Skip to main content

The Promise and Challenge of Microbial Alginate Production: A Product with Novel Applications

  • Reference work entry
  • First Online:
Polysaccharides of Microbial Origin

Abstract

Alginate is a polysaccharide that has various established applications in food, textile, and pharmaceutical industries for its viscosifying and gelling properties. In the last two decades, and owing to their biocompatibility, and nontoxicity as well as versatility in view of modifications, several novel applications have been emerged that can be the base of novel future markets. Currently, seaweeds are the largest source for alginate production, and despite the variations in quality and quantity due to changes of climate and sources, most of the commercially produced alginates are still based on brown seaweeds. Nevertheless, alginate can also be biotechnologically produced by species of two families of heterotrophic bacteria, namely Pseudomonas and Azotobacter. Efforts have been made in the past to produce alginate polymers from these bacteria; however, its production never left the lab scale. Herein, the biological function of microbial alginate and the current process aspects with regard to its industrial production as well as the bottlenecks that still exist are highlighted. Based on their unique biochemical and biophysical characteristics and the ability to upgrade microbial alginate polymers through in vitro modifications, the achievements for alginate polymers of the last 10 years in food, pharmaceutical, and biomedical applications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarstad O, et al. Analysis of G-block distributions and their impact on gel properties of in vitro epimerized mannuronan. Biomacromolecules. 2013;14(10):3409–16.

    Article  CAS  PubMed  Google Scholar 

  • Aarstad OA, et al. Biosynthesis and function of long guluronic acid-blocks in alginate produced by Azotobacter vinelandii. Biomacromolecules. 2019;20(4):1613–22.

    Article  CAS  PubMed  Google Scholar 

  • Abasalizadeh F, et al. Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. J Biol Eng. 2020;14:8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad Z, Sharma S, Khuller GK. Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis. Int J Antimicrob Agents. 2005;26(4):298–303.

    Article  PubMed  Google Scholar 

  • Athamneh T, et al. Pulmonary drug delivery with aerogels: engineering of alginate and alginate-hyaluronic acid microspheres. Pharm Dev Technol. 2021;26(5):509–21.

    Google Scholar 

  • Barnett SE, Varley SJ. The effects of calcium alginate on wound healing. Ann R Coll Surg Engl. 1987;69(4):153–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barrs RW, et al. Engineering a chemically defined hydrogel bioink for direct bioprinting of microvasculature. Biomacromolecules. 2021;22(2):275–88.

    Article  CAS  PubMed  Google Scholar 

  • Bayer AS, et al. Oxygen-dependent up-regulation of mucoid exopolysaccharide (alginate) production in Pseudomonas aeruginosa. Infect Immun. 1990;58(5):1344–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo T, Galindo E, Pena CF. The acetylation degree of alginates in Azotobacter vinelandii ATCC9046 is determined by dissolved oxygen and specific growth rate: studies in glucose-limited chemostat cultivations. J Ind Microbiol Biotechnol. 2013;40(7):715–23.

    Article  CAS  PubMed  Google Scholar 

  • Castillo T, et al. Respiration in Azotobacter vinelandii and its relationship with the synthesis of biopolymers. Electron J Biotechnol. 2020;48:36–45.

    Article  CAS  Google Scholar 

  • Chang WS, et al. Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions. J Bacteriol. 2007;189(22):8290–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz-Barrera A, et al. Production of alginate by Azotobacter vinelandii grown at two bioreactor scales under oxygen-limited conditions. Bioprocess Biosyst Eng. 2014;37(6):1133–40.

    Article  CAS  PubMed  Google Scholar 

  • Ertesvag H. Alginate-modifying enzymes: biological roles and biotechnological uses. Front Microbiol. 2015;6:523.

    PubMed  PubMed Central  Google Scholar 

  • Ertesvag H, et al. Identification of genes affecting alginate biosynthesis in Pseudomonas fluorescens by screening a transposon insertion library. BMC Genomics. 2017;18(1):11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan X, et al. Enhanced synthesis of alginate oligosaccharides in Pseudomonas mendocina NK-01 by overexpressing MreB. 3 Biotech. 2019;9(9):344.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan X, et al. Genome reduction enhances production of polyhydroxyalkanoate and alginate oligosaccharide in Pseudomonas mendocina. Int J Biol Macromol. 2020;163:2023–31.

    Article  CAS  PubMed  Google Scholar 

  • Flores C, et al. Role of oxygen in the polymerization and de-polymerization of alginate produced by Azotobacter vinelandii. J Chem Technol Biotechnol. 2015;90:356–65.

    Article  CAS  Google Scholar 

  • Galindo E, et al. Molecular and bioengineering strategies to improve alginate and polydydroxyalkanoate production by Azotobacter vinelandii. Microb Cell Factories. 2007;6:7.

    Article  Google Scholar 

  • Garcia A, et al. Molecular weight and viscosifying power of alginates produced by mutant strains of Azotobacter vinelandii under microaerophilic conditions. Biotechnol Rep (Amst). 2020;26:e00436.

    Article  Google Scholar 

  • Gawin A, et al. Functional characterization of three Azotobacter chroococcum alginate-modifying enzymes related to the Azotobacter vinelandii AlgE mannuronan C-5-epimerase family. Sci Rep. 2020;10(1):12470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gimmestad M, et al. The Pseudomonas fluorescens AlgG protein, but not its mannuronan C-5-epimerase activity, is needed for alginate polymer formation. J Bacteriol. 2003;185(12):3515–23.

    Google Scholar 

  • Gimmestad M, et al. New mutant strains of Pseudomonas fluorescens and variants thereof, methods of production and use thereof for the production of alginate. European Patent. 2014:EP1543105.

    Google Scholar 

  • Gohl J, et al. Simulations of 3D bioprinting: predicting bioprintability of nanofibrillar inks. Biofabrication. 2018;10(3):034105.

    Article  PubMed  Google Scholar 

  • Goncalves VS, et al. Alginate-based hybrid aerogel microparticles for mucosal drug delivery. Eur J Pharm Biopharm. 2016;107:160–70.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Fernandez T, et al. Alginate-based bioinks for 3D bioprinting and fabrication of anatomically accurate bone grafts. Tissue Eng Part A. 2021;27(17–18):1168–81.

    Google Scholar 

  • Guo W, et al. Augmented production of alginate oligosaccharides by the Pseudomonas mendocina NK-01 mutant. Carbohydr Res. 2012;352:109–16.

    Article  CAS  PubMed  Google Scholar 

  • Hay ID, et al. Microbial alginate production, modification and its applications. Microb Biotechnol. 2013;6(6):637–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hay ID, et al. Genetics and regulation of bacterial alginate production. Environ Microbiol. 2014;16(10):2997–3011.

    Article  CAS  PubMed  Google Scholar 

  • Hunt NC, Grover LM. Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnol Lett. 2010;32(6):733–42.

    Article  CAS  PubMed  Google Scholar 

  • Hunt NC, et al. 3D culture of human pluripotent stem cells in RGD-alginate hydrogel improves retinal tissue development. Acta Biomater. 2017;49:329–43.

    Article  CAS  PubMed  Google Scholar 

  • Jia J, et al. Engineering alginate as bioink for bioprinting. Acta Biomater. 2014;10(10):4323–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leiman DA, et al. Alginate therapy is effective treatment for gastroesophageal reflux disease symptoms: a systematic review and meta-analysis. Dis Esophagus. 2017;30(2):1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leitao JH, Sa-Correia I. Oxygen-dependent upregulation of transcription of alginate genes algA, algC and algD in Pseudomonas aeruginosa. Res Microbiol. 1997;148(1):37–43.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, et al. Biodegradable polymer nanogels for drug/nucleic acid delivery. Chem Rev. 2015;115(16):8564–608.

    Article  CAS  PubMed  Google Scholar 

  • Liu M, et al. Injectable thermoresponsive hydrogel formed by alginate-g-poly(N-isopropylacrylamide) that releases doxorubicin-encapsulated micelles as a smart drug delivery system. ACS Appl Mater Interfaces. 2017;9(41):35673–82.

    Article  CAS  PubMed  Google Scholar 

  • Lobas D, et al. Structure and physical properties of the extracellular polysaccharide PS-P4 produced by Sphingomonas paucimobilis P4 (DSM 6418). Carbohydr Res. 1994;251:303–13.

    Article  CAS  PubMed  Google Scholar 

  • Longergan SM, Topel DG, Marple DN. Fresh and cured meat processing and preservation. In: Longergan SM, Topel DG, Marple DN, editors. The science of animal growth and meat technology. 2nd ed. Elsevier-Academic Press; 2019. p. 205–28.

    Chapter  Google Scholar 

  • Lopez-Mendez TB, et al. Cell microencapsulation technologies for sustained drug delivery: clinical trials and companies. Drug Discov Today. 2020;26(3):852–61.

    Google Scholar 

  • Lotfy WA, et al. Expression of extracellular polysaccharides and proteins by clinical isolates of Pseudomonas aeruginosa in response to environmental conditions. Int Microbiol. 2018;21(3):129–42.

    Article  CAS  PubMed  Google Scholar 

  • Maleki S, et al. Alginate biosynthesis factories in Pseudomonas fluorescens: localization and correlation with alginate production level. Appl Environ Microbiol. 2016;82(4):1227–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maleki S, et al. New insights into Pseudomonas fluorescens alginate biosynthesis relevant for the establishment of an efficient production process for microbial alginates. New Biotechnol. 2017;37(Pt A):2–8.

    Article  CAS  Google Scholar 

  • Markstedt K, et al. 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules. 2015;16(5):1489–96.

    Article  CAS  PubMed  Google Scholar 

  • Müller JM, Alegre RM. Alginate production by Pseudomonas mendocina in a stirred draft fermenter. World J Microbiol Biotechnol. 2006;23(5):691.

    Article  Google Scholar 

  • Oelze J. Respiratory protection of nitrogenase in Azotobacter species: is a widely held hypothesis unequivocally supported by experimental evidence? FEMS Microbiol Rev. 2000;24(4):321–33.

    Article  CAS  PubMed  Google Scholar 

  • Pacheco-Leyva I, Pezoa FG, Diaz-Barrera A. Alginate biosynthesis in Azotobacter vinelandii: overview of molecular mechanisms in connection with the oxygen availability. Int J Polym Sci. 2016;Article ID 2062360, 12.

    Google Scholar 

  • Pandit P, Gayatri TN, Regubalan B. Alginates production, characterization and modification. In: AShakeel A, editor. Alginates: applications in the biomedical and food industries. Wiley Scrivener Publishing; 2019.

    Google Scholar 

  • Peters HU, et al. The influence of agitation rate on xanthan production by Xanthomonas campestris. Biotechnol Bioeng. 1989;34(11):1393–7.

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, et al. Applications of alginate as a functional food ingredient. In: Grumezescu AM, Holban MA, editors. Biopolymers for food design. Academic Press; 2018. p. 409–29.

    Google Scholar 

  • Rehm BH. In: Steinbüchel A, editor. Alginate: biology and applications, Microbiology monographs. Springer-Verlag Berlin Heidelberg; 2009.

    Chapter  Google Scholar 

  • Rehm BH, Moradali MF. In: Wang M, editor. Alginates and their biomedical applications, 11. Springer series in biomaterials science and engineering. Singapore: Springer Nature Singapore; 2018.

    Google Scholar 

  • Rehm BH, Valla S. Bacterial alginates: biosynthesis and applications. Appl Microbiol Biotechnol. 1997;48:281–8.

    Article  CAS  PubMed  Google Scholar 

  • Sabra W, Zeng AP. Microbial production of alginates: physiology and process aspects. In: Rehm BHA, editor. Alginates: biology and applications. Berlin: Springer Berlin Heidelberg; 2009. p. 153–73.

    Chapter  Google Scholar 

  • Sabra W, et al. Effect of phosphate and oxygen concentration on alginate production and stoichiometry of metabolism of Azotobacter vinelandii under microaerobic conditions. Appl Microbiol Biotechnol. 1999;52:773–80.

    Article  CAS  Google Scholar 

  • Sabra W, et al. Effect of oxygen on formation and structure of Azotobacter vinelandii alginate and its role in protecting nitrogenase. Appl Environ Microbiol. 2000;66(9):4037–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabra W, Zeng AP, Deckwer WD. Bacterial alginate: physiology, product quality and process aspects. Appl Microbiol Biotechnol. 2001;56(3–4):315–25.

    Article  CAS  PubMed  Google Scholar 

  • Sabra W, Kim EJ, Zeng AP. Physiological responses of Pseudomonas aeruginosa PAO1 to oxidative stress in controlled microaerobic and aerobic cultures. Microbiology (Reading). 2002;148(Pt 10):3195–202.

    Article  CAS  Google Scholar 

  • Sabra W, Haddad AM, Zeng AP. Comparative physiological study of the wild type and the small colony variant of Pseudomonas aeruginosa 20265 under controlled growth conditions. World J Microbiol Biotechnol. 2014;30(3):1027–36.

    Article  CAS  PubMed  Google Scholar 

  • Shakeel A. In: Ahmed S, editor. Alginates: applications in the biomedical and food industries. Beverly: Wiley Scrivener Publishing; 2019.

    Google Scholar 

  • Shtenberg Y, et al. Mucoadhesive alginate pastes with embedded liposomes for local oral drug delivery. Int J Biol Macromol. 2018;111:62–9.

    Article  CAS  PubMed  Google Scholar 

  • Smidsrod O, Haug A. Estimation of the relative stiffness of the molecular chain in polyelectrolytes from measurements of viscosity at different ionic strengths. Biopolymers. 1971;10(7):1213–27.

    Article  CAS  PubMed  Google Scholar 

  • Stanisci A, et al. Identification of a pivotal residue for determining the block structure-forming properties of alginate C-5 epimerases. ACS Omega. 2020;5(8):4352–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Z, et al. Bio-responsive alginate-keratin composite nanogels with enhanced drug loading efficiency for cancer therapy. Carbohydr Polym. 2017;175:159–69.

    Article  CAS  PubMed  Google Scholar 

  • Szekalska M, et al. Alginate: current use and future perspectives in pharmaceutical and biomedical applications. Int J Polym Sci. 2016;8:1–17.

    Google Scholar 

  • Tonnesen HH, Karlsen J. Alginate in drug delivery systems. Drug Dev Ind Pharm. 2002;28(6):621–30.

    Article  CAS  PubMed  Google Scholar 

  • Urtuvia V, et al. Bacterial alginate production: an overview of its biosynthesis and potential industrial production. World J Microbiol Biotechnol. 2017;33:198.

    Article  PubMed  Google Scholar 

  • Wu XX, et al. Long-term antibacterial composite via alginate aerogel sustained release of antibiotics and Cu used for bone tissue bacteria infection. Int J Biol Macromol. 2021;167:1211–20.

    Article  CAS  PubMed  Google Scholar 

  • Yallapu MM, Jaggi M, Xhauhan SC. Design and engineering of nanogels for cancer treatment. Drug Discov Today. 2011;16(9/10):457–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, et al. Construction of a superhydrophobic sodium alginate aerogel for efficient oil absorption and emulsion separation. Langmuir. 2021;37(2):882–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wael Sabra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sabra, W. (2022). The Promise and Challenge of Microbial Alginate Production: A Product with Novel Applications. In: Oliveira, J.M., Radhouani, H., Reis, R.L. (eds) Polysaccharides of Microbial Origin. Springer, Cham. https://doi.org/10.1007/978-3-030-42215-8_5

Download citation

Publish with us

Policies and ethics