cytochrome P4501B1 gene (CYP1B1) mutations in Japanese patients with primary congenital glaucoma. Br J Ophthalmol. 2003;87(3):302–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lewis CJ, Hedberg-Buenz A, DeLuca AP, Stone EM, Alward WLM, Fingert JH. Primary congenital and developmental glaucomas. Hum Mol Genet. 2017;26(R1):R28–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Online Mendelian Inheritance in Man, OMIM (TM). An online catalog of human genes and genetic disorders. Updated 20 January 2012 [Internet]. 2011.

    Google Scholar 

  11. Narooie-Nejad M, Paylakhi SH, Shojaee S, Fazlali Z, Rezaei Kanavi M, Nilforushan N, et al. Loss of function mutations in the gene encoding latent transforming growth factor beta binding protein 2, LTBP2, cause primary congenital glaucoma. Hum Mol Genet. 2009;18(20):3969–77.

    Article  CAS  PubMed  Google Scholar 

  12. Stoilov I, Akarsu AN, Alozie I, Child A, Barsoum-Homsy M, Turacli ME, et al. Sequence analysis and homology modeling suggest that primary congenital glaucoma on 2p21 results from mutations disrupting either the hinge region or the conserved core structures of cytochrome P4501B1. Am J Hum Genet. 1998;62(3):573–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Choudhary D, Jansson I, Stoilov I, Sarfarazi M, Schenkman JB. Metabolism of retinoids and arachidonic acid by human and mouse cytochrome P450 1b1. Drug Metab Dispos. 2004;32(8):840–7.

    Article  CAS  PubMed  Google Scholar 

  14. Ma X, Idle JR, Krausz KW, Gonzalez FJ. Metabolism of melatonin by human cytochromes p450. Drug Metab Dispos. 2005;33(4):489–94.

    Article  CAS  PubMed  Google Scholar 

  15. Bejjani BA, Xu L, Armstrong D, Lupski JR, Reneker LW. Expression patterns of cytochrome P4501B1 (Cyp1b1) in FVB/N mouse eyes. Exp Eye Res. 2002;75(3):249–57.

    Article  CAS  PubMed  Google Scholar 

  16. Teixeira LB, Zhao Y, Dubielzig RR, Sorenson CM, Sheibani N. Ultrastructural abnormalities of the trabecular meshwork extracellular matrix in Cyp1b1-deficient mice. Vet Pathol. 2015;52(2):397–403.

    Article  CAS  PubMed  Google Scholar 

  17. Williams AL, Eason J, Chawla B, Bohnsack BL. Cyp1b1 regulates ocular fissure closure through a retinoic acid-independent pathway. Invest Ophthalmol Vis Sci. 2017;58(2):1084–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li N, Zhou Y, Du L, Wei M, Chen X. Overview of cytochrome P450 1B1 gene mutations in patients with primary congenital glaucoma. Exp Eye Res. 2011;93(5):572–9.

    Article  CAS  PubMed  Google Scholar 

  19. Chouiter L, Nadifi S. Analysis of CYP1B1 gene mutations in patients with primary congenital glaucoma. J Pediatr Genet. 2017;6(4):205–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Song N, Leng L, Yang XJ, Zhang YQ, Tang C, Chen WS, et al. Compound heterozygous mutations in CYP1B1 gene leads to severe primary congenital glaucoma phenotype. Int J Ophthalmol. 2019;12(6):909–14.

    PubMed  PubMed Central  Google Scholar 

  21. Sena DF, Finzi S, Rodgers K, Del Bono E, Haines JL, Wiggs JL. Founder mutations of CYP1B1 gene in patients with congenital glaucoma from the United States and Brazil. J Med Genet. 2004;41(1):e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hyytiainen M, Keski-Oja J. Latent TGF-beta binding protein LTBP-2 decreases fibroblast adhesion to fibronectin. J Cell Biol. 2003;163(6):1363–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hyytiainen M, Taipale J, Heldin CH, Keski-Oja J. Recombinant latent transforming growth factor beta-binding protein 2 assembles to fibroblast extracellular matrix and is susceptible to proteolytic processing and release. J Biol Chem. 1998;273(32):20669–76.

    Article  CAS  PubMed  Google Scholar 

  24. Rifkin DB. Latent transforming growth factor-beta (TGF-beta) binding proteins: orchestrators of TGF-beta availability. J Biol Chem. 2005;280(9):7409–12.

    Article  CAS  PubMed  Google Scholar 

  25. Sinha S, Heagerty AM, Shuttleworth CA, Kielty CM. Expression of latent TGF-beta binding proteins and association with TGF-beta 1 and fibrillin-1 following arterial injury. Cardiovasc Res. 2002;53(4):971–83.

    Article  CAS  PubMed  Google Scholar 

  26. Schlotzer-Schrehardt U, Zenkel M, Kuchle M, Sakai LY, Naumann GO. Role of transforming growth factor-beta1 and its latent form binding protein in pseudoexfoliation syndrome. Exp Eye Res. 2001;73(6):765–80.

    Article  CAS  PubMed  Google Scholar 

  27. Thomson BR, Souma T, Tompson SW, Onay T, Kizhatil K, Siggs OM, et al. Angiopoietin-1 is required for Schlemm’s canal development in mice and humans. J Clin Invest. 2017;127(12):4421–36.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Augustin HG, Koh GY, Thurston G, Alitalo K. Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol. 2009;10(3):165–77.

    Article  CAS  PubMed  Google Scholar 

  29. Saharinen P, Eklund L, Alitalo K. Therapeutic targeting of the angiopoietin-TIE pathway. Nat Rev Drug Discov. 2017;16(9):635–61.

    Article  CAS  PubMed  Google Scholar 

  30. Souma T, Tompson SW, Thomson BR, Siggs OM, Kizhatil K, Yamaguchi S, et al. Angiopoietin receptor TEK mutations underlie primary congenital glaucoma with variable expressivity. J Clin Invest. 2016;126(7):2575–87.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Thomson BR, Heinen S, Jeansson M, Ghosh AK, Fatima A, Sung HK, et al. A lymphatic defect causes ocular hypertension and glaucoma in mice. J Clin Invest. 2014;124(10):4320–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Park DY, Lee J, Park I, Choi D, Lee S, Song S, et al. Lymphatic regulator PROX1 determines Schlemm’s canal integrity and identity. J Clin Invest. 2014;124(9):3960–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kizhatil K, Ryan M, Marchant JK, Henrich S, John SW. Schlemm’s canal is a unique vessel with a combination of blood vascular and lymphatic phenotypes that forms by a novel developmental process. PLoS Biol. 2014;12(7):e1001912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dumont DJ, Anderson L, Breitman ML, Duncan AM. Assignment of the endothelial-specific protein receptor tyrosine kinase gene (TEK) to human chromosome 9p21. Genomics. 1994;23(2):512–3.

    Article  CAS  PubMed  Google Scholar 

  35. Banerjee A, Chakraborty S, Chakraborty A, Chakrabarti S, Ray K. Functional and structural analyses of CYP1B1 variants linked to congenital and adult-onset glaucoma to investigate the molecular basis of these diseases. PLoS One. 2016;11(5):e0156252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kaur K, Reddy AB, Mukhopadhyay A, Mandal AK, Hasnain SE, Ray K, et al. Myocilin gene implicated in primary congenital glaucoma. Clin Genet. 2005;67(4):335–40.

    Article  CAS  PubMed  Google Scholar 

  37. Zhuo YH, Wang M, Wei YT, Huang YL, Ge J. Analysis of MYOC gene mutation in a Chinese glaucoma family with primary open-angle glaucoma and primary congenital glaucoma. Chin Med J (Engl). 2006;119(14):1210–4.

    Article  PubMed  Google Scholar 

  38. Stone EM, Fingert JH, Alward WL, Nguyen TD, Polansky JR, Sunden SL, et al. Identification of a gene that causes primary open angle glaucoma. Science. 1997;275(5300):668–70.

    Article  CAS  PubMed  Google Scholar 

  39. Shepard AR, Jacobson N, Fingert JH, Stone EM, Sheffield VC, Clark AF. Delayed secondary glucocorticoid responsiveness of MYOC in human trabecular meshwork cells. Invest Ophthalmol Vis Sci. 2001;42(13):3173–81.

    CAS  PubMed  Google Scholar 

  40. Takahashi H, Noda S, Mashima Y, Kubota R, Ohtake Y, Tanino T, et al. The myocilin (MYOC) gene expression in the human trabecular meshwork. Curr Eye Res. 2000;20(2):81–4.

    Article  CAS  PubMed  Google Scholar 

  41. Vincent AL, Billingsley G, Buys Y, Levin AV, Priston M, Trope G, et al. Digenic inheritance of early-onset glaucoma: CYP1B1, a potential modifier gene. Am J Hum Genet. 2002;70(2):448–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Alsaif HS, Khan AO, Patel N, Alkuraya H, Hashem M, Abdulwahab F, et al. Congenital glaucoma and CYP1B1: an old story revisited. Hum Genet. 2019;138(8–9):1043–9.

    Article  CAS  PubMed  Google Scholar 

  43. Mookherjee S, Acharya M, Banerjee D, Bhattacharjee A, Ray K. Molecular basis for involvement of CYP1B1 in MYOC upregulation and its potential implication in glaucoma pathogenesis. PLoS One. 2012;7(9):e45077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kabra M, Zhang W, Rathi S, Mandal AK, Senthil S, Pyatla G, et al. Angiopoietin receptor TEK interacts with CYP1B1 in primary congenital glaucoma. Hum Genet. 2017;136(8):941–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Worst JGF. The pathogenesis of congenital glaucoma. An embryological and goniosurgical study. Springfield: Charles C. Thomas; 1966.

    Google Scholar 

  46. Barkan O. Pathogenesis of congenital glaucoma: gonioscopic and anatomic observation of the angle of the anterior chamber in the normal eye and in congenital glaucoma. Am J Ophthalmol. 1955;40:1–11.

    Article  CAS  PubMed  Google Scholar 

  47. Pilat AV, Proudlock FA, Shah S, Sheth V, Purohit R, Abbot J, et al. Assessment of the anterior segment of patients with primary congenital glaucoma using handheld optical coherence tomography. Eye (Lond). 2019;33(8):1232–9.

    Article  Google Scholar 

  48. Sampaolesi R, Argento C. Scanning electron microscopy of the trabecular meshwork in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci. 1977;16(4):302–14.

    CAS  PubMed  Google Scholar 

  49. Maul E, Strozzi L, Munoz C, Reyes C. The outflow pathway in congenital glaucoma. Am J Ophthalmol. 1980;89(5):667–73.

    Article  CAS  PubMed  Google Scholar 

  50. Tawara A, Inomata H. Developmental immaturity of the trabecular meshwork in congenital glaucoma. Am J Ophthalmol. 1981;92(4):508–25.

    Article  CAS  PubMed  Google Scholar 

  51. Garcia-Anton MT, Salazar JJ, de Hoz R, Rojas B, Ramirez AI, Trivino A, et al. Goniodysgenesis variability and activity of CYP1B1 genotypes in primary congenital glaucoma. PLoS One. 2017;12(4):e0176386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Smelser GK, Ozanics V. The development of the trabecular meshwork in primate eyes. Am J Ophthalmol. 1971;71:366.

    Article  CAS  PubMed  Google Scholar 

  53. Anderson DR. The development of the trabecular meshwork and its abnormality in primary infantile glaucoma. Trans Am Ophthalmol Soc. 1981;79:458–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Maumenee AE. Further observations on the pathogenesis of congenital glaucoma. Trans Am Ophthalmol Soc. 1962;60:140–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Anderson DR. Pathology of the glaucomas. Br J Ophthalmol. 1972;56:146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Williams AL, Bohnsack BL. Neural crest derivatives in ocular development: discerning the eye of the storm. Birth Defects Res C Embryo Today. 2015;105(2):87–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kupfer C, Kaiser-Kupfer MI. Observations on the development of the anterior chamber angle with reference to the pathogenesis of congenital glaucomas. Am J Ophthalmol. 1979;88(3 Pt 1):424–6.

    Article  CAS  PubMed  Google Scholar 

  58. Raab EL. Congenital glaucoma. Perspect Ophthalmol. 1978;2:35–41.

    Google Scholar 

  59. Pearce WG. Autosomal dominant megalocornea with congenital glaucoma: evidence for germ-line mosaicism. Can J Ophthalmol. 1991;26(1):21–6.

    CAS  PubMed  Google Scholar 

  60. Ching FC. Corneal opacification in infancy. Med Coll Va Q. 1972;8:230.

    Google Scholar 

  61. Rodrigues MM, et al. Glaucoma due to endothelialization of the anterior chamber angle: a comparison of posterior polymorphous dystrophy of the cornea and Chandler’s syndrome. Arch Ophthalmol. 1980;98:688.

    Article  CAS  PubMed  Google Scholar 

  62. Cibis GW, Tripathi RC. The differential diagnosis of Descemet’s tears (Haab’s striae) and posterior polymorphous dystrophy bands. A clinicopathologic study. Ophthalmology. 1982;89(6):614–20.

    Article  CAS  PubMed  Google Scholar 

  63. Pardos GJ, Krachmer JH, Mannis MJ. Posterior corneal vesicles. Arch Ophthalmol. 1981;99(9):1573–7.

    Article  CAS  PubMed  Google Scholar 

  64. Patel SP, Parker MD. SLC4A11 and the pathophysiology of congenital hereditary endothelial dystrophy. Biomed Res Int. 2015;2015:475392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mullaney PB, Risco JM, Teichmann K, Millar L. Congenital hereditary endothelial dystrophy associated with glaucoma. Ophthalmology. 1995;102:186–92.

    Article  CAS  PubMed  Google Scholar 

  66. Givens KT, Lee DA, Jones T, Ilstrup DM. Congenital rubella syndrome: ophthalmic manifestations and associated systemic disorders. Br J Ophthalmol. 1993;77(6):358–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wadelius C, Fagerholm P, Petersson U, Anneren G. Lowe oculocerebrorenal syndrome. DNA-based linkage of the gene to Xq24-q26, using tightly linked flanking markers and the correlation to lens examination in carrier diagnosis. Am J Hum Genet. 1989;44:241.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Becker B, Shaffer RN. Diagnosis and therapy of the glaucomas. St. Louis: CV Mosby; 1965.

    Google Scholar 

  69. Kiskis AA, Markowitz SN, Morin JD. Corneal diameter and axial length in congenital glaucoma. Can J Opththalmol. 1985;20:93.

    CAS  Google Scholar 

  70. Freedman SF, Walton DS. Approach to infants and children with glaucoma. In: Epstein DL, editor. Chandler and Grant’s glaucoma. 4th ed. Baltimore: Williams & Wilkins; 1997.

    Google Scholar 

  71. Morin JD, Bryars JH. Causes of loss of vision in congenital glaucoma. Arch Ophthalmol. 1980;98(9):1575–6.

    Article  CAS  PubMed  Google Scholar 

  72. Cronemberger S, Calixto N, Avellar Milhomens TG, Gama PO, Milhomens EG, Rolim H, et al. Effect of intraocular pressure control on central corneal thickness, horizontal corneal diameter, and axial length in primary congenital glaucoma. J AAPOS. 2014;18(5):433–6.

    Article  PubMed  Google Scholar 

  73. Kessing SV, Gregersen E. The distended disc in early stages of congenital glaucoma. Acta Ophthalmol (Copenh). 1977;55(3):431–5.

    Article  CAS  Google Scholar 

  74. Quigley HA. The pathogenesis of reversible cupping in congenital glaucoma. Am J Ophthalmol. 1977;84(3):358–70.

    Article  CAS  PubMed  Google Scholar 

  75. Ely AL, El-Dairi MA, Freedman SF. Cupping reversal in pediatric glaucoma – evaluation of the retinal nerve fiber layer and visual field. Am J Ophthalmol. 2014;158(5):905–15.

    Article  PubMed  Google Scholar 

  76. Shaffer RN, Hetherington J Jr. The glaucomatous disc in infants. A suggested hypothesis for disc cupping. Trans Am Acad Ophthalmol Otolaryngol. 1969;73(5):923–35.

    CAS  PubMed  Google Scholar 

  77. Richardson KT. Optic cup symmetry in normal newborn infants. Invest Ophthalmol. 1968;7:137–47.

    CAS  PubMed  Google Scholar 

  78. Robin AL, Quigley HA, Pollack IP, Maumenee AE, Maumenee IH. An analysis of visual acuity, visual fields, and disk cupping in childhood glaucoma. Am J Ophthalmol. 1979;88(5):847–58.

    Article  CAS  PubMed  Google Scholar 

  79. Fayed MA, Chen TC. Pediatric intraocular pressure measurements: tonometers, central corneal thickness, and anesthesia. Surv Ophthalmol. 2019;64:810.

    Article  PubMed  Google Scholar 

  80. Grigorian F, Grigorian AP, Olitsky SE. The use of the iCare tonometer reduced the need for anesthesia to measure intraocular pressure in children. J AAPOS. 2012;16(6):508–10.

    Article  PubMed  Google Scholar 

  81. Flemmons MS, Hsiao YC, Dzau J, Asrani S, Jones S, Freedman SF. Icare rebound tonometry in children with known and suspected glaucoma. J AAPOS. 2011;15(2):153–7.

    Article  PubMed  Google Scholar 

  82. Dosunmu EO, Marcus I, Tung I, Thiamthat W, Freedman SF. The effect of repeated measurements and the use of topical anesthetic on rebound tonometry values in children. J AAPOS. 2014;18(6):619–21.

    Article  PubMed  Google Scholar 

  83. McKee EC, Ely AL, Duncan JE, Dosunmu EO, Freedman SF. A comparison of Icare PRO and Tono-Pen XL tonometers in anesthetized children. J AAPOS. 2015;19(4):332–7.

    Article  PubMed  Google Scholar 

  84. Eisenberg DL, Sherman BG, McKeown CA, Schuman JS. Tonometry in adults and children. A manometric evaluation of pneumatonometry, applanation, and TonoPen in vitro and in vivo. Ophthalmology. 1998;105(7):1173–81.

    Article  CAS  PubMed  Google Scholar 

  85. Walton DS. Diagnosis and treatment of glaucoma in childhood. In: Epstein DL, editor. Chandler and Grant’s glaucoma. 3rd ed. Philadelphia: Lea & Febinger; 1986.

    Google Scholar 

  86. Marraffa M, Pucci V, Marchini G, Morselli S, Bellucci R, Bonomi L. HPR perimetry and Humphrey perimetry in glaucomatous children. Doc Ophthalmol. 1995;89(4):383–6.

    Article  CAS  PubMed  Google Scholar 

  87. Donahue SP, Porter A. SITA visual field testing in children. J AAPOS. 2001;5:114.

    Article  CAS  PubMed  Google Scholar 

  88. Becker K, Semes LR. The reliability of frequency-doubling technology (FDT) perimetry in a pediatric population. Optometry. 2003;74:173.

    PubMed  Google Scholar 

  89. Burnstein Y, Ellish NJ, Magbalon M, Higginbotham EJ. Comparison of frequency doubling perimetry with Humphrey visual field analysis in a glaucoma practice. Am J Ophthalmol. 2000;129(3):328–33.

    Article  CAS  PubMed  Google Scholar 

  90. Doughty MJ, Zaman ML. Human corneal thickness and its impact on intraocular pressure measures: a review and meta-analysis approach. Surv Ophthalmol. 2000;44(5):367–408.

    Article  CAS  PubMed  Google Scholar 

  91. Jonas JB, Stroux A, Velten I, Juenemann A, Martus P, Budde WM. Central corneal thickness correlated with glaucoma damage and rate of progression. Invest Ophthalmol Vis Sci. 2005;46(4):1269–74.

    Article  PubMed  Google Scholar 

  92. Bradfield YS, Melia BM, Repka MX, Kaminski BM, Davitt BV, Johnson DA, et al. Central corneal thickness in children. Arch Ophthalmol. 2011;129(9):1132–8.

    Article  PubMed  Google Scholar 

  93. Ehlers N, Sorensen T, Bramsen T, Poulsen EH. Central corneal thickness in newborns and children. Acta Ophthalmol (Copenh). 1976;54:285.

    Article  CAS  Google Scholar 

  94. Henriques MJ, Vessani RM, Reis FA, de Almeida GV, Betinjane AJ, Susanna R Jr. Corneal thickness in congenital glaucoma. J Glaucoma. 2004;13(3):185–8.

    Article  PubMed  Google Scholar 

  95. Muir KW, Duncan L, Enyedi LB, Freedman SF. Central corneal thickness in children: racial differences (black vs. white) and correlation with measured intraocular pressure. J Glaucoma. 2006;15(6):520–3.

    Article  PubMed  Google Scholar 

  96. Baig NB, Lin AA, Freedman SF. Ultrasound evaluation of glaucoma drainage devices in children. J AAPOS. 2015;19(3):281–4.

    Article  PubMed  Google Scholar 

  97. Salchow DJ, Oleynikov YS, Chiang MF, Kennedy-Salchow SE, Langton K, Tsai JC, et al. Retinal nerve fiber layer thickness in normal children measured with optical coherence tomography. Ophthalmology. 2006;113(5):786–91.

    Article  PubMed  Google Scholar 

  98. Ahn HC, Son HW, Kim JS, Lee JH. Quantitative analysis of retinal nerve fiber layer thickness of normal children and adolescents. Korean J Ophthalmol. 2005;19(3):195–200.

    Article  PubMed  Google Scholar 

  99. Hess DB, Asrani SG, Bhide MG, Enyedi LB, Stinnett SS, Freedman SF. Macular and retinal nerve fiber layer analysis of normal and glaucomatous eyes in children using optical coherence tomography. Am J Ophthalmol. 2005;139(3):509–17.

    Article  PubMed  Google Scholar 

  100. Rao A, Sahoo B, Kumar M, Varshney G, Kumar R. Retinal nerve fiber layer thickness in children <18 years by spectral-domain optical coherence tomography. Semin Ophthalmol. 2013;28(2):97–102.

    Article  PubMed  Google Scholar 

  101. El-Dairi MA, Holgado S, Asrani S, Enyedi L, Freedman S. Correlation between optical coherence tomography and glaucomatous optic nerve head damage in children. Br J Ophthalmol. 2008;93:1325.

    Article  PubMed  Google Scholar 

  102. Watcha MF, Chu FC, Stevens JL, Forestner JE. Effects of halothane on intraocular pressure in anesthetized children. Anesth Analg. 1990;71:181–4.

    Article  CAS  PubMed  Google Scholar 

  103. Watcha MF, White PF, Tychsen L, Stevens JL. Comparative effects of laryngeal mask airway and endotracheal tube insertion on intraocular pressure in children. Anesth Analg. 1992;75:355–60.

    Article  CAS  PubMed  Google Scholar 

  104. Gallin-Cohen PF, Podos SM, Yablonski ME. Oxygen lower intraocular pressure. Invest Opthalmol Vis Sci. 1980;19:43–8.

    CAS  Google Scholar 

  105. Blumberg D, Congdon N, Jampel H, Gilbert D, Elliott R, Rivers R, et al. The effects of sevoflurane and ketamine on intraocular pressure in children during examination under anesthesia. Am J Ophthalmol. 2007;143(3):494–9.

    Article  CAS  PubMed  Google Scholar 

  106. Vinik HR. Intraocular pressure changes during rapid sequence induction and intubation: a comparison of rocuronium, atracurium, and succinylcholine. J Clin Anesth. 1999;11(2):95–100.

    Article  CAS  PubMed  Google Scholar 

  107. Dominiguez A, Banos MS, Alvare MG, Contra GF, Quintela FB. Intraocular pressure measurement in infants under general anesthesia. Am J Ophthalmol. 1974;78:110–6.

    Article  Google Scholar 

  108. Rotruck JC, House RJ, Freedman SF, Kelly MP, Enyedi LB, Prakalapakorn SG, et al. Optical coherence tomography normative peripapillary retinal nerve fiber layer and macular data in children ages 0–5 years. Am J Ophthalmol. 2019;208:323.

    Article  PubMed  Google Scholar 

  109. Hsu ST, Chen X, Ngo HT, House RJ, Kelly MP, Enyedi LB, et al. Imaging infant retinal vasculature with OCT angiography. Ophthalmol Retina. 2019;3(1):95–6.

    Article  PubMed  Google Scholar 

  110. Capino AC, Dannaway DC, Miller JL. Metabolic acidosis with ophthalmic dorzolamide in a neonate. J Pediatr Pharmacol Ther. 2016;21(3):256–9.

    PubMed  PubMed Central  Google Scholar 

  111. Zimmerman TJ, Kooner KS, Morgan KS. Safety and efficacy of timolol in pediatric glaucoma. Surv Ophthalmol. 1983;28:262–4.

    Article  PubMed  Google Scholar 

  112. Ott EZ, Mills MD, Arango S, Getson AJ, Assaid CA, Adamsons IA. A randomized trial assessing dorzolamide in patients with glaucoma who are younger than 6 years. Arch Ophthalmol. 2005;123(9):1177–86.

    Article  CAS  PubMed  Google Scholar 

  113. Sharan S, Dupuis A, Hebert D, Levin AV. The effect of oral acetazolamide on weight gain in children. Can J Ophthalmol. 2010;45(1):41–5.

    Article  PubMed  Google Scholar 

  114. Sabri K, Levin AV. The additive effect of topical dorzolamide and systemic acetazolamide in pediatric glaucoma. J AAPOS. 2006;10(5):464–8.

    Article  PubMed  Google Scholar 

  115. Portellos M, Buckley EG, Freedman SF. Topical versus oral carbonic anhydrase inhibitor therapy for pediatric glaucoma. J AAPOS. 1998;2(1):43–7.

    Article  CAS  PubMed  Google Scholar 

  116. Whitson JT, Roarty JD, Vijaya L, Robin AL, Gross RD, Landry TA, et al. Efficacy of brinzolamide and levobetaxolol in pediatric glaucomas: a randomized clinical trial. J AAPOS. 2008;12(3):239–46.e3.

    Article  PubMed  Google Scholar 

  117. Hoskins HD Jr, Hetherington J Jr, Magee SD, Naykhin R, Migliazzo CV. Clinical experience with timolol in childhood glaucoma. Arch Ophthalmol. 1985;103(8):1163–5.

    Article  PubMed  Google Scholar 

  118. Boger WP 3rd. Timolol in childhood glaucoma. Surv Ophthalmol. 1983;28(Suppl):259–61.

    Article  PubMed  Google Scholar 

  119. Maeda-Chubachi T, Chi-Burris K, Simons BD, Freedman SF, Khaw PT, Wirostko B, et al. Comparison of latanoprost and timolol in pediatric glaucoma: a phase 3, 12-week, randomized, double-masked multicenter study. Ophthalmology. 2011;118(10):2014–21.

    Article  PubMed  Google Scholar 

  120. Passo MS, Palmer EA, Van Buskirk EM. Plasma timolol in glaucoma patients. Ophthalmology. 1984;91:1361–3.

    Article  CAS  PubMed  Google Scholar 

  121. Konstas AG, Katsanos A, Quaranta L, Mikropoulos DG, Tranos PG, Teus MA. Twenty-four hour efficacy of glaucoma medications. Prog Brain Res. 2015;221:297–318.

    Article  PubMed  Google Scholar 

  122. Boger WP 3rd, Walton DS. Timolol in uncontrolled childhood glaucomas. Ophthalmology. 1981;88(3):253–8.

    Article  PubMed  Google Scholar 

  123. Wright TM, Freedman SF. Exposure to topical apraclonidine in children with glaucoma. J Glaucoma. 2009;18(5):395–8.

    Article  PubMed  Google Scholar 

  124. Berlin RJ, Lee UT, Samples JR, Rich LF, Tang-Liu DD, Sing KA, et al. Ophthalmic drops causing coma in an infant. J Pediatr. 2001;138(3):441–3.

    Article  CAS  PubMed  Google Scholar 

  125. Enyedi LB, Freedman SF. Safety and efficacy of brimonidine in children with glaucoma. J AAPOS. 2001;5(5):281–4.

    Article  CAS  PubMed  Google Scholar 

  126. Al-Shahwan S, Al-Torbak AA, Turkmani S, Al-Omran M, Al-Jadaan I, Edward DP. Side-effect profile of brimonidine tartrate in children. Ophthalmology. 2005;112(12):2143.

    Article  PubMed  Google Scholar 

  127. Carlsen JO, Zabriskie NA, Kwon YH, Barbe ME, Scott WE. Apparent central nervous system depression in infants after the use of topical brimonidine. Am J Ophthalmol. 1999;128(2):255–6.

    Article  CAS  PubMed  Google Scholar 

  128. Younus M, Schachar RA, Zhang M, Sultan MB, Tressler CS, Huang K, et al. A long-term safety study of latanoprost in pediatric patients with glaucoma and ocular hypertension: a prospective cohort study. Am J Ophthalmol. 2018;196:101–11.

    Article  CAS  PubMed  Google Scholar 

  129. Raber S, Courtney R, Maeda-Chubachi T, Simons BD, Freedman SF, Wirostko B. Latanoprost systemic exposure in pediatric and adult patients with glaucoma: a phase 1, open-label study. Ophthalmology. 2011;118(10):2022–7.

    Article  PubMed  Google Scholar 

  130. Kucukevcilioglu M, Bayer A, Uysal Y, Altinsoy HI. Prostaglandin associated periorbitopathy in patients using bimatoprost, latanoprost and travoprost. Clin Exp Ophthalmol. 2014;42(2):126–31.

    Article  PubMed  Google Scholar 

  131. Maumenee AE. Further observations on the pathogenesis of congenital glaucoma. Am J Ophthalmol. 1963;55:1163–76.

    Article  CAS  PubMed  Google Scholar 

  132. Addis VM, Miller-Ellis E. Latanoprostene bunod ophthalmic solution 0.024% in the treatment of open-angle glaucoma: design, development, and place in therapy. Clin Ophthalmol. 2018;12:2649–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kahook MY, Serle JB, Mah FS, Kim T, Raizman MB, Heah T, et al. Long-term safety and ocular hypotensive efficacy evaluation of netarsudil ophthalmic solution: Rho kinase elevated IOP treatment trial (ROCKET-2). Am J Ophthalmol. 2019;200:130–7.

    Article  CAS  PubMed  Google Scholar 

  134. Shaffer RN. Prognosis of goniotomy in primary infantile glaucoma (trabeculodysgenesis). Trans Am Ophthalmol Soc. 1982;80:321–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Akimoto M, Tanihara H, Negi A, Nagato M. Surgical results of trabeculotomy ab externo for developmental glaucoma. Arch Ophthalmol. 1994;112:1540–4.

    Article  CAS  PubMed  Google Scholar 

  136. Huang H, Bao WJ, Yamamoto T, Kawase K, Sawada A. Postoperative outcome of three different procedures for childhood glaucoma. Clin Ophthalmol. 2019;13:1–7.

    Article  CAS  PubMed  Google Scholar 

  137. El Sayed Y, Esmael A, Mettias N, El Sanabary Z, Gawdat G. Factors influencing the outcome of goniotomy and trabeculotomy in primary congenital glaucoma [published online ahead of print, 2019 Mar 7]. Br J Ophthalmol. 2019;bjophthalmol-2018-313387.

    Google Scholar 

  138. Neustein RF, Beck AD. Circumferential trabeculotomy versus conventional angle surgery: comparing long-term surgical success and clinical outcomes in children with primary congenital glaucoma. Am J Ophthalmol. 2017;183:17–24.

    Article  PubMed  Google Scholar 

  139. Buckley EG, Freedman SF, Shields MB. Atlas of ophthalmic surgery. Vol. 3. Strabismus and glaucoma surgery. St. Louis: Mosby Yearbook; 1995.

    Google Scholar 

  140. Lavia C, Dallorto L, Maule M, Ceccarelli M, Fea AM. Minimally-invasive glaucoma surgeries (MIGS) for open angle glaucoma: a systematic review and meta-analysis. PLoS One. 2017;12(8):e0183142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Sarkisian SR, Mathews B, Ding K, Patel A, Nicek Z. 360 degrees ab-interno trabeculotomy in refractory primary open-angle glaucoma. Clin Ophthalmol. 2019;13:161–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Bayraktar S, Koseoglu T. Endoscopic goniotomy with anterior chamber maintainer: surgical technique and one-year results. Ophthalmic Surg Lasers. 2001;32(6):496–502.

    Article  CAS  PubMed  Google Scholar 

  143. Medow NB, Sauer HL. Endoscopic goniotomy for congenital glaucoma. J Pediatr Ophthalmol Strabismus. 1997;34(4):258–9.

    Article  CAS  PubMed  Google Scholar 

  144. Draeger J. New microsurgical techniques to improve chamber angle surgery. Glaucoma. 1980;2:403.

    Google Scholar 

  145. Smith R. A new technique for opening the canal of Schlemm. Br J Ophthalmol. 1960;44:370–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Burian HM. A case of Marfan’s syndrome with bilateral glaucoma with a description of a new type of operation for developmental glaucoma. Am J Ophthalmol. 1960;50:1187–92.

    Article  CAS  PubMed  Google Scholar 

  147. Noureddin BN, El-Haibi CP, Cheikha A, Bashshur ZF. Viscocanalostomy versus trabeculotomy ab externo in primary congenital glaucoma: 1-year follow-up of a prospective controlled pilot study. Br J Ophthalmol. 2006;90(10):1281–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Beck AD, Lynch MG. 360 degrees trabeculotomy for primary congenital glaucoma. Arch Ophthalmol. 1995;113(9):1200–2.

    Article  CAS  PubMed  Google Scholar 

  149. El Sayed YM, Gawdat GI. Microcatheter-assisted trabeculotomy versus 2-site trabeculotomy with the rigid probe trabeculotome in primary congenital glaucoma. J Glaucoma. 2018;27(4):371–6.

    Article  PubMed  Google Scholar 

  150. Girkin CA, Marchase N, Cogen MS. Circumferential trabeculotomy with an illuminated microcatheter in congenital glaucomas. J Glaucoma. 2012;21(3):160–3.

    Article  PubMed  Google Scholar 

  151. Beck AD, Lynch MG. 360 degree trabeculotomy for primary congenital glaucoma. Arch Ophthalmol. 1995;113:1200–2.

    Article  CAS  PubMed  Google Scholar 

  152. Shakrawal J, Bali S, Sidhu T, Verma S, Sihota R, Dada T. Randomized trial on illuminated-microcatheter circumferential trabeculotomy versus conventional trabeculotomy in congenital glaucoma. Am J Ophthalmol. 2017;180:158–64.

    Article  PubMed  Google Scholar 

  153. El Sayed Y, Gawdat G. Two-year results of microcatheter-assisted trabeculotomy in paediatric glaucoma: a randomized controlled study. Acta Ophthalmol. 2017;95(8):e713–9.

    Article  PubMed  Google Scholar 

  154. Grover DS, Godfrey DG, Smith O, Feuer WJ, Montes de Oca I, Fellman RL. Gonioscopy-assisted transluminal trabeculotomy, ab interno trabeculotomy: technique report and preliminary results. Ophthalmology. 2014;121(4):855–61.

    Article  PubMed  Google Scholar 

  155. Grover DS, Smith O, Fellman RL, Godfrey DG, Butler MR, Montes de Oca I, et al. Gonioscopy assisted transluminal trabeculotomy: an ab interno circumferential trabeculotomy for the treatment of primary congenital glaucoma and juvenile open angle glaucoma. Br J Ophthalmol. 2015;99(8):1092–6.

    Article  PubMed  Google Scholar 

  156. Harvey MM, Schmitz JW. Use of ab interno Kahook Dual Blade trabeculectomy for treatment of primary congenital glaucoma. Eur J Ophthalmol. 2018;30:1120672118805873.

    Google Scholar 

  157. Mandal AK, Gothwal VK, Nutheti R. Surgical outcome of primary developmental glaucoma: a single surgeon’s long-term experience from a tertiary eye care centre in India. Eye. 2007;21(6):764–74.

    Article  CAS  PubMed  Google Scholar 

  158. Khalil DH, Abdelhakim MA. Primary trabeculotomy compared to combined trabeculectomy-trabeculotomy in congenital glaucoma: 3-year study. Acta Ophthalmol. 2016;94(7):e550–4.

    Article  CAS  PubMed  Google Scholar 

  159. Cadera W, Pachtman MA, Cantor LB, Ellis FD, Helveston EM. Filtering surgery in childhood glaucoma. Ophthalmic Surg. 1984;15:319–22.

    CAS  PubMed  Google Scholar 

  160. Sheie H. Results of peripheral iridectomy with scleral cautery in congenital and juvenile glaucoma. Trans Am Ophthalmol Soc. 1962;60:116.

    Google Scholar 

  161. Beck AD, Wilson WR, Lynch MG, Lynn MJ, Noe R. Trabeculectomy with adjunctive mitomycin C in pediatric glaucoma. Am J Ophthalmol. 1998;126:648–57.

    Article  CAS  PubMed  Google Scholar 

  162. Jayaram H, Scawn R, Pooley F, Chiang M, Bunce C, Strouthidis NG, et al. Long-term outcomes of trabeculectomy augmented with mitomycin C undertaken within the first 2 years of life. Ophthalmology. 2015;122(11):2216–22.

    Article  PubMed  Google Scholar 

  163. Khaw PT, Chiang M, Shah P, Sii F, Lockwood A, Khalili A. Enhanced trabeculectomy: the Moorfields Safer Surgery System. Dev Ophthalmol. 2012;50:1–28.

    Article  PubMed  Google Scholar 

  164. Low S, Hamada S, Nischal KK. Antimetabolite and releasable suture augmented filtration surgery in refractory pediatric glaucomas. J AAPOS. 2008;12(2):166–72.

    Article  PubMed  Google Scholar 

  165. de Jong L, Lafuma A, Aguade AS, Berdeaux G. Five-year extension of a clinical trial comparing the EX-PRESS glaucoma filtration device and trabeculectomy in primary open-angle glaucoma. Clin Ophthalmol. 2011;5:527–33.

    PubMed  PubMed Central  Google Scholar 

  166. Choy BN, Wong MO, Chan JC, Lai CH, Lai JS. ExPRESS mini-shunt as a treatment alternative for medically uncontrolled steroid-induced glaucoma in a pediatric patient. Case Rep Ophthalmol. 2016;7(3):270–6.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Elgin U, Simsek T, Batman A. Use of the ex-press miniature glaucoma implant in a child with Sturge-Weber syndrome. J Pediatr Ophthalmol Strabismus. 2007;44(4):248–50.

    Article  PubMed  Google Scholar 

  168. Cunliffe IA, Molteno AC. Long-term follow-up of Molteno drains used in the treatment of glaucoma presenting in childhood. Eye. 1998;12(Pt 3a):379–85.

    Article  PubMed  Google Scholar 

  169. Morad Y, Donaldson CE, Kim YM, Abdolell M, Levin AV. The Ahmed drainage implant in the treatment of pediatric glaucoma. Am J Ophthalmol. 2003;135(6):821–9.

    Article  PubMed  Google Scholar 

  170. Razeghinejad MR, Kaffashan S, Nowroozzadeh MH. Results of Ahmed glaucoma valve implantation in primary congenital glaucoma. J AAPOS. 2014;18(6):590–5.

    Article  PubMed  Google Scholar 

  171. Senthil S, Turaga K, Mohammed HA, Krishnamurthy R, Badakere S, Dikshit S, et al. Outcomes of silicone Ahmed glaucoma valve implantation in refractory pediatric glaucoma. J Glaucoma. 2018;27(9):769–75.

    Article  PubMed  Google Scholar 

  172. Pakravan M, Esfandiari H, Yazdani S, Doozandeh A, Dastborhan Z, Gerami E, et al. Clinical outcomes of Ahmed glaucoma valve implantation in pediatric glaucoma. Eur J Ophthalmol. 2019;29(1):44–51.

    Article  PubMed  Google Scholar 

  173. Englert JA, Freedman SF, Cox TA. The Ahmed valve in refractory pediatric glaucoma. Am J Ophthalmol. 1999;127:34–42.

    Article  CAS  PubMed  Google Scholar 

  174. Tai AX, Song JC. Surgical outcomes of Baerveldt implants in pediatric glaucoma patients. J AAPOS. 2014;18(6):550–3.

    Article  PubMed  Google Scholar 

  175. Mandalos A, Tailor R, Parmar T, Sung V. The long-term outcomes of glaucoma drainage device in pediatric glaucoma. J Glaucoma. 2016;25(3):e189–95.

    Article  PubMed  Google Scholar 

  176. Beck AD, Freedman S, Kammer J, Jin J. Aqueous shunt devices compared with trabeculectomy with mitomycin-C for children in the first two years of life. Am J Ophthalmol. 2003;136(6):994–1000.

    Article  PubMed  Google Scholar 

  177. Margeta MA, Kuo AN, Proia AD, Freedman SF. Staying away from the optic nerve: a formula for modifying glaucoma drainage device surgery in pediatric and other small eyes. J AAPOS. 2017;21(1):39–43.e1.

    Article  PubMed  Google Scholar 

  178. Go MS, Barman NR, House RJ, Freedman SF. Home tonometry assists glaucoma drainage device management in childhood glaucoma. J Glaucoma. 2019;28(9):818–22.

    Article  PubMed  Google Scholar 

  179. O’Malley Schotthoefer E, Yanovitch TL, Freedman SF. Aqueous drainage device surgery in refractory pediatric glaucomas: I. Long-term outcomes. J AAPOS. 2008;12(1):33–9.

    Article  PubMed  Google Scholar 

  180. Law SK, Kornmann HL, Giaconi JA, Kwong A, Tran E, Caprioli J. Early aqueous suppressant therapy on hypertensive phase following glaucoma drainage device procedure: a randomized prospective trial. J Glaucoma. 2016;25(3):248–57.

    Article  PubMed  Google Scholar 

  181. Jung KI, Woo JE, Park CK. Effects of aqueous suppressants and prostaglandin analogues on early wound healing after glaucoma implant surgery. Sci Rep. 2019;9(1):5251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Tung I, Marcus I, Thiamthat W, Freedman SF. Second glaucoma drainage devices in refractory pediatric glaucoma: failure by fibrovascular ingrowth. Am J Ophthalmol. 2014;158(1):113–7.

    Article  PubMed  Google Scholar 

  183. Mahdy RA. Adjunctive use of bevacizumab versus mitomycin C with Ahmed valve implantation in treatment of pediatric glaucoma. J Glaucoma. 2011;20(7):458–63.

    Article  PubMed  Google Scholar 

  184. Al-Mobarak F, Khan AO. Two-year survival of Ahmed valve implantation in the first 2 years of life with and without intraoperative mitomycin-C. Ophthalmology. 2009;116(10):1862–5.

    Article  PubMed  Google Scholar 

  185. Rachmiel R, Trope GE, Buys YM, Flanagan JG, Chipman ML. Intermediate-term outcome and success of superior versus inferior Ahmed glaucoma valve implantation. J Glaucoma. 2008;17(7):584–90.

    Article  PubMed  Google Scholar 

  186. Lind JT, Shute TS, Sheybani A. Patch graft materials for glaucoma tube implants. Curr Opin Ophthalmol. 2017;28(2):194–8.

    Article  PubMed  Google Scholar 

  187. Wagle NS, Freedman SF, Buckley EG, Davis JS, Biglan AW. Long-term outcome of cyclocryotherapy for refractory pediatric glaucoma. Ophthalmology. 1998;105(10):1921–6; discussion 6–7.

    Article  CAS  PubMed  Google Scholar 

  188. Bock CJ, Freedman SF, Buckley EG, Shields MB. Transscleral diode laser cyclophotocoagulation for refractory pediatric glaucomas. J Pediatr Ophthalmol Strabismus. 1997;34(4):235–9.

    Article  CAS  PubMed  Google Scholar 

  189. Kirwan JF, Shah P, Khaw PT. Diode laser cyclophotocoagulation: role in the management of refractory pediatric glaucomas. Ophthalmology. 2002;109(2):316–23.

    Article  PubMed  Google Scholar 

  190. Autrata R, Rehurek J. Long-term results of transscleral cyclophotocoagulation in refractory pediatric glaucoma patients. Ophthalmologica. 2003;217(6):393–400.

    Article  CAS  PubMed  Google Scholar 

  191. Sood S, Beck AD. Cyclophotocoagulation versus sequential tube shunt as a secondary intervention following primary tube shunt failure in pediatric glaucoma. J AAPOS. 2009;13(4):379–83.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Way AL, Nischal KK. High-frequency ultrasound-guided transscleral diode laser cyclophotocoagulation. Br J Ophthalmol. 2014;98(7):992–4.

    Article  PubMed  Google Scholar 

  193. Abdelrahman AM, El Sayed YM. Micropulse versus continuous wave transscleral cyclophotocoagulation in refractory pediatric glaucoma. J Glaucoma. 2018;27(10):900–5.

    Article  PubMed  Google Scholar 

  194. Glaser TS, Mulvihill MS, Freedman SF. Endoscopic cyclophotocoagulation (ECP) for childhood glaucoma: a large single-center cohort experience. J AAPOS. 2019;23(2):84.e1–e7.

    Article  Google Scholar 

  195. Neely DE, Plager DA. Endocyclophotocoagulation for management of difficult pediatric glaucomas. J AAPOS. 2001;5(4):221–9.

    Article  CAS  PubMed  Google Scholar 

  196. Al-Haddad CE, Freedman SF. Endoscopic laser cyclophotocoagulation in pediatric glaucoma with corneal opacities. J AAPOS. 2007;11(1):23–8.

    Article  PubMed  Google Scholar 

  197. Tarkkanen A, Uusitalo R, Mianowicz J. Ultrasonographic biometry in congenital glaucoma. Acta Ophthalmol (Copenh). 1983;61(4):618–23.

    Article  CAS  Google Scholar 

  198. Neustein RF, Bruce BB, Beck AD. Primary congenital glaucoma versus glaucoma following congenital cataract surgery: comparative clinical features and long-term outcomes. Am J Ophthalmol. 2016;170:214–22.

    Article  PubMed  Google Scholar 

  199. Biglan AW, Hiles DA. The visual results following infantile glaucoma surgery. J Pediatr Ophthalmol Strabismus. 1979;16(6):377–81.

    Article  CAS  PubMed  Google Scholar 

  200. Kantipuly A, Pillai MR, Shroff S, Khatiwala R, Raman GV, Krishnadas SR, et al. Caregiver burden in primary congenital glaucoma. Am J Ophthalmol. 2019;205:106.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon F. Freedman .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Shue, A., Wong, M.O., Freedman, S.F. (2022). Primary Congenital Glaucoma. In: Albert, D.M., Miller, J.W., Azar, D.T., Young, L.H. (eds) Albert and Jakobiec's Principles and Practice of Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-030-42634-7_168

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42634-7_168

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42633-0

  • Online ISBN: 978-3-030-42634-7

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics