Skip to main content

Scleroglucan and Schizophyllan

Microbial Polysaccharides of Functional Importance

  • Reference work entry
  • First Online:
Polysaccharides of Microbial Origin

Abstract

Microbial exopolysaccharides, particularly scleroglucan and schizophyllan, have shown outstanding potential for use in food and medical/pharmaceutical industries. Scleroglucan and schizophyllan are obtained from fungal sources and their exclusive physico-chemical attributes offer a wide range of applications as stabilizers, gelling agents, thickeners, carriers of nutraceuticals, drugs and other bioactive compounds, prebiotics, immunostimulants, immunomodulators, antimicrobial and antiviral agents, hypoglycemic and hypocholesterolemic substances, and excipients. Additionally, several potential applications of these exopolysaccharides are yet to be explored for the development of functional foods and commercial pharmaceuticals. This chapter provides a comprehensive overview about the structural description, sources, physicochemical properties, production, isolation, and recovery of scleroglucan and schizophyllan. Moreover, potential applications of these exopolysaccharides for the development of functional foods, edible coatings and delivery systems for drugs, nutraceuticals, and bioactive substances have been discussed in detail. Furthermore, various health-promoting aspects of scleroglucan and schizophyllan in controlling lifestyle-related disorders (hyperglycemia and hypercholesterolemia) have also been conversed in this treatise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ates O. Systems biology of microbial exopolysaccharides production. Front Bioeng Biotechnol. 2015;3:200.

    Article  Google Scholar 

  • Banerjee S, Parasramka M, Paruthy SB. Polysaccharides in cancer prevention: from bench to bedside. In: Ramawat KG, Mérillon JM, editors. Polysaccharides: bioactivity and biotechnology. Cham: Springer International Publishing; 2015. p. 2179–214.

    Chapter  Google Scholar 

  • Bermejo-Jambrina M, Eder J, Helgers LC, et al. C-type lectin receptors in antiviral immunity and viral escape. Front Immunol. 2018;9:590. https://doi.org/10.3389/fimmu.2018.00590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brigand G. Scleroglucan. In: Whistler RL, Bemiller JN, editors. Industrial gums: polysaccharides and their derivatives. San Diego: Academic; 2012. p. 461–74.

    Google Scholar 

  • Chen L, Liu X, Wong KH. Novel nanoparticle materials for drug/food delivery-polysaccharides. Phys Sci Rev. 2016;2016(8):201653. https://doi.org/10.1515/psr-2016-0053.

    Article  Google Scholar 

  • Corrente F, Paolicelli P, Matricardi P, et al. Novel pH-sensitive physical hydrogels of carboxymethyl scleroglucan. J Pharm Sci. 2012;101(1):256–67. https://doi.org/10.1002/jps.22766.

    Article  CAS  PubMed  Google Scholar 

  • Dave VS. QbD considerations for excipient manufacturing. In: Beg S, Hasnain MS, editors. Pharmaceutical quality by design: principles and applications. New Delhi: Academic; 2019. p. 65–76.

    Chapter  Google Scholar 

  • El Asjadi S, Nederpel QA, Cotiuga IM, et al. Biopolymer scleroglucan as an emulsion stabilizer. Colloids Surf A Physicochem Eng Asp. 2018;546:326–33. https://doi.org/10.1016/j.colsurfa.2018.02.035.

    Article  CAS  Google Scholar 

  • Farina JI, Sineriz F, Molina OE, et al. Determination of radial growth rate of colonies of Sclerotium rolfsii F-6656 for the evaluation of culture medium, optimum incubation temperature, osmo- and halotolerance. Rev Arg Microbiol. 1996;28:190–6.

    CAS  Google Scholar 

  • Farina JI, Sineriz F, Molina OE, et al. Isolation and physicochemical characterization of soluble scleroglucan from Sclerotium rolfsii – rheological properties, molecular weight and conformational characteristics. Carbohydr Polym. 2001;44:41–50.

    Article  CAS  Google Scholar 

  • Freitas F, Roca C, Reis MA. Fungi as sources of polysaccharides for pharmaceutical and biomedical applications. In: Thakur VK, Thakur MK, editors. Handbook of polymers for pharmaceutical technologies. Volume 3, Biodegradable polymers. Hoboken/Beverly: Scrivener Publishing LLC/Wiley; 2015. p. 61–103.

    Chapter  Google Scholar 

  • Gao C. Application of a novel biopolymer to enhance oil recovery. J Petrol Explor Prod Technol. 2016;6:749–53. https://doi.org/10.1007/s13202-015-0213-7.

    Article  CAS  Google Scholar 

  • Giavasis I. Production of microbial polysaccharides for use in food. In: McNeil B, Archer D, Giavasis I, et al., editors. Microbial production of food ingredients, enzymes, and nutraceuticals. Cambridge: Woodhead Publishing; 2013. p. 413–68.

    Chapter  Google Scholar 

  • Giavasis I. Bioactive fungal polysaccharides as potential functional ingredients in food and nutraceuticals. Curr Opin Biotechnol. 2014;26:162–73. https://doi.org/10.1016/j.copbio.2014.01.010.

    Article  CAS  PubMed  Google Scholar 

  • Giridharan S, Srinivasan M. Mechanisms of NF-κB p65 and strategies for therapeutic manipulation. J Inflamm Res. 2018;11:407–19.

    Article  CAS  Google Scholar 

  • Goff HD, Guo Q. The role of hydrocolloids in the development of food structure. In: Spyropoulos F, Lamidis A, Norton IT, editors. Handbook of food structure development. Wales: The Royal Society of Chemistry; 2019. p. 1–28.

    Google Scholar 

  • Jindal N, Khattar JS. Microbial polysaccharides in food industry. In: Grumezescu AM, Holban AM, editors. Handbook of food bioengineering. Volume 20, Biopolymers for food design. London: Academic; 2018. p. 67–85.

    Google Scholar 

  • Kour D, Rana KL, Kaur T, et al. Extremophiles for hydrolytic enzymes productions: biodiversity and potential biotechnological applications. In: Molina G, Gupta VK, Singh BN, et al., editors. Bioprocessing for biomolecules production. Hoboken: Wiley; 2020. p. 321–56.

    Google Scholar 

  • Ladrat CD, Sinquin C, Lebellenger L, et al. Exopolysaccharides produced by marine bacteria and their applications as glycosaminoglycan-like molecules. Front Chem. 2014;2:85.

    Google Scholar 

  • Lembre P, Lorentz C, Martino PD. Exopolysaccharides of the biofilm matrix: a complex biophysical world. In: Karunaratne DN, editor. The complex world of polysaccharides. Rijeka: Intech; 2012. p. 371–92.

    Google Scholar 

  • Lemieszek M, Rzeski W. Anticancer properties of polysaccharides isolated from fungi of the Basidiomycetes class. Contemp Oncol. 2012;16(4):285–9. https://doi.org/10.5114/wo.2012.30055.

    Article  CAS  Google Scholar 

  • Li P, Harding SE, Liu Z. Cyanobacterial exopolysaccharides: their nature and potential biotechnological applications. Biotechnol Genet Eng Rev. 2001;18:375–404.

    Article  CAS  Google Scholar 

  • Liang K, Han P, Chen Q, et al. Comparative study on enhancing oil recovery under high temperature and high salinity: polysaccharides versus synthetic polymer. ACS Omega. 2019;4(6):10620–8. https://doi.org/10.1021/acsomega.9b00717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madhuri KV, Prabhakar KV. Microbial exopolysaccharides: biosynthesis and potential applications. Orient J Chem. 2014;30:1401–10.

    Article  CAS  Google Scholar 

  • Milani J, Maleki G. Hydrocolloids in food industry. In: Valdez B, editor. Food industrial processes – methods and equipment. Rijeka: Intech; 2012. p. 17–38.

    Google Scholar 

  • Mishra A, Jha B. Microbial exopolysaccharides. In: Rosenberg E, DeLong EF, Lory S, et al., editors. The prokaryotes. Berlin/Heidelberg: Springer; 2013.

    Google Scholar 

  • Moscovici M. Present and future medical applications of microbial exopolysaccharides. Frontiers in Microbiology, 2015;6(1012).

    Google Scholar 

  • Nie H, Zheng Y, Li R, et al. Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-α in rheumatoid arthritis. Nat Med. 2013;19(3):322–8.

    Article  CAS  Google Scholar 

  • Paolicelli P, Varani G, Pacelli S, et al. Design and characterization of a biocompatible physical hydrogel based on scleroglucan for topical drug delivery. Carbohydr Polyme. 2017;174:960–9.

    Article  CAS  Google Scholar 

  • Patel AK, Michaud P, Singhania RR, et al. Polysaccharides from probiotics: new developments as food additives. Food Technol Biotechnol. 2010;48:451–63.

    CAS  Google Scholar 

  • Plotkin LI, Bivi N. Local regulation of bone cell function. In: Burr DB, Allen MR, editors. Basic and applied bone biology. San Diego: Academic; 2014. p. 47–73.

    Chapter  Google Scholar 

  • Rakhra G, Jaiswal SM, Rakhra G. Bioactive peptides and carbohydrates from natural products: a source of functional foods and nutraceuticals. In: Singh J, Meshram V, Gupta M, editors. Bioactive natural products in drug delivery. Singapore: Springer Nature; 2020. p. 335–54.

    Google Scholar 

  • Rau U. Production of schizophyllan. In: Bucke C, editor. Carbohydrate biotechnology protocols. Totowa: Humana Press; 2008.

    Google Scholar 

  • Schepetkin, Igor A., and Mark T. Quinn. “Immunomodulatory effects of botanical polysaccharides.” Polysaccharides in medicinal and pharmaceutical applications 35(2011):988–94.

    Google Scholar 

  • Selvi SS, Eminagic E, Kandur MY, et al. Research and production of microbial polymers for food industry. In: Molina G, Gupta VK, Singh BN, et al., editors. Bioprocessing for biomolecules production. Hoboken: Wiley; 2020. p. 225–6.

    Google Scholar 

  • Shamtsyan M. Potential to develop functional food products from mushroom bioactive compounds. J Hyg Eng Des. 2016;15:51–9.

    Google Scholar 

  • Shit SC, Shah PM. Edible polymers: challenges and opportunities. J Polym. 2014;2014:1–13.

    Article  Google Scholar 

  • Smelcerovic A, Knezevic-Jugovic Z, Petronijevic Z. Microbial polysaccharides and their derivatives as current and prospective pharmaceuticals. Curr Pharm Des. 2008;14:3168–95.

    Article  CAS  Google Scholar 

  • Survase SA, Saudagar PS, Bajaj IB, et al. Scleroglucan: fermentative production, downstream processing and applications. Food Technol Biotechnol. 2007a;45:107–18.

    Google Scholar 

  • Survase SA, Saudagar PS, Singhal RS. Enhanced production of scleroglucan by Sclerotium rolfsii MTCC 2156 by use of metabolic precursors. Bioresour Technol. 2007b;98:410–5.

    Google Scholar 

  • Sutivisedsak N, Leathers TD, Price NP. Production of schizophyllan from distiller’s dried grains with solubles by diverse strains of Schizophyllum commune. Springerplus. 2013;2:476. https://doi.org/10.1186/2193-1801-2-476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takedatsu H, Mitsuyama K, Mochizuki S, et al. A new therapeutic approach using a schizophyllan-based drug delivery system for inflammatory bowel disease. Mol Ther: J Am Soc Gene Therapy. 2012;20(6):1234–41.

    Article  CAS  Google Scholar 

  • Taurhesia S, McNeil B. Physicochemical factors affecting formation of biological response modifier scleroglucan. J Chem Technol Biotechnol. 1994;59:157–63.

    Article  CAS  Google Scholar 

  • Venugopal V. Polysaccharides: their characteristics and marine sources. Marine polysaccharides food applications. Boca Raton: CRC Press; 2011. p. 3–27.

    Book  Google Scholar 

  • Verma MS, Gu FX. 1,3-β-glucans: drug delivery and pharmacology. In: Karunaratne DN, editor. The complex world of polysaccharides. IntechOpen; 2012.

    Google Scholar 

  • Vetvicka V, Vannucci L, Sima P. β-glucan as a new tool in vaccine development. Scandinavian. J Immunol. 2020;91(2):e12833. https://doi.org/10.1111/sji.12833.

    Article  Google Scholar 

  • Wang Y, McNeil B. Effect of temperature on scleroglucan synthesis and organic acid production by Sclerotium glucanicum. Enzym Microb Technol. 1995a;17:893–9.

    Article  CAS  Google Scholar 

  • Wang Y, McNeil B. pH effects on exopolysaccharide and oxalic acid production in cultures of Sclerotium glucanicum. Enzym Microb Technol. 1995b;17:124–30.

    Article  CAS  Google Scholar 

  • Wong JH, Ng TB, Chan HHL, et al. Mushroom extracts and compounds with suppressive action on breast cancer: evidence from studies using cultured cancer cells, tumor-bearing animals, and clinical trials. Appl Microbiol Biotechnol. 2020;104:4675–703.

    Article  CAS  Google Scholar 

  • Wüstenberg T. General overview of food hydrocolloids. In: Wüstenberg T, editor. Cellulose and cellulose derivatives in the food industry – fundamentals and applications. Weinheim: Wiley-VCH; 2015. p. 1–68.

    Google Scholar 

  • Zhang Z, Zhang F, Liu Y. Recent advances in enhancing the sensitivity and resolution of capillary electrophoresis. J Chromatogr Sci. 2013a;51:666–83.

    Article  CAS  Google Scholar 

  • Zhang Y, Kong H, Fang Y, et al. Schizophyllan: a review on its structure, properties, bioactivities and recent developments. Bioact Carbohydr Diet Fiber I. 2013b;2013:53–71.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nauman Khalid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rahman, H.U.u., Asghar, W., Khalid, N. (2022). Scleroglucan and Schizophyllan. In: Oliveira, J.M., Radhouani, H., Reis, R.L. (eds) Polysaccharides of Microbial Origin. Springer, Cham. https://doi.org/10.1007/978-3-030-42215-8_16

Download citation

Publish with us

Policies and ethics