Skip to main content

Levan

  • Reference work entry
  • First Online:
Polysaccharides of Microbial Origin

Abstract

Polysaccharides generated by microorganisms display structural diversity in terms of monosaccharide structure and organization, molecular weight, and branch design. This diversity facilitates their use in a plethora of food, health, biomedical, pharmaceutical, and cosmeceutical applications. Besides some of the well-known and industrially popular microbial polysaccharides like xanthan and dextrans, the effort to discover novel polymers with distinct functionalities has been on the rise in recent decades. Among these polymers, fructans are a class of homopolysaccharides made up of fructose residues. Though the β-2,1 linked fructan inulin has been extensively studied and widely used in the food industry for a long time, its β-2,6 linked counterpart, levan, has now started to spark interest. Already levan has proven to be an incredibly versatile polymer thanks to its unique combination of physicochemical properties and potent biological activities. Health-related opportunities reported on in recent publications include levan as an antitumor, antioxidant, immunostimulant, antimicrobial, and a wound healing substance. The polymer has been tested for a potential role in the treatment of ulcers, diabetes, elevated cholesterol, and low calcium absorption. This overview summarizes recent findings on prospective uses of levan for the health and well-being of mankind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Fattah AM, Gamal-Eldeen AM, Helmy WA, Esawy MA. Antitumor and antioxidant activities of levan and its derivative from the isolate Bacillus subtilis NRC1aza. Carbohydr Polym. 2012;89:314–22. https://doi.org/10.1016/j.carbpol.2012.02.041.

    Article  CAS  PubMed  Google Scholar 

  • Al-Halbosiy MMF, Thabit ZA, Al-Qaysi SAAS, Moussa TAA. Biological activity of levan produced from rhizospheric soil bacterium Brachybacterium phenoliresistens KX139300. Baghdad Sci J. 2018;15(3):238–43. https://doi.org/10.21123/bsj.2018.15.3.0238.

    Article  Google Scholar 

  • Avsar G, Agirbasli D, Agirbasli MA, Gunduz O, Öner ET. Levan based fibrous scaffolds electrospun via co-axial and single-needle techniques for tissue engineering applications. Carbohydr Polym. 2018;193:316–25.

    Article  CAS  Google Scholar 

  • Axente E, Sima F, Sima LE, Erginer M, Eroglu MS, Serban N, Ristoscu C, Petrescu SM, Toksoy Öner E, Mihailescu IN. Combinatorial MAPLE gradient thin film assemblies signaling to human osteoblasts. Biofabrication. 2014;6:1–9. https://doi.org/10.1088/1758-5082/6/3/035010.

    Article  CAS  Google Scholar 

  • Bahroudi S, Shabanpour B, Combie J, Shabani A, Salimi M. Levan exerts health benefit effect through alteration in bifidobacteria population. Iranian Biomed J. 2020;24(1):54–9. https://doi.org/10.29252/ibj.24.1.54.

    Article  Google Scholar 

  • Benigar E, Dogsa I, Stopar D, Jamnik A, Cigić IK, Tomšič M. Structure and dynamics of a polysaccharide matrix: aqueous solutions of bacterial levan. Langmuir. 2014;30:4172–82. https://doi.org/10.1021/la500830j.

    Article  CAS  PubMed  Google Scholar 

  • Bersaneti GT, Pan NC, Baldo C, Celligoi MAPC. Co-production of fructooligosaccharides and levan by levansucrase from Bacillus subtilis natto with potential application in the food industry. Appl Biochem Biotechnol. 2018;184(3):838–51.

    Article  CAS  Google Scholar 

  • Chen X, Gao H, Ploehn HJ. Montmorillonite-levan nanocomposites with improved thermal and mechanical properties. Carbohydr Polym. 2014;101:565–73. https://doi.org/10.1016/j.carbpol.2013.09.073.

    Article  CAS  PubMed  Google Scholar 

  • Chiang CJ, Wang JY, Chen PT, Chao YP. Enhanced levan production using chitin-binding domain fused levansucrase immobilized on chitin beads. Appl Microbiol Biotechnol. 2009;82(3):445.

    Article  CAS  Google Scholar 

  • Costa RR, Neto AI, Calgeris I, Correia CR, Pinho AC, Fonseca J, …, Mano JF. Adhesive nanostructured multilayer films using a bacterial exopolysaccharide for biomedical applications. J Mater Chem B. 2013;1(18):2367–74. https://doi.org/10.1039/c3tb20137f.

  • Dahech I, Belghith KS, Hamden K, Feki A, Belghith H, Mejdoub H. Antidiabetic activity of levan polysaccharide in alloxan-induced diabetic rats. Int J Biol Macromol. 2011;49:742–6. https://doi.org/10.1016/j.ijbiomac.2011.07.007.

    Article  CAS  PubMed  Google Scholar 

  • Dahech I, Harrabi B, Hamden K, Feki A, Mejdoub H, Belghith H, Belghith KS. Antioxidant effect of nondigestible levan and its impact on cardiovascular disease and atherosclerosis. Int J Biol Macromol. 2013;58:281–6. https://doi.org/10.1016/j.ijbiomac.2013.04.058.

    Article  CAS  PubMed  Google Scholar 

  • Djurić A, Gojgić-Cvijović G, Jakovljević, D, Kekez B, Kojić JS, Mattinen M-L, Harju IE, Vrvić MM, Beškoski VP. Brachybacterium sp. CH-KOV3 isolated from an oil-polluted environment – a new producer of levan. Int J Biol Macromol. 2017; 104:311–21. https://doi.org/10.1016/j.ijbiomac.2017.06.034.

  • Duymaz BT, Erdiler FB, Alan T, Aydogdu MO, Inan AT, Ekren N, …, Selvi SS. 3D bio-printing of levan/polycaprolactone/gelatin blends for bone tissue engineering: characterization of the cellular behavior. Eur Polym J. 2019;119: 426–37.

    Google Scholar 

  • Erginer M, Akcay A, Coskunkan B, Morova T, Rende D, Bucak S, …, Öner ET. Sulfated levan from Halomonas smyrnensis as a bioactive, heparin-mimetic glycan for cardiac tissue engineering applications. Carbohydr Polym. 2016;149:289–96.

    Google Scholar 

  • Esawy MA, Abdel-Fattah AM, Ali MM, Helmy WA, Salama BM, Taie HAA, Hashem AM, Awad GEA. Levansucrase optimization using solid state fermentation and levan biological activities studies. Carbohydr Polym. 2013;96:332–41. https://doi.org/10.1016/j.carbpol.2013.03.089.

    Article  CAS  PubMed  Google Scholar 

  • Euzenat O, Guibert A, Comber D. Production of fructo-oligosaccharides by levansucrase from Bacillus subtilis C4. Process Biochem. 1997;32(3):237–43. https://doi.org/10.1016/S0032-9592(96)00058-1.

    Article  CAS  Google Scholar 

  • Gao S, Qi X, Hart DJ, Gao H, An Y. Expression and characterization of levansucrase from Clostridium acetobutylicum. J Agric Food Chem. 2017;65(4):867–71.

    Article  CAS  Google Scholar 

  • Gojgić-Cvijović GD, Jakovljević DM, Lončarević BD, Todorović NM, Pergal MV, Ćirić J, Loos K, Beškoski VP, Vrvić MM. Production of levan by Bacillus licheniformis NS032 in sugar beet molasses-based medium. Int J Biol Macromol. 2019;121:142–51. https://doi.org/10.1016/j.ijbiomac2018.10.019.

    Article  PubMed  Google Scholar 

  • Gomes TD, Caridade SG, Sousa MP, Azevedo S, Kandur MY, Öner ET, Alves NM, Mano JF. Adhesive free-standing multilayer films containing sulfated levan for biomedical applications. Acta Biomater. 2018;69:183–95. https://doi.org/10.1016/j.actbio.2018.01.027.

    Article  CAS  PubMed  Google Scholar 

  • Haciosmanoğlu GG, Doğruel T, Genç S, Öner ET, Can ZS. Adsorptive removal of bisphenol A from aqueous solutions using phosphonated levan. J Hazard Mater. 2019;374:43–9.

    Article  Google Scholar 

  • Hernández L, Arrieta J, Menéndez C, Vazquez R, Coego A, Suárez V, Selman G, Petit-Glatron MF, Chambert R. Isolation and enzymic properties of levansucrase secreted by Acetobacter diazotrophicus SRT4, a bacterium associated with sugar cane. Biochem J. 1995;309:113–8. https://doi.org/10.1042/bj3090113.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang MY, Chang CI, Chang CC, Tseng LW, Pan CL. Effects of dietary levan on growth performance, nonspecific immunity, pathogen resistance and body composition of orange-spotted grouper (E pinephelus coioides H.). Aquac Res. 2015;46(11):2752–67.

    Article  CAS  Google Scholar 

  • Jakob F, Pfaff A, Novoa-Carballal R, Rübsam H, Becker T, Vogel RF. Structural analysis of fructans produced by acetic acid bacteria reveals a relation to hydrocolloid function. Carbohydr Polym. 2013;92:1234–42. https://doi.org/10.1016/j.carbpol.2012.10.054.

    Article  CAS  PubMed  Google Scholar 

  • Joaquim EO, Hayashi AH, Torres L, Figueiredo-Ribeiro RC, Shiomi N, de Sousa FS, et al. Chemical structure and localization of levan, the predominant fructan type in underground systems of Gomphrena marginata (Amaranthaceae). Front Plant Sci. 2018;9:1745.

    Article  Google Scholar 

  • Kazak H, Barbosa AM, Baregzay B, Alves da Cunha MA, Toksoy Öner E, Dekker RFH, Khaper N. Biological activities of bacterial levan and three fungal β-glucans botryosphaeran and lasiodiplodan under high glucose condition in the pancreatic β-cell line INS-1E. 2014.

    Google Scholar 

  • Kim SJ, Chung BH. Antioxidant activity of levan coated cerium oxide nanoparticles. Carbohydr Polym. 2016;150:400–7.

    Article  CAS  Google Scholar 

  • Kırtel O, Lescrinier E, Van den Ende W, Öner ET. Discovery of fructans in Archaea. Carbohydr Polym. 2019;220:149–56.

    Article  Google Scholar 

  • Küçükaşik F, Kazak H, Güney D, Finore I, Poli A, Yenigün O, Nicolaus B, Toksoy Öner E. Molasses as fermentation substrate for levan production by Halomonas sp. Appl Microbiol Biotechnol. 2011;89:1729–40. https://doi.org/10.1007/s00253-010-3055-8.

    Article  CAS  PubMed  Google Scholar 

  • Lammens W, Le Roy K, Schroeven L, Van Laere A, Rabijns A, Van den Ende W. Structural insights into glycoside hydrolase family 32 and 68 enzymes: functional implications. J Exp Bot. 2009;60(3):727–40.

    Article  CAS  Google Scholar 

  • Li J, Kim IH. Effects of levan-type fructan supplementation on growth performance, digestibility, blood profile, fecal microbiota, and immune responses after lipopolysaccharide challenge in growing pigs. J Anim Sci. 2013;91:5336–43. https://doi.org/10.2527/jas2013-6665.

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Yu S, Zhang T, Jiang B, Mu W. Efficient biosynthesis of levan from sucrose by a novel levansucrase from Brenneria goodwinii. Carbohydr Polym. 2017;157:1732–40.

    Article  CAS  Google Scholar 

  • Maciel JC, Andrad PL, Neri DFM, Carvalho Jr LB, Cardoso CA, Calazans GMT, …, Silva MPC. Preparation and characterization of magnetic levan particles as matrix for trypsin immobilization. J Magn Magn Mater. 2012;324(7):1312–6.

    Google Scholar 

  • Ni D, Xu W, Bai Y, Zhang W, Zhang T, Mu W. Biosynthesis of levan from sucrose using a thermostable levansucrase from Lactobacillus reuteri LTH5448. Int J Biol Macromol. 2018;113:29–37.

    Article  CAS  Google Scholar 

  • No JR, Park SY, Kim MK, Jo HY, Lee IY, Ly SY. The effects of levan on blood lipids and the absorption of calcium in rats fed a low calcium diet. J Korean Soc Food Sci Nutr. 2007;36(1):51–7.

    Article  CAS  Google Scholar 

  • Öner ET, Hernández L, Combie J. Review of levan polysaccharide: from a century of past experiences to future prospects. Biotechnol Adv. 2016;34:827–44.

    Article  Google Scholar 

  • Osman A, Toksoy Öner E, Eroglu MS. Novel levan and pNIPA temperature sensitive hydrogels for 5-ASAcontrolled release. Carbohydr Polym. 2017;165:61–70. https://doi.org/10.1016/j.carbpol.2017.01.097.

    Article  CAS  PubMed  Google Scholar 

  • Pantelić I, Lukić M, Gojgić-Cvijović G, Jakovljević D, Nikolić I, Lunter DJ, Daniels R, Savić S. Bacillus licheniformis levan as a functional biopolymer in topical drug dosage forms: from basic colloidal considerations to actual pharmaceutical application. Eur J Pharm Sci. 2020; 142:105109. https://doi.org/10.1016/j.ejps.2019.105109.

  • Poli A, Kazak H, Gürleyendağ B, Tommonaro G, Pieretti G, Toksoy Öner E, Nicolaus B. High level synthesis of levan by a novel Halomonas species growing on defined media. Carbohydr Polym. 2009;78:651–7. https://doi.org/10.1016/j.carbpol.2009.05.031.

    Article  CAS  Google Scholar 

  • Ragab TIM, Shalaby ASG, Awdan SAE, El-Bassyouni GT, Salama BM, Helmy WA, Esawy MA. Role of levan extracted from bacterial honey isolates in curing peptic ulcer: in vivo. Int J Biol Macromol. 2019;142:564–73. https://doi.org/10.1016/j.ijbiomac.2019.09.131.

    Article  CAS  PubMed  Google Scholar 

  • Rairakhwada D, Pal AK, Bhathena ZP, Sahu NP, Jha A, Mukherjee SC. Dietary microbial levan enhances cellular non-specific immunity and survival of common carp (Cyprinus carpio) juveniles. Fish Shellfish Immunol. 2007;22(5):477–86.

    Article  CAS  Google Scholar 

  • Salman JAS, Ajah HA, Khudair AY. Analysis and characterization of purified levan from Leuconostoc mesenteroides ssp. cremoris and its effects on Candida albicans virulence factors. Jordan J Biol Sci. 2019;12(2):243–9.

    CAS  Google Scholar 

  • Sarilmiser HK, Öner ET. Investigation of anti-cancer activity of linear and aldehyde-activated levan from Halomonas smyrnensis AAD6T. Biochem Eng J. 2014;92:28–34.

    Article  Google Scholar 

  • Sarilmiser HK, Ates O, Ozdemir G, Arga KY, Toksoy Öner E. Effective stimulating factors for microbial levan production by Halomonas smyrnensis AAD6T. J Biosci Bioeng. 2015;119(4):455–63. https://doi.org/10.1016/j.jbiosc.2014.09.019.

    Article  CAS  PubMed  Google Scholar 

  • Sima F, Mutlu EC, Eroglu MS, Sima LE, Serban N, Ristoscu C, …, Mihailescu IN. Levan nanostructured thin films by MAPLE assembling. Biomacromolecules. 2011;12(6):2251–6.

    Google Scholar 

  • Srikanth R, Siddartha G, Reddy CHS, Harish BS, Ramaiah MJ, Uppuluri KB. Antioxidant and anti-inflammatory levan produced from Acetobacter xylinum NCIM2526 and its statistical optimization. Carbohydr Polym. 2015;123:8–16.

    Article  CAS  Google Scholar 

  • Sturzoiu C, Petrescu M, Galateanu B, Anton M, Nica C, Simionca G, Dinischiotu A, Stoian G. Zymomonas mobilis levan is involved in metalloproteinases activation in healing of wounded and burned tissues. Sci Pap: Anim Sci Biotechnol. 2011; 44:453–8.

    Google Scholar 

  • Tabernero A, González-Garcinuño Á, Sánchez-Álvarez JM, Galán MA, Martín del Valle EM. Development of a nanoparticle system based on a fructose polymer: stability and drug release studies. Carbohydr Polym. 2017;160:26–33. https://doi.org/10.1016/j.carbpol.2016.12.025.

    Article  CAS  PubMed  Google Scholar 

  • Tabernero A, Baldino L, González-Garcinuño Á, Cardea S, Martín del Valle EM, Reverchon E. Supercritical CO2 assisted formation of composite membranes containing an amphiphilic fructose-based polymer. J CO2 Util. 2019;34:274–81. https://doi.org/10.1016/j.jcou.2019.06.014.

    Article  CAS  Google Scholar 

  • Taran M, Lotfi M, Safaei M. Optimal conditions for levan biopolymer production and its use in the synthesis of bactericidal levan-ZnO nanocomposite. Biotechnologia. 2019;100(4):397–405. https://doi.org/10.5114/bta.2019.90240.

    Article  CAS  Google Scholar 

  • Vina I, Karsakevich A, Bekers M. Stabilization of anti-leukemic enzyme L-asparaginase by immobilization on polysaccharide levan. J Mol Catal B Enzym. 2001;11(4–6):551–8.

    Article  CAS  Google Scholar 

  • Xu Q, Yajima T, Li W, Saito K, Ohshima Y, Yoshikai Y. Levan (β-2, 6-fructan), a major fraction of fermented soybean mucilage, displays immunostimulating properties via Toll-like receptor 4 signalling: induction of interleukin-12 production and suppression of T-helper type 2 response and immunoglobulin E production. Clin Exp Allergy. 2006;36(1):94–101.

    Article  CAS  Google Scholar 

  • Yamamoto S, Iizuka M, Tanaka T, Yamamoto T. The mode of synthesis of levan by Bacillus subtilis levansucrase. Agric Biol Chem. 1985;49(2):343–9. https://doi.org/10.1080/00021369.1985.10866727.

    Article  CAS  Google Scholar 

  • Yamamoto Y, Takahashi Y, Kawano M, Iizuka M, Matsumoto T, Saeki S, Yamaguchi H. In vitro digestibility and fermentability of levan and its hypocholesterolemic effects in rats. J Nutr Biochem. 1999; 10:13–8. https://doi.org/10.1016/S0955-2863(98)00077-1.

  • Zhang T, Li R, Qian H, Mu W, Miao M, Jiang B. Biosynthesis of levan by levansucrase from Bacillus methylotrophicus SK 21.002. Carbohydr Polym. 2014;101:975–81.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Combie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kırtel, O., Combie, J. (2022). Levan. In: Oliveira, J.M., Radhouani, H., Reis, R.L. (eds) Polysaccharides of Microbial Origin. Springer, Cham. https://doi.org/10.1007/978-3-030-42215-8_3

Download citation

Publish with us

Policies and ethics